Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2756, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553453

RESUMO

Protein fibril self-assembly is a universal transition implicated in neurodegenerative diseases. Although fibril structure/growth are well characterized, fibril nucleation is poorly understood. Here, we use a computational-experimental approach to resolve fibril nucleation. We show that monomer hairpin content quantified from molecular dynamics simulations is predictive of experimental fibril formation kinetics across a tau motif mutant library. Hairpin trimers are predicted to be fibril transition states; one hairpin spontaneously converts into the cross-beta conformation, templating subsequent fibril growth. We designed a disulfide-linked dimer mimicking the transition state that catalyzes fibril formation, measured by ThT fluorescence and TEM, of wild-type motif - which does not normally fibrillize. A dimer compatible with extended conformations but not the transition-state fails to nucleate fibril at any concentration. Tau repeat domain simulations show how long-range interactions sequester this motif in a mutation-dependent manner. This work implies that different fibril morphologies could arise from disease-dependent hairpin seeding from different loci.


Assuntos
Amiloide , Simulação de Dinâmica Molecular , Amiloide/metabolismo , Conformação Proteica , Estrutura Secundária de Proteína , Peptídeos beta-Amiloides/metabolismo
2.
Res Sq ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38313287

RESUMO

The microtubule-associated protein tau is implicated in neurodegenerative diseases characterized by amyloid formation. Mutations associated with frontotemporal dementia increase tau aggregation propensity and disrupt its endogenous microtubule-binding activity. The structural relationship between aggregation propensity and biological activity remains unclear. We employed a multi-disciplinary approach, including computational modeling, NMR, cross-linking mass spectrometry, and cell models to design tau sequences that stabilize its structural ensemble. Our findings reveal that substitutions near the conserved 'PGGG' beta-turn motif can modulate local conformation, more stably engaging in interactions with the 306VQIVYK311 amyloid motif to decrease aggregation in vitro and in cells. Designed tau sequences maintain microtubule binding and explain why 3R isoforms of tau exhibit reduced pathogenesis over 4R isoforms. We propose a simple mechanism to reduce the formation of pathogenic species while preserving biological function, offering insights for therapeutic strategies aimed at reducing protein misfolding in neurodegenerative diseases.

3.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168322

RESUMO

The microtubule-associated protein tau is implicated in neurodegenerative diseases characterized by amyloid formation. Mutations associated with frontotemporal dementia increase tau aggregation propensity and disrupt its endogenous microtubule-binding activity. The structural relationship between aggregation propensity and biological activity remains unclear. We employed a multi-disciplinary approach, including computational modeling, NMR, cross-linking mass spectrometry, and cell models to design tau sequences that stabilize its structural ensemble. Our findings reveal that substitutions near the conserved 'PGGG' beta-turn motif can modulate local conformation, more stably engaging in interactions with the 306 VQIVYK 311 amyloid motif to decrease aggregation in vitro and in cells. Designed tau sequences maintain microtubule binding and explain why 3R isoforms of tau exhibit reduced pathogenesis over 4R isoforms. We propose a simple mechanism to reduce the formation of pathogenic species while preserving biological function, offering insights for therapeutic strategies aimed at reducing protein misfolding in neurodegenerative diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA