Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(13): 10078-10090, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38482833

RESUMO

Elucidating the relationship between metal-ligand interactions and the associated conformational change of the ligand is critical for understanding the separation of lanthanides via ion binding. Here we examine DTPA, a multidentate ligand that binds lanthanides, in its free and metal bound conformations using ultrafast polarization dependent vibrational spectroscopy. The polarization dependent pump-probe spectra were analyzed to extract the isotropic and anisotropic response of DTPA's carbonyl groups in the 1550-1650 cm-1 spectral region. The isotropic response reports on the population relaxation of the carbonyl stretching modes. We find that the isotropic response is influenced by the identity of the metal ion. The anisotropy decay of the carbonyl stretching modes reveals a faster decay in the lanthanide-DTPA complexes than in the free DTPA ligand. We attribute the anisotropy decay to energy transfer among the different carbonyl sites - where the conformational change results in an increased coupling between the carbonyl sites of metal-bound DTPA complexes. DFT calculations and theoretical simulations of energy transfer suggest that the carbonyl sites are more strongly coupled in the metal-bound conformations compared to the free DTPA. The stronger coupling in the metal bound DTPA conformation leads to efficient energy transfer among the different carbonyl sites. Comparing the rate of anisotropy decay across the series of metal bound DTPA complexes we find that the anisotropy is sensitive to the charge density of the central metal ion, and thus can serve as a molecular scale reporter for lanthanide ion binding.

2.
Small ; 16(12): e1903334, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31523910

RESUMO

Compositional interplay of two different cobalt phosphates (Co(H2 PO4 )2 ; Co-DP and Co(PO3 )2 ; Co-MP) loaded on morphologically engineered high surface area nanocarbon leads to an increased electrocatalytic efficiency for oxygen evolution reaction (OER) in near neutral conditions. This is reflected as significant reduction in the onset overpotential (301 mV) and enhanced current density (30 mA cm-2 @ 577 mV). In order to achieve uniform surface loading, organic-soluble thermolabile cobalt-bis(di-tert-butylphosphate) is synthesized in situ inside the nanocarbon matrix and subsequently pyrolyzed at 150 °C to produce Co(H2 PO4 )2 /Co(PO3 )2 (80:20 wt%). Annealing this sample at 200 or 250 °C results in the redistribution of the two phosphate systems to 55:45 or 20:80 (wt%), respectively. Detailed electrochemical measurements clearly establish that the 55:45 (wt%) sample prepared at 200 °C performs the best as a catalyst, owing to a relay mechanism that enhances the kinetics of the 4e- transfer OER process, which is substantiated by micro-Raman spectroscopic studies. It is also unraveled that the engineered nanocarbon support simultaneously enhances the interfacial charge-transfer pathway, resulting in the reduction of onset overpotential, compared to earlier investigated cobalt phosphate systems.

3.
Nanoscale ; 11(28): 13532-13540, 2019 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-31290513

RESUMO

Comprehending the mechanistic involvement of a support-catalyst interface is critical for effective design of industrially relevant electrocatalytic processes such as the alkaline hydrogen evolution reaction (alHER). The understanding of the kinetically sluggish alHER exhibited by both Pt and Pt-group-metal-free catalysts is primarily derived from indirect electrochemical parameters such as the Tafel slope. To address these issues, we establish the critical role of a nanocarbon floret (NCF) based electrochemical support in generating a key cobalt-oxohydroxo (OH-Co[double bond, length as m-dash]O) intermediate during the alHER through operando Raman spectro-electrochemistry. Specifically, interfacial nano-engineering of a newly designed carbon support (NCF) with a spinel Co3O4 nanocube catalyst is demonstrated to achieve a facile alHER (-0.46 V@10 mA cm-2). Such an efficient alHER is mainly attributed to the unique lamellar morphology with a high mesoporous surface area (936 m2 g-1) of the NCF which catalyses the rate-determining water dissociation step and facilitates rapid ion diffusion. The dissociated water drives the formation of the OH-Co[double bond, length as m-dash]O intermediate, spectroscopically captured for the first time through the emergence of a νOH-Co[double bond, length as m-dash]O Raman peak (1074 cm-1). The subsequent alHER proceeds through the Volmer-Heyrovsky route (119 mV dec-1) via the Td Co2+↔ Co3+↔ Co4+ oxidative pathway. Concomitant graphitization of the NCF through the disappearance of νsp3C-H (2946 cm-1) supports the co-operative dynamics at the Co3O4-NCF interface. Thus, the NCF positively contributes towards the lowering of the overpotential with a low charge-transfer resistance (Rct = 35.8 Ω) and high double layer capacitance (Cdl = 410 mF cm-2).

4.
Polym Chem ; 8(31): 4576-4584, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30174727

RESUMO

Here we present the synthesis and post-polymerisation modification of poly(acryloyl hydrazide), a versatile scaffold for the preparation of functional polymers: poly(acryloyl hydrazide) was prepared from commercially available starting materials in a three step synthesis on a large scale, in good yields and high purity. Our synthetic approach included the synthesis of a Boc-protected acryloyl hydrazide, the preparation of polymers via RAFT polymerisation and the deprotection of the corresponding Boc-protected poly(acryloyl hydrazide). Post-polymerisation modification of poly(acryloyl hydrazide) was then demonstrated using a range of conditions for both hydrophilic and hydrophobic aldehydes. These experiments demonstrate the potential of poly(acryloyl hydrazide) as a scaffold in the synthesis of functional polymers, in particular those applications where in situ screening of the activity of the functionalised polymers may be required (e.g. biological applications).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA