Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 23(1): 88-94, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985838

RESUMO

Vibrational control (VC) of photochemistry through the optical stimulation of structural dynamics is a nascent concept only recently demonstrated for model molecules in solution. Extending VC to state-of-the-art materials may lead to new applications and improved performance for optoelectronic devices. Metal halide perovskites are promising targets for VC due to their mechanical softness and the rich array of vibrational motions of both their inorganic and organic sublattices. Here, we demonstrate the ultrafast VC of FAPbBr3 perovskite solar cells via intramolecular vibrations of the formamidinium cation using spectroscopic techniques based on vibrationally promoted electronic resonance. The observed short (~300 fs) time window of VC highlights the fast dynamics of coupling between the cation and inorganic sublattice. First-principles modelling reveals that this coupling is mediated by hydrogen bonds that modulate both lead halide lattice and electronic states. Cation dynamics modulating this coupling may suppress non-radiative recombination in perovskites, leading to photovoltaics with reduced voltage losses.

2.
J Am Chem Soc ; 145(32): 17700-17709, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37527512

RESUMO

In photoelectrochemical cells (PECs) the photon-to-current conversion efficiency is often governed by carrier transport. Most metal oxides used in PECs exhibit thermally activated transport due to charge localization via the formation of polarons or the interaction with defects. This impacts catalysis by restricting the charge accumulation and extraction. To overcome this transport bottleneck nanostructuring, selective doping and photothermal treatments have been employed. Here we demonstrate an alternative approach capable of directly activating localized carriers in bismuth vanadate (BiVO4). We show that IR photons can optically excite localized charges, modulate their kinetics, and enhance the PEC current. Moreover, we track carriers bound to oxygen vacancies and expose their ∼10 ns charge localization, followed by ∼60 µs transport-assisted trapping. Critically, we demonstrate that localization is strongly dependent on the electric field within the device. While optical modulation has still a limited impact on overall PEC performance, we argue it offers a path to control devices on demand and uncover defect-related photophysics.

3.
Small ; 18(15): e2200580, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246948

RESUMO

Recent efforts in the field of organic photodetectors (OPD) have been focused on extending broadband detection into the near-infrared (NIR) region. Here, two blends of an ultralow bandgap push-pull polymer TQ-T combined with state-of-the-art non-fullerene acceptors, IEICO-4F and Y6, are compared to obtain OPDs for sensing in the NIR beyond 1100 nm, which is the cut off for benchmark Si photodiodes. It is observed that the TQ-T:IEICO-4F device has a superior IR responsivity (0.03 AW-1 at 1200 nm and -2 V bias) and can detect infrared light up to 1800 nm, while the TQ-T:Y6 blend shows a lower responsivity of 0.01 AW-1 . Device physics analyses are tied with spectroscopic and morphological studies to link the superior performance of TQ-T:IEICO-4F OPD to its faster charge separation as well as more favorable donor-acceptor domains mixing. In the polymer blend with Y6, the formation of large agglomerates that exceed the exciton diffusion length, which leads to high charge recombination, is observed. An application of these devices as biometric sensors for real-time heart rate monitoring via photoplethysmography, utilizing infrared light, is demonstrated.


Assuntos
Energia Solar , Raios Infravermelhos , Monitorização Fisiológica , Polímeros/química
4.
J Am Chem Soc ; 143(20): 7599-7603, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33891817

RESUMO

Minimizing the energy offset between the lowest exciton and charge-transfer (CT) states is a widely employed strategy to suppress the energy loss (Eg/q - VOC) in polymer:non-fullerene acceptor (NFA) organic solar cells (OSCs). In this work, transient absorption spectroscopy is employed to determine CT state lifetimes in a series of low energy loss polymer:NFA blends. The CT state lifetime is observed to show an inverse energy gap law dependence and decreases as the energy loss is reduced. This behavior is assigned to increased mixing/hybridization between these CT states and shorter-lived singlet excitons of the lower gap component as the energy offset ΔECT-S1 is reduced. This study highlights how achieving longer exciton and CT state lifetimes has the potential for further enhancement of OSC efficiencies.

5.
Rep Prog Phys ; 84(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33730709

RESUMO

Here we provide a comprehensive review of a newly developed lighting technology based on metal halide perovskites (i.e. perovskite light-emitting diodes) encompassing the research endeavours into materials, photophysics and device engineering. At the outset we survey the basic perovskite structures and their various dimensions (namely three-, two- and zero-dimensional perovskites), and demonstrate how the compositional engineering of these structures affects the perovskite light-emitting properties. Next, we turn to the physics underpinning photo- and electroluminescence in these materials through their connection to the fundamental excited states, energy/charge transport processes and radiative and non-radiative decay mechanisms. In the remainder of the review, we focus on the engineering of perovskite light-emitting diodes, including the history of their development as well as an extensive analysis of contemporary strategies for boosting device performance. Key concepts include balancing the electron/hole injection, suppression of parasitic carrier losses, improvement of the photoluminescence quantum yield and enhancement of the light extraction. Overall, this review reflects the current paradigm for perovskite lighting, and is intended to serve as a foundation to materials and device scientists newly working in this field.

6.
Nano Lett ; 20(4): 2271-2278, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32142303

RESUMO

Carrier cooling is of widespread interest in the field of semiconductor science. It is linked to carrier-carrier and carrier-phonon coupling and has profound implications for the photovoltaic performance of materials. Recent transient optical studies have shown that a high carrier density in lead-halide perovskites (LHPs) can reduce the cooling rate through a "phonon bottleneck". However, the role of carrier-carrier interactions, and the material properties that control cooling in LHPs, is still disputed. To address these factors, we utilize ultrafast "pump-push-probe" spectroscopy on LHP nanocrystal (NC) films. We find that the addition of cold carriers to LHP NCs increases the cooling rate, competing with the phonon bottleneck. By comparing different NCs and bulk samples, we deduce that the cooling behavior is intrinsic to the LHP composition and independent of the NC size or surface. This can be contrasted with other colloidal nanomaterials, where confinement and trapping considerably influence the cooling dynamics.

7.
Phys Chem Chem Phys ; 22(31): 17605-17611, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32808944

RESUMO

The relaxation of high-energy "hot" carriers in semiconductors is known to involve the redistribution of energy between hot and cold carriers, as well as the transfer of energy from hot carriers to phonons. Over the past few years, these two processes have been identified in lead-halide perovskites (LHPs) using ultrafast pump-probe experiments, but their interplay is not fully understood. Here we present a practical and intuitive kinetic model that accounts for the effects of both hot and cold carriers on carrier relaxation in LHPs. We apply this model to describe the dynamics of hot carriers in bulk and nanocrystalline CsPbBr3 as observed by multi-pulse "pump-push-probe" spectroscopy. The model captures the slowing of the relaxation dynamics in the materials as the number of hot carriers increases, which has previously been explained by a "hot-phonon bottleneck" mechanism. The model also correctly predicts an acceleration of the relaxation kinetics as the number of cold carriers in the samples is increased. Using a series of natural approximations, we reduce our model to a simple form containing terms for the carrier-carrier and carrier-phonon interactions. The model can be instrumental for evaluating the details of carrier relaxation and carrier-phonon couplings in LHPs and other soft optoelectronic materials.

8.
J Am Chem Soc ; 141(47): 18791-18798, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31663329

RESUMO

Oxygen vacancies are ubiquitous in metal oxides and critical to performance, yet the impact of these states upon charge carrier dynamics important for photoelectrochemical and photocatalytic applications remains contentious and poorly understood. A key challenge is the unambiguous identification of spectroscopic fingerprints which can be used to track their function. Herein, we employ five complementary techniques to modulate the electronic occupancy of states associated with oxygen vacancies in situ in BiVO4 photoanodes, allowing us to identify a spectral signature for the ionization of these states. We obtain an activation energy of ∼0.2 eV for this ionization process, with thermally activated electron detrapping from these states determining the kinetics of electron extraction, consistent with improved photoelectrochemical performance at higher temperatures. Bulk, un-ionized states, however, function as deep hole traps, with such trapped holes energetically unable to drive water oxidation. These observations help address recent controversies in the literature regarding oxygen vacancy function, providing new insights into their impact upon photoelectrochemical performance.

9.
Small ; 15(8): e1804947, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30690874

RESUMO

Semiconductor quantum dots (QDs) are among the most promising next-generation optoelectronic materials. QDs are generally obtained through either epitaxial or colloidal growth and carry the promise for solution-processed high-performance optoelectronic devices such as light-emitting diodes (LEDs), solar cells, etc. Herein, a straightforward approach to synthesize perovskite QDs and demonstrate their applications in efficient LEDs is reported. The perovskite QDs with controllable crystal sizes and properties are in situ synthesized through one-step spin-coating from perovskite precursor solutions followed by thermal annealing. These perovskite QDs feature size-dependent quantum confinement effect (with readily tunable emissions) and radiative monomolecular recombination. Despite the substantial structural inhomogeneity, the in situ generated perovskite QDs films emit narrow-bandwidth emission and high color stability due to efficient energy transfer between nanostructures that sweeps away the unfavorable disorder effects. Based on these materials, efficient LEDs with external quantum efficiencies up to 11.0% are realized. This makes the technologically appealing in situ approach promising for further development of state-of-the-art LED systems and other optoelectronic devices.

10.
Nat Mater ; 17(8): 703-709, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30013057

RESUMO

The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.

11.
J Chem Phys ; 150(10): 104704, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30876369

RESUMO

Recent progress in organic photovoltaics (OPVs) has been enabled by optimization of the energetic driving force for charge separation, and thus maximization of open-circuit voltage, using non-fullerene acceptor (NFA) materials. In spite of this, the carrier dynamics and relative energies of the key states controlling the photophysics of these systems are still under debate. Herein, we report an in-depth ultrafast spectroscopic study of a representative OPV system based on a polymer donor PffBT4T-2OD and a small-molecule NFA EH-IDTBR. Global analysis of the transient absorption data reveals efficient energy transfer between donor and acceptor molecules. The extracted kinetics suggest that slow (∼15 ps) generation of charge carriers is followed by significant geminate recombination. This contrasts with the "reference" PffBT4T-2OD:PC71BM system where bimolecular recombination dominates. Using temperature-dependent pump-push-photocurrent spectroscopy, we estimate the activation energy for the dissociation of bound charge-transfer states in PffBT4T-2OD:EH-IDTBR to be 100 ± 6 meV. We also observe an additional activation energy of 14 ± 7 meV, which we assign to the de-trapping of mobile carriers. This work provides a comprehensive picture of photophysics in a system representing new generation of OPV blends with a small driving force for charge separation.

12.
J Phys Chem A ; 122(5): 1253-1260, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29377695

RESUMO

Herein, we report on the charge dynamics of photovoltaic devices based on two novel small-molecule nonfullerene acceptors featuring a central ketone unit. Using ultrafast near-infrared spectroscopy with optical and photocurrent detection methods, we identify one of the key loss channels in the devices as geminate recombination (GR) of interfacial charge transfer states (CTSs). We find that the magnitude of GR is highly sensitive to the choice of solvent and annealing conditions. Interestingly, regardless of these processing conditions, the same lifetime for GR (∼130 ps) is obtained by both detection methods upon decomposing the complex broadband transient optical spectra, suggesting this time scale is inherent and independent of morphology. These observations suggest that the CTSs in the studied material blends are mostly strongly bound, and that charge generation from these states is highly inefficient. We further rationalize our results by considering the impact of the processing on the morphology of the mixed donor and acceptor domains and discuss the potential consequences of the early charge dynamics on the performance of emerging nonfullerene photovoltaic devices. Our results demonstrate that careful choice of processing conditions enables enhanced exciton harvesting and suppression of GR by more than 3 orders of magnitude.

13.
J Am Chem Soc ; 139(11): 4068-4074, 2017 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-28240902

RESUMO

Three-dimensional lead-halide perovskites have attracted a lot of attention due to their ability to combine solution processing with outstanding optoelectronic properties. Despite their soft ionic nature these materials demonstrate a surprisingly low level of electronic disorder resulting in sharp band edges and narrow distributions of the electronic energies. Understanding how structural and dynamic disorder impacts the optoelectronic properties of these perovskites is important for many applications. Here we combine ultrafast two-dimensional vibrational spectroscopy and molecular dynamics simulations to study the dynamics of the organic methylammonium (MA) cation orientation in a range of pure and mixed trihalide perovskite materials. For pure MAPbX3 (X = I, Br, Cl) perovskite films, we observe that the cation dynamics accelerate with decreasing size of the halide atom. This acceleration is surprising given the expected strengthening of the hydrogen bonds between the MA and the smaller halide anions, but can be explained by the increase in the polarizability with the size of halide. Much slower dynamics, up to partial immobilization of the organic cation, are observed in the mixed MAPb(ClxBr1-x)3 and MAPb(BrxI1-x)3 alloys, which we associate with symmetry breaking within the perovskite unit cell. The observed dynamics are essential for understanding the effects of structural and dynamical disorder in perovskite-based optoelectronic systems.

14.
J Am Chem Soc ; 138(36): 11672-9, 2016 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-27538341

RESUMO

In solar energy harvesting devices based on molecular semiconductors, such as organic photovoltaics (OPVs) and artificial photosynthetic systems, Frenkel excitons must be dissociated via charge transfer at heterojunctions to yield free charges. What controls the rate and efficiency of charge transfer and charge separation is an important question, as it determines the overall power conversion efficiency (PCE) of these systems. In bulk heterojunctions between polymer donor and fullerene acceptors, which provide a model system to understand the fundamental dynamics of electron transfer in molecular systems, it has been established that the first step of photoinduced electron transfer can be fast, of order 100 fs. But here we report the first study which correlates differences in the electron transfer rate with electronic structure and morphology, achieved with sub-20 fs time resolution pump-probe spectroscopy. We vary both the fullerene substitution and donor/fullerene ratio which allow us to control both aggregate size and the energetic driving force for charge transfer. We observe a range of electron transfer times from polymer to fullerene, from 240 fs to as short as 37 fs. Using ultrafast electro-optical pump-push-photocurrent spectroscopy, we find the yield of free versus bound charges to be weakly dependent on the energetic driving force, but to be very strongly dependent on fullerene aggregate size and packing. Our results point toward the importance of state accessibility and charge delocalization and suggest that energetic offsets between donor and acceptor levels are not an important criterion for efficient charge generation. This provides design rules for next-generation materials to minimize losses related to driving energy and boost PCE.

15.
Nano Lett ; 15(12): 7987-93, 2015 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-26488847

RESUMO

Multiple exciton generation (MEG) in semiconducting quantum dots is a process that produces multiple charge-carrier pairs from a single excitation. MEG is a possible route to bypass the Shockley-Queisser limit in single-junction solar cells but it remains challenging to harvest charge-carrier pairs generated by MEG in working photovoltaic devices. Initial yields of additional carrier pairs may be reduced due to ultrafast intraband relaxation processes that compete with MEG at early times. Quantum dots of materials that display reduced carrier cooling rates (e.g., PbTe) are therefore promising candidates to increase the impact of MEG in photovoltaic devices. Here we demonstrate PbTe quantum dot-based solar cells, which produce extractable charge carrier pairs with an external quantum efficiency above 120%, and we estimate an internal quantum efficiency exceeding 150%. Resolving the charge carrier kinetics on the ultrafast time scale with pump-probe transient absorption and pump-push-photocurrent measurements, we identify a delayed cooling effect above the threshold energy for MEG.

16.
J Am Chem Soc ; 136(7): 2876-84, 2014 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-24460057

RESUMO

Natural photosynthetic complexes accomplish the rapid conversion of photoexcitations into spatially separated electrons and holes through precise hierarchical ordering of chromophores and redox centers. In contrast, organic photovoltaic (OPV) cells are poorly ordered, utilize only two different chemical potentials, and the same materials that absorb light must also transport charge; yet, some OPV blends achieve near-perfect quantum efficiency. Here we perform electronic structure calculations on large clusters of functionalized fullerenes of different size and ordering, predicting several features of the charge generation process, outside the framework of conventional theories but clearly observed in ultrafast electro-optical experiments described herein. We show that it is the resonant coupling of photogenerated singlet excitons to a high-energy manifold of fullerene electronic states that enables efficient charge generation, bypassing localized charge-transfer states. In contrast to conventional views, our findings suggest that fullerene cluster size, concentration, and dimensionality control charge generation efficiency, independent of exciton delocalization.

17.
Phys Chem Chem Phys ; 16(38): 20329-37, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-24964254

RESUMO

Charge generation and recombination processes occurring in ternary photoactive copolymer:copolymer:fullerene blends consisting of different mixing ratios between entirely amorphous and semi-crystalline PPE-PPV copolymers are investigated by transient absorption pump-probe and pump-push photocurrent spectroscopy. The experiments reveal that an excess of semi-crystalline polymer facilitates exciton dissociation into free charge carriers, slows down geminate recombination, and suppresses non-geminate recombination leading to increased short-circuit currents and high fill factors. In contrast, blends utilizing solely the amorphous polymer for their donor phase suffer from a large fraction of sub-nanosecond geminate recombination of interfacially bound charge-transfer states and also from fast non-geminate recombination of free charges, resulting in a significantly reduced photovoltaic performance. However, small fractions of the amorphous polymer blended into the semi-crystalline polymer increase the open-circuit voltage and the fill factor, while keeping the charge generation and recombination parameters largely unaltered in turn leading to an optimized device performance for the ternary PPE-PPV copolymer:copolymer:fullerene blends.

18.
Light Sci Appl ; 12(1): 276, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985751

RESUMO

Hot carrier cooling is slowed down upon alloying tin in lead-halide perovskite nanocrystals through the engineering of carrier-phonon and carrier-defect interactions.

19.
ACS Nano ; 17(7): 6330-6340, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36939760

RESUMO

Transition metal dichalcogenides (TMDs) have shown outstanding semiconducting properties which make them promising materials for next-generation optoelectronic and electronic devices. These properties are imparted by fundamental carrier-carrier and carrier-phonon interactions that are foundational to hot carrier cooling. Recent transient absorption studies have reported ultrafast time scales for carrier cooling in TMDs that can be slowed at high excitation densities via a hot-phonon bottleneck (HPB) and discussed these findings in the light of optoelectronic applications. However, quantitative descriptions of the HPB in TMDs, including details of the electron-lattice coupling and how cooling is affected by the redistribution of energy between carriers, are still lacking. Here, we use femtosecond pump-push-probe spectroscopy as a single approach to systematically characterize the scattering of hot carriers with optical phonons, cold carriers, and defects in a benchmark TMD monolayer of polycrystalline WS2. By controlling the interband pump and intraband push excitations, we observe, in real-time (i) an extremely rapid "intrinsic" cooling rate of ∼18 ± 2.7 eV/ps, which can be slowed with increasing hot carrier density, (ii) the deprecation of this HPB at elevated cold carrier densities, exposing a previously undisclosed role of the carrier-carrier interactions in mediating cooling, and (iii) the interception of high energy hot carriers on the subpicosecond time scale by lattice defects, which may account for the lower photoluminescence yield of TMDs when excited above band gap.

20.
Sci Adv ; 9(23): eadh2694, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285428

RESUMO

One of the key challenges facing organic photodiodes (OPDs) is increasing the detection into the infrared region. Organic semiconductor polymers provide a platform for tuning the bandgap and optoelectronic response to go beyond the traditional 1000-nanometer benchmark. In this work, we present a near-infrared (NIR) polymer with absorption up to 1500 nanometers. The polymer-based OPD delivers a high specific detectivity D* of 1.03 × 1010 Jones (-2 volts) at 1200 nanometers and a dark current Jd of just 2.3 × 10-6 ampere per square centimeter at -2 volts. We demonstrate a strong improvement of all OPD metrics in the NIR region compared to previously reported NIR OPD due to the enhanced crystallinity and optimized energy alignment, which leads to reduced charge recombination. The high D* value in the 1100-to-1300-nanometer region is particularly promising for biosensing applications. We demonstrate the OPD as a pulse oximeter under NIR illumination, delivering heart rate and blood oxygen saturation readings in real time without signal amplification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA