RESUMO
The Ramachandran map clearly delineates the regions of accessible conformational (φ-ψ) space for amino acid residues in proteins. Experimental distributions of φ, ψ values in high-resolution protein structures, reveal sparsely populated zones within fully allowed regions and distinct clusters in apparently disallowed regions. Conformational space has been divided into 14 distinct bins. Residues adopting these relatively rare conformations are presented and amino acid propensities for these regions are estimated. Inspection of specific examples in a completely "arid", fully allowed region in the top left quadrant establishes that side-chain and backbone interactions may provide the energetic compensation necessary for populating this region of φ-ψ space. Asn, Asp, and His residues showed the highest propensities in this region. The two distinct clusters in the bottom right quadrant which are formally disallowed on strict steric considerations correspond to the gamma turn (C7 axial) conformation (Bin 12) and the i + 1 position of Type II' ß turns (Bin 13). Of the 516 non-Gly residues in Bin 13, 384 occupied the i + 1 position of Type II' ß turns. Further examination of these turn segments revealed a high propensity to occur at the N-terminus of helices and as a tight turn in ß hairpins. The ß strand-helix motif with the Type II' ß turn as a connecting element was also found in as many as 57 examples.
Assuntos
Aminoácidos/química , Estrutura Molecular , Conformação Proteica , Proteínas/química , Modelos MolecularesRESUMO
Contryphans, peptides containing a single disulfide bond, are found abundantly in cone snail venom. The analysis of a large dataset of available contryphan sequences permits a classification based on the occurrence of proline residues at positions 2 and 5 within the macrocyclic 23-membered disulfide loop. Further sequence diversity is generated by variable proteolytic processing of the contryphan precursor proteins. In the majority of contryphans, presence of Pro at position 2 and a D-residue at position 3 leads to a slow conformational dynamics, manifesting as anomalous chromatographic profiles during LC analysis. LC-MS analysis of diverse contryphans suggests that elution profiles may be used as a rapid diagnostic for the presence of the Pro2-DXxx3 motif. Natural sequences from C.inscriptus and C.frigidus together with synthetic analogs permit the delineation of the features necessary for abnormal chromatographic behaviour. A diagnostic for the presence of Pro at position 5 is obtained by the observation of non-canonical fragment ions, generated by N-Cα bond cleavage at the dehydroalanine residue formed by disulfide cleavage. Anomalous LC profiles supports Pro at position 2, while non-canonical mass spectral fragments established Pro at position 5, providing a rapid method for contryphan analysis from LC-ESI-MS/MS profiles of crude Conus venom. SIGNIFICANCE: Contryphans are peptides, widely distributed in cone snail venom, which display extensive sequence diversity. Heterogeneity of proteolytic processing of contryphan precursor proteins, together with post-translational modifications contributes to contryphan diversity. Contryphans, identified by a combination of mass spectrometry and transcriptomic analysis, are classified on the basis of sequence features, primarily the number of proline residues within the disulfide loop. Conformational diversity arises in contryphans by cis-trans isomerization of Cys-Pro bonds, resulting in characteristic chromatographic profiles, permitting identification even in crude venom mixtures. Rapid identification of contryphans in cone snail peptide libraries is also facilitated by diagnostic mass spectral fragments arising by non-canonical cleavage of the N-Cα bond at Cys(7).
Assuntos
Conotoxinas , Caramujo Conus , Animais , Espectrometria de Massas em Tandem , Sequência de Aminoácidos , Peptídeos/química , Venenos de Moluscos/química , Dissulfetos/química , Prolina , Caramujo Conus/química , Conotoxinas/químicaRESUMO
Short range side chain-backbone hydrogen bonded motifs involving Asn and Gln residues have been identified from a data set of 1370 protein crystal structures (resolution ≤ 1.5 Å). Hydrogen bonds involving residues i - 5 to i + 5 have been considered. Out of 12,901 Asn residues, 3403 residues (26.4%) participate in such interactions, while out of 10,934 Gln residues, 1780 Gln residues (16.3%) are involved in these motifs. Hydrogen bonded ring sizes (C(n), where n is the number of atoms involved), directionality and internal torsion angles are used to classify motifs. The occurrence of the various motifs in the contexts of protein structure is illustrated. Distinct differences are established between the nature of motifs formed by Asn and Gln residues. For Asn, the most highly populated motifs are the C(10)(CO(δ)(i) NH(i + 2)), C(13)(CO(δ)(i) NH(i + 3)) and C(17)(N(δ)H(i) CO(i - 4)) structures. In contrast, Gln predominantly forms C(16)(CO(ε)(i) NH(i - 3)), C(12)(N(ε)H(i) CO(i - 2)), C(15)(N(ε)H(i) CO(i - 3)) and C(18)(N(ε)H(i) CO(i - 4)) motifs, with only the C(18) motif being analogous to the Asn C(17) structure. Specific conformational types are established for the Asn containing motifs, which mimic backbone ß-turns and α-turns. Histidine residues are shown to serve as a mimic for Asn residues in side chain-backbone hydrogen bonded ring motifs. Illustrative examples from protein structures are considered.
Assuntos
Asparagina/química , Biologia Computacional , Glutamina/química , Domínios e Motivos de Interação entre Proteínas , Motivos de Aminoácidos , Histidina/química , Ligação de Hidrogênio , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas/químicaRESUMO
AIM: To understand the mechanism of glycation of albumin and effects on cysteinylation and methionine oxidation. METHODS: The in vitro glycation of HSA and BSA was studied with varying concentrations of glucose. Clinical blood samples of diabetic subjects with varying HbA1c values, were analyzed to assess in vivo glycation. All samples and their tryptic digests were analyzed using liquid chromatography/mass spectrometry. Glycation sites were mapped on to the three-dimensional structure of the HSA and BSA. RESULTS: A total thirty-one sites for glycation and eight sites of Nε-carboxymethyl-lysine (CML) modification were identified on albumin. The site selectivity of glycation was correlated with the environment of the reactive residue in the three-dimensional structure. CONCLUSIONS: The maximum percentage glycation under extreme conditions was in the range of ~55 to 88% in four weeks. Two major glycation sites K-233 and K-525 were identified, which together accounted for 40-50% of total glycation. A correlation was observed between glycation and oxidation of methionine residues in samples glycated in vitro. The role of spatially proximate residues in facilitating the glycation process is evident. The tri- and tetra-glycated isoforms of albumin can serve as biomarkers for the severe uncontrolled diabetic state.
Assuntos
Diabetes Mellitus , Albumina Sérica , Glucose , Produtos Finais de Glicação Avançada , Glicosilação , Humanos , Espectrometria de Massas , Albumina Sérica/metabolismoRESUMO
Hemoglobin Q- India (alpha) 64 Asp â His is an alpha chain variant which is generally found in heterozygous state and presents normal hematological blood picture. Here we report a rare case of HbQ-India with a thalassemic phenotype that has been analyzed using a combination of mass spectrometry, gene sequencing and PCR analysis. This combined analyses revealed the HbQ variant to be associated with a beta chain mutation, IVS 1-1 [G>T]. Though HbQ has earlier been reported with thalassemic trait using different techniques, this is the first report of a compound α and ß chain Hb heterozygous mutant involving HbQ and IVS1-1 being validated using Mass Spectrometry and Reverse dot blot hybridization.
RESUMO
Transcriptomic analysis of cone snail venom duct tissue has permitted the identification of diverse conopressin/conophysin precursor sequences from seven distinct Conus species. Multiple precursor isoforms are present in C.monile, C.lividus and C.loroisii. Aqueous extracts of the venom duct tissue from C.monile yield a band, at ~ 15-20 kDa on SDS-PAGE. In-gel trypsin digestion, followed by mass spectrometry establishes the presence of two distinct conopressin/conophysin isoforms that differ at position 8 in the predicted conopressin nonapeptide sequence. Mass spectrometric analysis of aqueous extracts revealed the presence of four conopressin related peptides, whose sequences could be deduced from MS/MS fragmentation patterns. The four sequences determined in this study are CFIRNCPKG*, CFIRNCPEG*, CFIRNCPK* and CFIRNCPE* (∗ indicates amide), which were further confirmed by comparison with chemically synthesized peptides. A conophysin with a mass of 9419.7 Da was also detected, corresponding to one of the isoforms revealed by the transcriptome data. Complete conservation of fourteen Cys residues and the key residues involved in peptide hormone binding is established by comparison of conophysin sequences, with the crystallographically characterized sequence of bovine neurophysin, in complex with vasopressin. A survey of available sequences for oxytocin/vasopressin peptides in both vertebrates and invertebrates establishes the conopressins as a distinct group in this family. C-terminal amidated, truncated conopressin analogs may arise by alternate post-translational processing.
Assuntos
Caramujo Conus/metabolismo , Venenos de Moluscos/química , Neurofisinas/química , Ocitocina/análogos & derivados , Vasopressinas/química , Animais , Caramujo Conus/genética , Venenos de Moluscos/genética , Proteoma/química , Homologia de Sequência de Aminoácidos , TranscriptomaRESUMO
Plasmodium falciparum TIM (PfTIM) is unique in possessing a Phe residue at position 96 in place of the conserved Ser that is found in TIMs from the majority of other organisms. In order to probe the role of residue 96, three PfTIM mutants, F96S, F96H and F96W, have been biochemically and structurally characterized. The three mutants exhibited reduced catalytic efficiency and a decrease in substrate-binding affinity, with the most pronounced effects being observed for F96S and F96H. The k(cat) values and K(m) values are (2.54 +/- 0.19) x 10(5) min(-1) and 0.39 +/- 0.049 mM, respectively, for the wild type; (3.72 +/- 0.28) x 10(3) min(-1) and 2.18 +/- 0.028 mM, respectively, for the F96S mutant; (1.11 +/- 0.03) x 10(4) min(-1) and 2.62 +/- 0.042 mM, respectively, for the F96H mutant; and (1.48 +/- 0.05) x 10(5) min(-1) and 1.20 +/- 0.056 mM, respectively, for the F96W mutant. Unliganded and 3-phosphoglycerate (3PG) complexed structures are reported for the wild-type enzyme and the mutants. The ligand binds to the active sites of the wild-type enzyme (wtPfTIM) and the F96W mutant, with a loop-open state in the former and both open and closed states in the latter. In contrast, no density for the ligand could be detected at the active sites of the F96S and F96H mutants under identical conditions. The decrease in ligand affinity could be a consequence of differences in the water network connecting residue 96 to Ser73 in the vicinity of the active site. Soaking of crystals of wtPfTIM and the F96S and F96H mutants resulted in the binding of 3PG at a dimer-interface site. In addition, loop closure at the liganded active site was observed for wtPfTIM. The dimer-interface site in PfTIM shows strong electrostatic anchoring of the phosphate group involving the Arg98 and Lys112 residues of PfTIM.
Assuntos
Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Triose-Fosfato Isomerase/química , Animais , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Dimerização , Ligantes , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fenilalanina/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Triose-Fosfato Isomerase/metabolismo , ÁguaRESUMO
The intramolecularly hydrogen bonded conformations of the tetrapeptide Boc-Trp-Aib-Gly-Trp-OMe (WUGW) are investigated using experimental and quantum chemical predictions of vibrational circular dichroism (VCD) in the 1800-1550 cm(-1) region. The predicted VCD spectrum, for a conformation (conformer A) obtained from optimization of crystal structure, reproduced the dominant negative VCD band observed experimentally in CH(3)OH and CHCl(3) solvents. However, the predicted VCD spectrum of Conformation A also has an extra positive band which is not seen in the experimental spectra. This mismatch appears to be due to the lack of solvent influence in the quantum chemical geometry optimizations. However, Conformations I and II, obtained, respectively, from constrained optimization of crystal and NMR structures, mimic the solvent stabilized structures and are predicted to have dominant negative VCD band as found in the experimental spectra. It is noted that, for the peptide investigated here, unconstrained quantum chemical geometry optimizations in vacuum converged to structures that are not the realistic models of conformations found in solution. It is also noted that undertaking quantum chemical vibrational property calculations directly using geometries obtained from crystal data or NMR data resulted in unrealistic vibrational frequencies and descriptions. However, constraining the backbone dihedral angles to those found in condensed medium, and optimizing the remaining geometrical parameters resulted in a better reproduction of the observed VCD in condensed medium. The vibrational origins of bands in all of the predicted VCD spectra for the WUGW-tetrapeptide have also been presented.
Assuntos
Dicroísmo Circular/métodos , Oligopeptídeos/química , Conformação Proteica , Dobramento de Proteína , Triptofano/química , Sequência de Aminoácidos , Teoria Quântica , Espectrofotometria Infravermelho , VibraçãoRESUMO
Putative prolyl-4-hydroxylase (P4H) α-subunit sequences have been extracted by mining transcriptomic data obtained from seven cone snail species C. amadis, C. monile, C. araneosus, C. miles, C. litteratus, C. frigidus, and C. ebraeus. Sequences ranging from 518 to 559 residues have been compared with representative animal P4H sequences. The α-subunit consists of an N-terminus double domain, involved in dimerization and substrate binding, while the C-terminus contains the catalytic domain. Definitive functional annotation of the cone snail sequences has been achieved by an analysis of conserved residues responsible for catalytic function, specific conformational features, and subunit interactions, using two independent structures of the double domain, and the catalytic domain, previously reported in the literature. The variability of proline hydroxylation in conotoxins is illustrated by a mass spectrometric analysis of C. amadis venom. Site specific hydroxylation and the presence of peptides with multiple proline residues, resistant to modification, suggests that sequence and conformational effects may determine the substrate specificity of the Conus prolyl-4-hydroxylases. SIGNIFICANCE: Proline hydroxylation is a widely observed post translational modification, with collagen being the pre-eminent example. Hydroxylation of proline is also widely observed in conotoxins, which are a major component of marine cone snail venom. This paper describes newly identified prolyl-4-hydroxylase sequences, using transcriptome data from seven Conus species. The predicted functional annotation of prolyl-4-hydroxylase sequences was carried out using two available crystal structures of independent domains. The mass spectrometric characterisation of proline/hydroxyproline containing peptides in C. amadis venom confirms sequence specific hydroxylation in Conus venom as shown previously by others.
Assuntos
Conotoxinas/metabolismo , Caramujo Conus/enzimologia , Prolil Hidroxilases/metabolismo , Transcriptoma , Animais , Domínio Catalítico , Conotoxinas/química , Perfilação da Expressão Gênica , Hidroxilação , Espectrometria de Massas , Prolina/química , Prolina/metabolismo , Prolil Hidroxilases/químicaRESUMO
Debilitating perceptual disorders including tinnitus, hyperacusis, phantom limb pain and visual release hallucinations may reflect aberrant patterns of neural activity in central sensory pathways following a loss of peripheral sensory input. Here, we explore short- and long-term changes in gene expression that may contribute to hyperexcitability following a sudden, profound loss of auditory input from one ear. We used fluorescence in situ hybridization to quantify mRNA levels for genes encoding AMPA and GABAA receptor subunits (Gria2 and Gabra1, respectively) in single neurons from the inferior colliculus (IC) and auditory cortex (ACtx). Thirty days after unilateral hearing loss, Gria2 levels were significantly increased while Gabra1 levels were significantly decreased. Transcriptional rebalancing was more pronounced in ACtx than IC and bore no obvious relationship to the degree of hearing loss. By contrast to the opposing, synergistic shifts in Gria2 and Gabra1 observed 30â¯days after hearing loss, we found that transcription levels for both genes were equivalently reduced after 5â¯days of hearing loss, producing no net change in the excitatory/inhibitory transcriptional balance. Opposing transcriptional shifts in AMPA and GABA receptor genes that emerge several weeks after a peripheral insult could promote both sensitization and disinhibition to support a homeostatic recovery of neural activity following auditory deprivation. Imprecise transcriptional changes could also drive the system toward perceptual hypersensitivity, degraded temporal processing and the irrepressible perception of non-existent environmental stimuli, a trio of perceptual impairments that often accompany chronic sensory deprivation.
Assuntos
Perda Auditiva Unilateral/fisiopatologia , Plasticidade Neuronal/fisiologia , Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmissão Sináptica/fisiologia , Animais , Córtex Auditivo/efeitos dos fármacos , Córtex Auditivo/metabolismo , Vias Auditivas/efeitos dos fármacos , Vias Auditivas/fisiologia , Perda Auditiva Unilateral/genética , Hiperacusia/tratamento farmacológico , Hiperacusia/metabolismo , Colículos Inferiores/efeitos dos fármacos , Colículos Inferiores/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismoRESUMO
Four 30 residue conotoxin have been identified from the venom of C. amadis. MS/MS analysis of crude venom subjected to global reduction/alkylation yielded fragmentation patterns, which permitted searching and matching with a database of putative mature toxin sequences obtained from transcriptomic analysis. Of the four sequences identified, Am3408(Am6.1b), Am3452(Am6.1c), Am3136(Am6.2a) and Am3214(Am6.2b), three contain bromotryptophan residues, while an additional post translational modification, gamma carboxylation of glutamic acid, is present in Am3408(Am6.1b)/3452(Am6.1c). The conotoxins belong to the O1/O2 gene superfamily and possess cysteine framework VI/VII. While, the cysteine patterns show a similarity to omega conotoxins, the three C. amadis peptides are highly negatively charged and possess a significant content of hydrophobic residues.
Assuntos
Conotoxinas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Caramujo Conus/química , Peptídeos/isolamento & purificação , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem , Transcriptoma , Triptofano/químicaRESUMO
Half a century has passed since the hydrogen-bonded secondary structures of polypeptides and proteins were first recognized. An extraordinary wealth of conformational information is now available on peptides and proteins, which are formed of alpha-amino acid residues. More recently, the discovery of well-folded structures in oligopeptides containing beta-amino acids has focused a great deal of current interest on the conformational properties of peptides constructed from higher homologues (omega) of alpha-amino acids. This review examines the nature of intramolecularly hydrogen-bonded conformations of hybrid peptides formed by amino acid residues, with a varying number of backbone atoms. The beta-turn, a ubiquitous structural feature formed by two residue (alphaalpha) segments in proteins and peptides, is stabilized by a 10-atom (C10) intramolecular 4-->1 hydrogen bond. Hybrid turns may be classified by comparison with their alphaalpha counterparts. The available crystallographic information on hydrogen-bonded hybrid turns is surveyed in this review. Several recent examples demonstrate that individual omega-amino acid residues and hybrid dipeptide segments may be incorporated into the regular structures of alpha-peptides. Examples of both peptide helices and hairpins are presented. The present review explores the relationships between folded conformations in hybrid sequences and their counterparts in all alpha-residue sequences. The use of stereochemically constrained omega-residues promises to expand the range of peptide design strategies to include omega-amino acids. This approach is exemplified by well-folded structures like the C12 (alphagamma) and C14 (gammagamma) helices formed in short peptides containing multiply substituted gamma-residues. The achiral gamma-residue gabapentin is a readily accessible building block in the design of peptides containing gamma-amino acids. The construction of globular polypeptide structures using diverse hybrid sequences appears to be a realistic possibility.
Assuntos
Aminoácidos/química , Peptídeos/química , Ligação de Hidrogênio , Isomerismo , Estrutura Secundária de ProteínaRESUMO
Arylated 5-hydroxy-pyrrol-2-ones were prepared in 2 synthetic steps from mucochloric acid and optimised as CCK2-selective ligands using radiolabelled binding assays. CCK antagonism was confirmed for the ligands in isolated tissue preparations. DSS (dextran sulfate sodium)-induced inflammation was analysed for derivative 7 and PNB-001 with L-365,260 as a standard. The IC50 of PNB-001 was determined to be 10 nM. Subsequent in vivo evaluation confirmed anti-inflammatory activity with respect to IBD assays. The best molecule, PNB-001, showed analgesic activity in the formalin test and in the hotplate assay, in which the analgesic effect of 1.5 mg kg-1 PNB-001 was equivalent to 40 mg kg-1 tramadol. The CCK2-selective antagonist PNB-001 protected rats against indomethacin-induced ulceration at similar doses. The GI protection activity was found to be more potent than that of the 10 mg kg-1 dose of prednisolone, which served as a standard.
RESUMO
Distinctly different effects of two closely related contryphans have been demonstrated on voltage-activated Ca(2+) channels. The peptides Lo959 and Am975 were isolated from Conus loroisii, a vermivorous marine snail and Conus amadis, a molluscivore, respectively. The sequences of Lo959 and Am975 were deduced by mass spectrometric sequencing (MALDI-MS/MS) and confirmed by chemical synthesis. The sequences of Lo959, GCP(D)WDPWC-NH(2) and Am975, GCO(D)WDPWC-NH(2) (O: 4-trans-hydroxyproline: Hyp), differ only at residue 3; Pro in Lo959, Hyp in Am975, which is identical to contryphan-P, previously isolated from Conus purpurascens, a piscivore; while Lo959 is a novel peptide. Both Lo959 and Am975 undergo slow conformational interconversion under reverse-phase chromatographic conditions, a characteristic feature of all contryphans reported thus far. Electrophysiological studies performed using dorsal root ganglion neurons reveal that both peptides target high voltage-activated Ca(2+) channels. While Lo959 increases the Ca(2+) current, Am975 causes inhibition. The results establish that subtle sequence effects, which accompany post-translational modifications in Conus peptides, can have dramatic effects on target ion channels.
Assuntos
Canais de Cálcio/fisiologia , Conotoxinas/química , Caramujo Conus/química , Peptídeos Cíclicos/química , Peptídeos/química , Peptídeos/genética , Sequência de Aminoácidos , Animais , Canais de Cálcio/efeitos dos fármacos , Células Cultivadas , Dados de Sequência Molecular , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Patch-Clamp , Peptídeos Cíclicos/farmacologia , Ratos , Ratos Wistar , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por MatrizRESUMO
BACKGROUND: Malaria caused by the parasite Plasmodium falciparum is a major public health concern. The parasite lacks a functional tricarboxylic acid cycle, making glycolysis its sole energy source. Although parasite enzymes have been considered as potential antimalarial drug targets, little is known about their structural biology. Here we report the crystal structure of triosephosphate isomerase (TIM) from P. falciparum at 2.2 A resolution. RESULTS: The crystal structure of P. falciparum TIM (PfTIM), expressed in Escherichia coli, was determined by the molecular replacement method using the structure of trypanosomal TIM as the starting model. Comparison of the PfTIM structure with other TIM structures, particularly human TIM, revealed several differences. In most TIMs the residue at position 183 is a glutamate but in PfTIM it is a leucine. This leucine residue is completely exposed and together with the surrounding positively charged patch, may be responsible for binding TIM to the erythrocyte membrane. Another interesting feature is the occurrence of a cysteine residue at the dimer interface of PfTIM (Cys13), in contrast to human TIM where this residue is a methionine. Finally, residue 96 of human TIM (Ser96), which occurs near the active site, has been replaced by phenylalanine in PfTIM. CONCLUSIONS: Although the human and Plasmodium enzymes share 42% amino acid sequence identity, several key differences suggest that PfTIM may turn out to be a potential drug target. We have identified a region which may be responsible for binding PfTIM to cytoskeletal elements or the band 3 protein of erythrocytes; attachment to the erythrocyte membrane may subsequently lead to the extracellular exposure of parts of the protein. This feature may be important in view of a recent report that patients suffering from P. falciparum malaria mount an antibody response to TIM leading to prolonged hemolysis. A second approach to drug design may be provided by the mutation of the largely conserved residue (Ser96) to phenylalanine in PfTIM. This difference may be of importance in designing specific active-site inhibitors against the enzyme. Finally, specific inhibition of PfTIM subunit assembly might be possible by targeting Cys13 at the dimer interface. The crystal structure of PfTIM provides a framework for new therapeutic leads.
Assuntos
Antimaláricos/química , Plasmodium falciparum/enzimologia , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Cisteína , Desenho de Fármacos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Dobramento de Proteína , Triose-Fosfato Isomerase/genética , TriptofanoRESUMO
A synthetic model peptide, (formula; see text) which mimics the active-site disulfide loop of thioredoxin has been prepared. 270 MHz 1H-NMR studies establish that Cys-4 and methylamide NH groups are solvent-shielded, using hydrogen-deuterium exchange, solvent and temperature dependence of chemical shifts and nitroxide radical-induced broadening as diagnostic criteria. Infrared measurements provide supporting evidence for intramolecularly hydrogen-bonded conformations. The related peptide in which Gly-2 is replaced by alpha-aminoisobutyric acid has been shown to adopt a similar backbone conformation based on NMR and CD data. Based on the known stereochemical preferences of alpha-aminoisobutyric acid residues, a consecutive beta-turn conformation involving two intramolecular 4 leads to 1 hydrogen bonds is proposed for both disulfides. Vicinal coupling constants and CD data are discussed with reference to the side-chain conformation of the cysteine residues. Large structural differences have been established between the thioredoxin active-site model disulfide and its acyclic precursor.
Assuntos
Proteínas de Bactérias/metabolismo , Dissulfetos/síntese química , Oligopeptídeos/síntese química , Peptídeos Cíclicos/síntese química , Tiorredoxinas/metabolismo , Sítios de Ligação , Dicroísmo Circular , Indicadores e Reagentes , Espectroscopia de Ressonância Magnética , Modelos Biológicos , Conformação Proteica , Espectrofotometria InfravermelhoRESUMO
The suzukacillin fragments, Boc-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (14), Boc-Ala-Aib-Ala-Aib-Aib-Gln-Aib-Leu-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-OMe (16G) and the completely apolar 16-residue peptide in which the glutamine residue has been replaced by alanine (16A) have been studied by 270 MHz 1H-HMR, in C2HCl3 and (C2H3)2SO solution. Intramolecularly hydrogen-bonded NH groups have been identified by temperature and solvent dependence of chemical shifts. Peptides 14 and 16A adopt folded 3(1)) helical conformations stabilized by 11 and 13 hydrogen bonds, respectively. In peptide 16G there are 12 intramolecular hydrogen bonds, with the glycine NH being solvent-exposed, in contrast to 14 and 16A.
Assuntos
Antibacterianos , Fragmentos de Peptídeos , Sequência de Aminoácidos , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética , Peptídeos , Conformação ProteicaRESUMO
Racemic gossypol has been resolved by HPLC separation of diastereomeric (-) norepinephrine adducts on a reverse-phase column. The binding constants for the interaction of the three gossypol forms (+, - and +/-) with human and bovine serum albumins have been determined by fluorescence quenching studies. The KD values demonstrate that all three forms bind equally effectively to the two proteins, suggesting an absence of chiral discrimination in albumin-gossypol interactions. Circular dichroism studies of (+)-gossypol binding to the model dibasic peptides, Boc-Lys-Pro-Aib-Lys-NHMe and gramicidin S, suggest that distortions of binaphthyl geometry may occur only for specific orientations of interacting residues at the receptor site.
Assuntos
Gossipol , Oligopeptídeos , Albumina Sérica , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Humanos , Lisina , Espectroscopia de Ressonância Magnética , Norepinefrina , Ornitina , Ligação Proteica , Bases de Schiff , EstereoisomerismoRESUMO
The binding of the fluorescent alkylamines, N-(2-aminoethyl)-5-dimethyl-amino-1-naphthalene sulfonamide, N-(5-aminopentyl)-5-dimethylamino-1-naphthalene sulfonamide (dansyl cadaverine) and N-(10-aminodecyl)-5-dimethylamino-1-napthalene sulfonamide with phospholipid and phospholipid-deoxycholate micelles, has been shown to increase with the length of the alkyl spacer chain. The probes bind more effectively to micelles containing unsaturated phospholipids and do not interact strongly with bile salt solutions at low concentrations. Cholesterol incorporation into mixed micelles results in a quenching of probe fluorescence due to displacement of probe molecules. The enhanced rigidity of the mixed micelles on solubilizing cholesterol is established by a decrease in pyrene excimer fluorescence and by the less effective perturbation of the micellar structure by 1-anilino-8-naphthalene sulfonate. The anionic probe 1-anilino-8-naphthalene sulfonate is also displaced from the mixed micelles when cholesterol is incorporated, suggesting a dominant role for packing and hydrophobic effects in binding both positively and negatively charged probes.
Assuntos
Colesterol , Coloides , Ácido Desoxicólico , Corantes Fluorescentes , Micelas , Fosfatidilcolinas , Naftalenossulfonato de Anilina , Cinética , Espectrometria de FluorescênciaRESUMO
The (+)-enantiomer of the polyphenolic binaphthyl gossypol, has been shown to be a useful CD probe of interactions with human and bovine serum albumin. (+)-Gossypol binds to albumin with the same affinity as racemic (+/-)-gossypol, as shown by fluorescence quenching, and also displaces bilirubin from its albumin binding site. The CD characteristics of bound gossypol are different in the case of the two proteins.