RESUMO
Prostate-specific membrane antigen (PSMA) as a transmembrane protein is overexpressed by prostate cancer (PC) cells and is accessible for binding antibodies or low-molecular-weight radioligands due to its extracellular portion. Successful targeting of PSMA began with the development of humanized J591 antibody. Due to their faster clearance compared to antibodies, small-molecule radioligands for targeted imaging and therapy of PC have been favored in recent development efforts. PSMA positron emission tomography (PET) imaging has higher diagnostic performance than conventional imaging for initial staging of high-risk PC and biochemical recurrence detection/localization. However, it remains to be demonstrated how to integrate PSMA PET imaging for therapy response assessment and as an outcome endpoint measure in clinical trials. With the recent approval of 177Lu-PSMA-617 by the US Food and Drug Administration for metastatic castration-resistant PC progressing after chemotherapy, the high value of PSMA-targeted therapy was confirmed. Compared to standard of care, PSMA-based radioligand therapy led to a better outcome and a higher quality of life. This review, focusing on the advanced PC setting, provides an overview of different approved and nonapproved PSMA-targeted imaging and therapeutic modalities and discusses the future of PSMA-targeted theranostics, also with an outlook on non-radiopharmaceutical-based PSMA-targeted therapies.
Assuntos
Neoplasias da Próstata , Qualidade de Vida , Estados Unidos , Masculino , Humanos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/terapia , Tomografia por Emissão de Pósitrons , Medicina de PrecisãoRESUMO
BACKGROUND: Targeted radionuclide therapy with Actinium-225-labeled prostate-specific membrane antigen agents (225Ac-PSMA) is currently being studied in clinical trials for patients with metastatic castration-resistant prostate cancer (mCRPC). Compared to ß-emitting therapeutic radionuclides, alpha-emitters (e.g., 225Ac) have a significantly higher linear energy transfer and significantly shorter range. As a result, alpha emitters could be expected to improve efficacy and reduce bystander toxicity. This systematic literature review was conducted to evaluate the impact of sequencing of 177Lu-PSMA and 225Ac-PSMA targeted radionuclide therapy (TRT) in mCRPC. METHODS: The present systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines. The searches were made using relevant keywords in the PubMed, Scopus, and Web of Science databases, and articles up to August 22, 2022, were included. Publications were excluded if they were duplicate publications, wrong study or publication format, or discussing a topic out of scope. Data on efficacy, toxicity, and health-related quality of life were extracted from the individual articles. The I2 index was used to measure the extent of heterogeneity amongst studies. In the studies that reported subgroup outcomes according to the prior status on 177Lu-PSMA TRT, pooled estimates of the main outcomes were generated through descriptive analysis. Quality assessment was performed using the Newark-Ottawa-scale. RESULTS: The study included 12 articles; 1 series was performed prospectively. In total, data of 329 patients were analyzed. About 40.1% (n = 132) of the included men were pretreated with 177Lu-PSMA TRT. Seven studies, including data of 212 individuals, were eligible for quantitative analysis based on reporting outcomes of the subgroups according to their prior status on 177Lu-PSMA TRT. >25% PSA decline after 225Ac-PSMA TRT was lower in individuals who received prior 177Lu-PSMA TRT (pooled median 42.7%) compared to those who did not (pooled median 15.4%). The pooled medians of the reported median progression-free survival and overall survival for pretreated versus not pretreated individuals was 4.3 versus 14.3 months and 11.1 versus 9.2 months, respectively. However, the outcomes for each individual study were reported inconsistently (I2 = 99.9%). None of the included studies stratified the report of adverse events or changes in health-related quality of life for the subgroups. CONCLUSIONS: 225Ac-PSMA TRT is an experimental treatment for men with mCRPC. There is limited data available from high-quality trials but so far PSMA-targeted TRT has demonstrated a low morbidity profile. Our review revealed that there is a possible decrease in efficacy of targeted alpha-particle therapy if individuals previously were exposed to 177Lu-PSMA TRT. However, the level of evidence is low. The underlying mechanism by which 177Lu-PSMA TRT might trigger possible radioresistance as well as randomized controlled trials are required to establish the therapeutic efficacy and safety of 225-Ac-PSMA TRT in men refractory to 177Lu-PSMA TRT.
Assuntos
Actínio , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Qualidade de Vida , Antígeno Prostático Específico , Resultado do Tratamento , Radioisótopos/uso terapêuticoRESUMO
BACKGROUND: Neutrophil count:lymphocyte count ratio (NLR) may be a prognostic factor for men with advanced prostate cancer. We hypothesized that it is associated with prostate-specific antigen (PSA) response and survival in men treated with prostate-specific membrane antigen (PSMA)-targeted radionuclide therapy (TRT). METHODS: Data of 180 men with metastatic castration-resistant prostate cancer (mCRPC) who were treated in sequential prospective radionuclide clinical trials from 2002 to 2021 (utilizing 177Lu-J591, 90Y-J591, 177Lu-PSMA-617, or 225Ac-J591) were retrospectively analyzed. We used a logistic regression to determine the association between NLR and ≥50% PSA decline (PSA50) and a Cox proportional hazards model to investigate the association between NLR and overall survival (OS). RESULTS: A total of 94 subjects (52.2%) received 177Lu-J591, 51 (28.3%) 177Lu-PSMA-617, 28 (15.6%) 225Ac-J591, and 7 (3.9%) 90Y-J591. The median NLR of 3.75 was used as cut-off (low vs. high NLR; n = 90, respectively). On univariate analysis, NLR was not associated with PSA50 (HR 1.08; 95% confidence interval [CI] 0.99-1.17, p = 0.067). However, it was associated with worse OS (hazard ratio [HR] 1.06, 95% CI 1.02-1.09, p = 0.002), also after controlling for circulating tumor cell count and cancer and leukemia group B risk group (HR 1.05; 95% CI 1.003-1.11, p = 0.036). Men with high NLR were at a higher hazard of death from all causes (HR 1.43, 95% CI 1.05-1.94, p = 0.024). CONCLUSIONS: NLR provides prognostic information in the setting of patients with mCRPC receiving treatment with PSMA-TRT.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Prognóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Actínio , Radioisótopos de Ítrio/uso terapêutico , Antígeno Prostático Específico/uso terapêutico , Neutrófilos/patologia , Estudos Retrospectivos , Estudos Prospectivos , Próstata/patologia , Linfócitos/patologia , Resultado do TratamentoRESUMO
BACKGROUND: Accurate diagnosis of localized prostate cancer (PCa) is limited by inadequacy of multiparametric (mp) MRI to fully identify and differentiate localized malignant tissue from benign pathologies. Prostate-specific membrane antigen (PSMA) represents an excellent target for molecular imaging. IAB2M, an 85-kD minibody derived from a de-immunized monoclonal antibody directed at the extracellular domain of human PSMA (huJ591), and PSMA-11, a small molecule ligand have been previously tested as probes for visualization of recurrent/metastatic PCa with PET/CT. This pilot, non-randomized trial studied their diagnostic utility in patients (pts) with localized PCa. METHODS: Pts planned for radical prostatectomy (RP) were enrolled and underwent mpMRI and PET/CT imaging with 89 Zr-df-IAB2M and/or 68 Ga-PSMA-PET/CT. Image results were read by a radiologist blinded to clinical information and pathology results, mapped and compared to corresponding histopathology findings from all lesions, both clinically significant and nonsignificant. The detection rates of all three imaging modalities were measured and correlated. RESULTS: 20 pts with median age of 64.5 (46-79) years and PSA level of 7.5 (1.6-36.56) ng/ml were enrolled. 19 pts underwent RP and were imaged pre-operatively with 89 Zr-Df-IAB2M PET/CT and mpMRI. Nine of those were imaged using 68 Ga-PSMA-11 as well. Out of 48 intraprostatic lesions verified on surgical pathology, IAB2M PET/CT was able to detect 36 (75%). A similar proportion of pathologically confirmed, clinically significant lesions (22/29, 76%) was detected. IAB2M PET/CT was also able to identify 14/19 (74%) extraprostatic lesions. The performance of mpMRI was inferior, with 24/48 detectable lesions (50%) and 18/29 clinically significant intraprostatic lesions (62%). Compared to the current standard (mpMRI), IAB2M PET/CT had a sensitivity of 88%, specificity 38%, positive predictive value 58%, and accuracy 63%. In 9 pts who underwent Ga-PSMA-11 as well, the latter yielded a detection rate of 70% (14/20), which was also seen in clinically significant lesions (10/14, 71%). Ga-PSMA-11 PET/CT also detected 4/6 (67%) extraprostatic lesions. CONCLUSIONS: In this pilot study, the performance of 89 Zr-df-IAB2M was superior to mpMRI and similar to 68 Ga-PSMA-11 PET/CT. The higher detection rate of PSMA-PET supports its use as a diagnostic tool with consequent management change implications in men with localized PCa.
Assuntos
Antígenos de Superfície , Radioisótopos de Gálio , Glutamato Carboxipeptidase II , Imageamento por Ressonância Magnética Multiparamétrica , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Neoplasias da Próstata/diagnóstico por imagem , Radioisótopos , Zircônio , Idoso , Anticorpos Monoclonais , Antígenos de Superfície/imunologia , Glutamato Carboxipeptidase II/imunologia , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Prostatectomia , Sensibilidade e EspecificidadeRESUMO
PURPOSE: Peptide-based prostate-specific membrane antigen (PSMA) targeted radionuclide therapy (TRT) agent [177Lu]-PSMA-617 has emerged as leading TRT candidate for treatment of castration-resistant prostate cancer (mCRPC). [177Lu]-PSMA-617 and other small molecule-based PSMA ligands have shown efficacy in reducing the tumor burden in mCRPC patients but irradiation to the salivary gland and kidneys is a concern and dose-limiting factor. Therefore, methods to reduce non-target organ toxicity are needed to safely treat patients and preserve their quality of life. Herein, we report that addition of cold PSMA ligand PSMA-11 can aid in reducing the uptake of [177Lu]-PSMA-617 in the salivary glands and kidneys. METHODS: Groups of athymic nude mice (n = 4) bearing PC3-PIP (PSMA+) tumor xenografts were administered with [177Lu]-PSMA-617 along with 0, 5, 100, 500, 1000, and 2000 pmoles of PSMA-11 and biodistribution studies were performed at 1 h. RESULTS: Biodistribution studies at 1 h post-administration revealed that [177Lu]-PSMA-617 uptake in PC3-PIP tumors was 21.71 ± 6.13, 18.7 ± 2.03, 26.44 ± 2.94, 16.21 ± 3.5, 13.52 ± 3.68, and 12.03 ± 1.96 %ID/g when 0, 5, 100, 500, 1000, and 2000 pmoles of PSMA-11 were added, respectively. Corresponding uptake values in kidney were 123.14 ± 52.52, 132.31 ± 47.4, 84.29 ± 78.25, 2.12 ± 1.88, 1.16 ± 0.36, and 0.64 ± 0.23 %ID/g, respectively. Corresponding salivary gland uptake values were 0.48 ± 0.11, 0.45 ± 0.15, 0.38 ± 0.3, 0.08 ± 0.03, 0.09 ± 0.07, and 0.05 ± 0.02 % ID/g, respectively. CONCLUSION: The uptake of [177Lu]-PSMA-617 in the salivary gland and kidney can be substantially reduced without significantly impacting tumor uptake by adding cold PSMA-11.
Assuntos
Rim , Compostos Radiofarmacêuticos , Glândulas Salivares/metabolismo , Animais , Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Compostos Heterocíclicos com 1 Anel/metabolismo , Humanos , Rim/metabolismo , Camundongos , Camundongos Nus , Qualidade de Vida , Compostos Radiofarmacêuticos/farmacocinética , Distribuição Tecidual , Proteína Tumoral 1 Controlada por TraduçãoRESUMO
INTRODUCTION: The Prostate Cancer Foundation (PCF) convened a PCF prostate-specific membrane antigen (PSMA) Theranostics State of the Science Meeting on 18 November 2019, at Weill Cornell Medicine, New York, NY. METHODS: The meeting was attended by 22 basic, translational, and clinical researchers from around the globe, with expertise in PSMA biology, development and use of PSMA theranostics agents, and clinical trials. The goal of this meeting was to discuss the current state of knowledge, the most important biological and clinical questions, and critical next steps for the clinical development of PSMA positron emission tomography (PET) imaging agents and PSMA-targeted radionuclide agents for patients with prostate cancer. RESULTS: Several major topic areas were discussed including the biology of PSMA, the role of PSMA-targeted PET imaging in prostate cancer, the physics and performance of different PSMA-targeted PET imaging agents, the current state of clinical development of PSMA-targeted radionuclide therapy (RNT) agents, the role of dosimetry in PSMA RNT treatment planning, barriers and challenges in PSMA RNT clinical development, optimization of patient selection for PSMA RNT trials, and promising combination treatment approaches with PSMA RNT. DISCUSSION: This article summarizes the presentations from the meeting for the purpose of globally disseminating this knowledge to advance the use of PSMA-targeted theranostic agents for imaging and treatment of patients with prostate cancer.
Assuntos
Neoplasias da Próstata/terapia , Humanos , Masculino , Terapia de Alvo Molecular/métodos , Medicina de Precisão , Nanomedicina TeranósticaRESUMO
LESSONS LEARNED: Hyperfractionation of lutetium-177 (177 Lu)-J591 for patients with metastatic castration-resistant prostate cancer did not appear to have any additional advantage over the single dose 177 Lu-J591 or fractionated two-dose 177 Lu-J591 therapy. Definite conclusions were challenging because of the small sample size of this study, and so further studies are needed to evaluate the viability of the hypothesis. On the basis of available data, a registration study of 177 Lu-J591 (also known as TLX591) is planned and will use the two-dose fractionation schedule (Telix Pharma Q3 2019 update https://telixpharma.com/news-media/). BACKGROUND: Phase I and II single-dose studies of lutetium-177 (177 Lu)-J591, a radio-labeled antibody binding prostate-specific membrane antigen (PSMA), demonstrated safety and efficacy with dose response. Modest dose fractionation of 177 Lu-J591 (2 doses) has less myelosuppression per similar cumulative dose, allowing higher doses to be administered safely. We hypothesized that additional dose fractionation would allow a higher cumulative dose, potentially with less toxicity and more efficacy. METHODS: Men with progressive metastatic castration-resistant prostate cancer and adequate organ function were enrolled. 177 Lu-J591 was administered at 25 mCi/m2 every 2 weeks until the emergence of related grade 2 toxicity. 177 Lu-J591 imaging was performed and circulating tumor cell (CTC) counts were measured before and after treatment along with standard monitoring. RESULTS: Six subjects in a single cohort, with a median age of 68.6 years, were enrolled. Patients received three to six doses (cumulative 75-150 mCi/m2 ). Two (33%) patients had >30% prostate-specific antigen (PSA) decline and three (50%) had CTC count decline. Two (33%) experienced grade (Gr) 4 neutropenia (without fever), three (50%) had Gr 4 thrombocytopenia (without hemorrhage), and two (33%) required platelet transfusions. Following hematological improvement, two patients developed worsening cytopenia during prostate cancer progression; bone marrow biopsies revealed infiltrative tumor replacing normal marrow elements without myelodysplasia. Targeting of known disease sites was seen on planar imaging in all. CONCLUSION: Hyperfractionation of 177 Lu-J591 is feasible but does not seem to have significant advantages over the two-dose fractionation regimen.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Idoso , Anticorpos Monoclonais , Humanos , Lutécio , Masculino , Projetos Piloto , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , RadioisótoposRESUMO
Prostate cancer is the most common malignancy and the second leading cause of cancer-related death in men. Radiotherapy is a curative option that is administered via external beam radiation, brachytherapy, or in combination. Erectile, ejaculatory and orgasm dysfunction(s) is/are known potential and common toxicities associated with prostate radiotherapy. Our multidisciplinary team of physicians and/or scientists have written a three (3) part comprehensive review of the pathogenesis and management radiation-induced sexual dysfunction. Part I reviews pertinent anatomy associated with normal sexual function and then considers the pathogenesis of prostate radiation-induced sexual toxicities. Next, our team considers the associated radiobiological (including the effects of time, dose and fractionation) and physical (treatment planning and defining a novel Organ at Risk (OAR)) components that should be minded in the context of safe radiation treatment planning. The authors identify an OAR (i.e., the prostatic plexus) and provide suggestions on how to minimize injury to said OAR during the radiation treatment planning process.
RESUMO
Prostate cancer is the most common malignancy in men and the second leading cause of cancer-related death in men. Radiotherapy is a curative option that is administered via external beam radiation, brachytherapy, or in combination. Sexual dysfunction is a common toxicity following radiotherapy, similar to men undergoing radical prostatectomy, but the etiology is different. The pathophysiology of radiation-induced sexual dysfunction is multi-factorial, and the toxicity is a major cause of impaired quality of life among long-term prostate cancer survivors. Management of a patient's sexual function during and after radiotherapy requires multidisciplinary coordination of care between radiation oncology, urology, psychiatry, pharmacy, and dermatology. This review provides a framework for clinicians to better understand prostatic radiotherapy-induced sexual dysfunction diagnosis, evaluation, and a patient-centered approach to toxicity preventive strategies and management.
RESUMO
BACKGROUND: Prostate cancer is radiosensitive. Prostate-specific membrane antigen (PSMA) is selectively overexpressed on advanced, castration-resistant tumors. Lutetium-177-labeled anti-PSMA monoclonal antibody J591 (177 Lu-J591) targets prostate cancer with efficacy and dose-response/toxicity data when delivered as a single dose. Dose fractionation may allow higher doses to be administered safely. METHOD: Men with metastatic castration-resistant prostate cancer refractory to or refusing standard treatment options with normal neutrophil and platelet counts were enrolled in initial phase 1b dose-escalation cohorts followed by phase 2a cohorts treated at recommended phase 2 doses (RP2Ds) comprising 2 fractionated doses of 177 Lu-J591 2 weeks apart. 177 Lu-J591 imaging was performed after treatment, but no selection for PSMA expression was performed before enrollment. Phase 2 patients had circulating tumor cell (CTC) counts assessed before and after treatment. RESULTS: Forty-nine men received fractionated doses of 177 Lu-J591 ranging from 20 to 45 mCi/m2 ×2 two weeks apart. The dose-limiting toxicity in phase 1 was neutropenia. The RP2Ds were 40 mCi/m2 and 45 mCi/m2 ×2. At the highest RP2D (45 mCi/m2 ×2), 35.3% of patients had reversible grade 4 neutropenia, and 58.8% of patients had thrombocytopenia. This dose showed a greater decrease in prostate-specific antigen (PSA) levels and longer survival (87.5% with any PSA decrease, 58.8% with >30% decrease, 29.4% with >50% decrease; median survival, 42.3 months [95% confidence interval, 19.9-64.7]). Fourteen of 17 (82%) patients with detectable CTCs experienced a decrease in CTC count. Overall, 79.6% of patients had positive PSMA imaging; those with less intense PSMA imaging tended to have poorer responses. CONCLUSION: Fractionated administration of 177 Lu-J591 allowed higher cumulative radiation dosing. The frequency and depth of PSA decrease, overall survival, and toxicity (dose-limiting myelosuppression) increased with higher doses.
Assuntos
Lutécio/uso terapêutico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Radioisótopos/uso terapêutico , Idoso , Idoso de 80 Anos ou mais , Fracionamento da Dose de Radiação , Humanos , Lutécio/farmacologia , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Neoplasias de Próstata Resistentes à Castração/mortalidade , Radioisótopos/farmacologia , Análise de SobrevidaRESUMO
INTRODUCTION: The Prostate Cancer Foundation (PCF) convened a PSMA-Directed Radionuclide Scientific Working Group on November 14, 2017, at Weill Cornell Medicine, New York, NY. METHODS: The meeting was attended by 35 global investigators with expertise in prostate cancer biology, radionuclide therapy, molecular imaging, prostate-specific membrane antigen (PSMA)-targeted agents, drug development, and prostate cancer clinical trials. The goal of this meeting was to discuss the potential for using PSMA-targeted radionuclide agents for the treatment of advanced prostate cancer and to define the studies and clinical trials necessary for validating and optimizing the use of these agents. RESULTS: Several major topic areas were discussed including the overview of PSMA biology, lessons and applications of PSMA-targeted PET imaging, the nuances of designing PSMA-targeted radionuclide agents, clinical experiences with PSMA-targeted radionuclides, PCF-funded projects to accelerate PSMA-targeted radionuclide therapy, and barriers to the use of radionuclide treatments in widespread clinical practice. DISCUSSION: This article reviews the major topics discussed at the meeting with the goal of promoting research that will validate and optimize the use of PSMA-targeted radionuclide therapies for the treatment of advanced prostate cancer.
Assuntos
Antígenos de Superfície/metabolismo , Glutamato Carboxipeptidase II/metabolismo , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/radioterapia , Compostos Radiofarmacêuticos/administração & dosagem , Compostos Radiofarmacêuticos/farmacocinética , Humanos , Masculino , Terapia de Alvo Molecular , Tomografia por Emissão de Pósitrons , Neoplasias da Próstata/metabolismo , Neoplasias de Próstata Resistentes à Castração/diagnóstico por imagem , Neoplasias de Próstata Resistentes à Castração/radioterapia , Ensaios Clínicos Controlados Aleatórios como AssuntoRESUMO
PURPOSE: In this pilot study we explored the feasibility of (89)Zr labeled J591 monoclonal antibody positron emission tomography of localized prostate cancer. MATERIALS AND METHODS: Before scheduled radical prostatectomy 11 patients were injected intravenously with (89)Zr-J591, followed 6 days later by whole body positron emission tomography. Patients underwent surgery the day after imaging. Specimens were imaged by ex vivo micro positron emission tomography and a custom 3 Tesla magnetic resonance scanner coil. Positron emission tomography images and histopathology were correlated. RESULTS: Median patient age was 61 years (range 47 to 68), median prostate specific antigen was 5.2 ng/ml (range 3.5 to 12.0) and median biopsy Gleason score of the 11 index lesions was 7 (range 7 to 9). On histopathology 22 lesions were identified. Median lesion size was 5.5 mm (range 2 to 21) and median Gleason score after radical prostatectomy was 7 (range 6 to 9). Eight of 11 index lesions (72.7%) were identified by in vivo positron emission tomography. Lesion identification improved with increasing lesion size for in vivo and ex vivo positron emission tomography (each p <0.0001), and increasing Gleason score (p = 0.14 and 0.01, respectively). Standardized uptake values appeared to correlate with increased Gleason score but not significantly (p = 0.19). CONCLUSIONS: To our knowledge this is the first report of (89)Zr-J591/prostate specific membrane antigen positron emission tomography in localized prostate cancer cases. In this setting (89)Zr-J591 bound to tumor foci in situ and positron emission tomography identified primarily Gleason score 7 or greater and larger tumors, likely corresponding to clinically significant disease warranting definitive therapy. A future, larger clinical validation trial is planned to better define the usefulness of (89)Zr-J591 positron emission tomography for localized prostate cancer.
Assuntos
Anticorpos Monoclonais , Antígenos de Superfície , Glutamato Carboxipeptidase II , Tomografia por Emissão de Pósitrons , Prostatectomia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/cirurgia , Radioisótopos , Zircônio , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Estudos Prospectivos , Prostatectomia/métodosRESUMO
PURPOSE: Given the bone tropism of prostate cancer, conventional imaging modalities poorly identify or quantify metastatic disease. (89)Zr-huJ591 positron emission tomography (PET) imaging was performed in patients with metastatic prostate cancer to analyze and validate this as an imaging biomarker for metastatic disease. The purpose of this initial study was to assess safety, biodistribution, normal organ dosimetry, and optimal imaging time post-injection for lesion detection. METHODS: Ten patients with metastatic prostate cancer received 5 mCi of (89)Zr-huJ591. Four whole-body scans with multiple whole-body count rate measurements and serum activity concentration measurements were obtained in all patients. Biodistribution, clearance, and lesion uptake by (89)Zr-huJ591 immuno-PET imaging was analyzed and dosimetry was estimated using MIRD techniques. Initial assessment of lesion targeting of (89)Zr-huJ591 was done. Optimal time for imaging post-injection was determined. RESULTS: The dose was well tolerated with mild chills and rigors seen in two patients. The clearance of (89)Zr-huJ591 from serum was bi-exponential with biological half-lives of 7 ± 4.5 h (range 1.1-14 h) and 62 ± 13 h (range 51-89 h) for initial rapid and later slow phase. Whole-body biological clearance was 219 ± 48 h (range 153-317 h). The mean whole-body and liver residence time was 78.7 and 25.6 h, respectively. Dosimetric estimates to critical organs included liver 7.7 ± 1.5 cGy/mCi, renal cortex 3.5 ± 0.4 cGy/mCi, and bone marrow 1.2 ± 0.2 cGy/mCi. Optimal time for patient imaging after injection was 7 ± 1 days. Lesion targeting of bone or soft tissue was seen in all patients. Biopsies were performed in 8 patients for a total 12 lesions, all of which were histologically confirmed as metastatic prostate cancer. One biopsy-proven lesion was not positive on (89)Zr-huJ591, while the remaining 11 lesions were (89)Zr-huJ591 positive. Two biopsy-positive nodal lesions were noted only on (89)Zr-huJ591 study, while the conventional imaging modality was negative. CONCLUSION: (89)Zr-huJ591 PET imaging of prostate-specific membrane antigen expression is safe and shows good localization of disease in prostate cancer patients. Liver is the critical organ for dosimetry, and 7 ± 1 days is the optimal imaging time. A larger study is underway to determine lesion detection in an expanded cohort of patients with metastatic prostate cancer.
Assuntos
Anticorpos Monoclonais , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Radioisótopos , Zircônio , Idoso , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Doses de RadiaçãoRESUMO
Despite encouraging clinical results with next generation drugs (MDV3100 and abiraterone) that inhibit androgen receptor (AR) signaling in patients with castration-resistant prostate cancer (CRPC), responses are variable and short-lived. There is an urgent need to understand the basis of resistance to optimize their future use. We reasoned that a radiopharmaceutical that measures intratumoral changes in AR signaling could substantially improve our understanding of AR pathway directed therapies. Expanding on previous observations, we first show that prostate-specific membrane antigen (PSMA) is repressed by androgen treatment in multiple models of AR-positive prostate cancer in an AR-dependent manner. Conversely, antiandrogens up-regulate PSMA expression. These expression changes, including increased PSMA expression in response to treatment with the antiandrogen MDV3100, can be quantitatively measured in vivo in human prostate cancer xenograft models through PET imaging with a fully humanized, radiolabeled antibody to PSMA, (64)Cu-J591. Collectively, these results establish that relative changes in PSMA expression levels can be quantitatively measured using a human-ready imaging reagent and could serve as a biomarker of AR signaling to noninvasively evaluate AR activity in patients with CRPC.
Assuntos
Antígenos de Superfície/genética , Glutamato Carboxipeptidase II/genética , Tomografia por Emissão de Pósitrons/métodos , Neoplasias da Próstata/genética , Receptores Androgênicos/genética , Transdução de Sinais/genética , Antagonistas de Androgênios/farmacologia , Androgênios/farmacologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacocinética , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Benzamidas , Linhagem Celular Tumoral , Radioisótopos de Cobre/farmacocinética , Di-Hidrotestosterona/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glutamato Carboxipeptidase II/imunologia , Glutamato Carboxipeptidase II/metabolismo , Compostos Heterocíclicos com 1 Anel/química , Humanos , Immunoblotting , Masculino , Camundongos , Camundongos SCID , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Nitrilas , Orquiectomia , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Antígeno Prostático Específico/genética , Antígeno Prostático Específico/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Compostos Radiofarmacêuticos/imunologia , Compostos Radiofarmacêuticos/farmacocinética , Receptores Androgênicos/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Transplante HeterólogoRESUMO
PURPOSE: Novel therapies are needed to extend survival in metastatic castration-resistant prostate cancer (mCRPC). Prostate-specific membrane antigen (PSMA), a cell surface antigen overexpressed in PC, provides a validated target. This dose-escalation study investigated the safety, efficacy, maximum tolerated dose (MTD), and recommended phase II dose (RP2D) for 225Ac-J591, anti-PSMA monoclonal antibody J591 radiolabeled with the alpha emitter actinium-225. METHODS: Following investigational new drug-enabling preclinical studies, we enrolled patients with progressive mCRPC that was refractory to or who refused standard treatment options (including androgen receptor pathway inhibitor and had received or been deemed ineligible for taxane chemotherapy). No selection for PSMA was performed. Patients received a single dose of 225Ac-J591 at one of seven dose-escalation levels followed by expansion at the highest dose. Primary end point of dose-escalation cohort was determination of dose-limiting toxicity (DLT) and RP2D. RESULTS: Radiochemistry and animal studies were favorable. Thirty-two patients received 225Ac-J591 in an accelerated dose-escalation design (22 in dose escalation, 10 in expansion). One patient (1 of 22; 4.5%) experienced DLT in cohort 6 (80 KBq/kg) but none in cohort 7; MTD was not reached, and RP2D was the highest dose level (93.3 KBq/kg). The majority of high-grade adverse events (AEs) were hematologic with an apparent relationship with administered radioactivity. Nonhematologic AEs were generally of low grade. Prostate-specific antigen (PSA) declines and circulating tumor cell (CTC) control were observed: 46.9% had at least 50% PSA decline at any time (34.4% confirmed PSA response), and protocol-defined CTC count response occurred in 13 of 22 (59.1%). CONCLUSION: To our knowledge, this is the first-in-human phase I dose-escalation trial of a single dose of 225Ac-J591 in 32 patients with pretreated progressive mCRPC demonstrated safety and preliminary efficacy signals. Further investigation is underway.
Assuntos
Neoplasias de Próstata Resistentes à Castração , Animais , Humanos , Masculino , Antagonistas de Receptores de Andrógenos/uso terapêutico , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/uso terapêutico , Antígenos de Superfície , Próstata/patologia , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/radioterapia , Resultado do TratamentoRESUMO
The capture of circulating tumor cells (CTCs) from cancer patient blood enables early clinical assessment as well as genetic and pharmacological evaluation of cancer and metastasis. Although there have been many microfluidic immunocapture and electrokinetic techniques developed for isolating rare cancer cells, these techniques are often limited by a capture performance tradeoff between high efficiency and high purity. We present the characterization of shear-dependent cancer cell capture in a novel hybrid DEP-immunocapture system consisting of interdigitated electrodes fabricated in a Hele-Shaw flow cell that was functionalized with a monoclonal antibody, J591, which is highly specific to prostate-specific membrane antigen expressing prostate cancer cells. We measured the positive and negative DEP response of a prostate cancer cell line, LNCaP, as a function of applied electric field frequency, and showed that DEP can control capture performance by promoting or preventing cell interactions with immunocapture surfaces, depending on the sign and magnitude of the applied DEP force, as well as on the local shear stress experienced by cells flowing in the device. This work demonstrates that DEP and immunocapture techniques can work synergistically to improve cell capture performance, and it will aid in the design of future hybrid DEP-immunocapture systems for high-efficiency CTC capture with enhanced purity.
Assuntos
Separação Celular/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/patologia , Anticorpos Imobilizados/química , Anticorpos Monoclonais/química , Linhagem Celular Tumoral , Eletrodos , Desenho de Equipamento , Humanos , Masculino , Neoplasias da Próstata/sangueRESUMO
The isolation of circulating tumor cells (CTCs) from cancer patient blood is a technical challenge that is often addressed by microfluidic approaches. Two of the most prominent techniques for rare cancer cell separation, immunocapture and dielectrophoresis (DEP), are currently limited by a performance tradeoff between high efficiency and high purity. The development of a platform capable of these two performance criteria can potentially be facilitated by incorporating both DEP and immunocapture. We present a hybrid DEP-immunocapture system to characterize how DEP controls the shear-dependent capture of a prostate cancer cell line, LNCaP, and the nonspecific adhesion of peripheral blood mononuclear cells (PBMCs). Characterization of cell adhesion with and without DEP effects was performed in a Hele-Shaw flow cell that was functionalized with the prostate-specific monoclonal antibody, J591. In this model system designed to make nonspecific PBMC adhesion readily apparent, we demonstrate LNCaP enrichment from PBMCs by precisely tuning the applied AC electric field frequency to enhance immunocapture of LNCaPs and reduce nonspecific adhesion of PBMCs with positive and negative DEP, respectively. Our work shows that DEP and immunocapture techniques can work synergistically to improve cancer cell capture performance, and it informs the design of future hybrid DEP-immunocapture systems with improved CTC capture performance to facilitate research on cancer metastasis and drug therapies.
Assuntos
Células Sanguíneas/patologia , Separação Celular/instrumentação , Separação Celular/métodos , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/métodos , Células Neoplásicas Circulantes/patologia , Neoplasias da Próstata/patologia , Adesão Celular , Contagem de Células , Eletroforese/instrumentação , Humanos , Masculino , Técnicas Analíticas Microfluídicas/instrumentação , Neoplasias da Próstata/imunologia , Integração de SistemasRESUMO
Prostate-specific membrane antigen (PSMA) is an important cell surface target in prostate cancer. There are limited data on the heterogeneity of PSMA tissue expression in metastatic castration-resistant prostate cancer (mCRPC). Furthermore, the mechanisms regulating PSMA expression (encoded by the FOLH1 gene) are not well understood. Here, we demonstrate that PSMA expression is heterogeneous across different metastatic sites and molecular subtypes of mCRPC. In a rapid autopsy cohort in which multiple metastatic sites per patient were sampled, we found that 13 of 52 (25%) cases had no detectable PSMA and 23 of 52 (44%) cases showed heterogeneous PSMA expression across individual metastases, with 33 (63%) cases harboring at least 1 PSMA-negative site. PSMA-negative tumors displayed distinct transcriptional profiles with expression of druggable targets such as MUC1. Loss of PSMA was associated with epigenetic changes of the FOLH1 locus, including gain of CpG methylation and loss of histone 3 lysine 27 (H3K27) acetylation. Treatment with histone deacetylase (HDAC) inhibitors reversed this epigenetic repression and restored PSMA expression in vitro and in vivo. Collectively, these data provide insights into the expression patterns and regulation of PSMA in mCRPC and suggest that epigenetic therapies - in particular, HDAC inhibitors - can be used to augment PSMA levels.