Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Appl Environ Microbiol ; 90(4): e0235523, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38535171

RESUMO

Halophyte-based remediation emerges as a novel strategy for ameliorating saline soils, offering a sustainable alternative to conventional leaching methods. While bioremediation is recognized for its ability to energize soil fertility and structure, the complex interplays among plant traits, soil functions, and soil microbial diversity remain greatly unknown. Here, we conducted a 5-year field experiment involving the continuous cultivation of the annual halophyte Suaeda salsa in saline soils to explore soil microbial diversity and their relationships with plant traits and soil functions. Our findings demonstrate that a decline in soil salinity corresponded with increases in the biomass and seed yield of S. salsa, which sustained a consistent seed oil content of approximately 22% across various salinity levels. Significantly, prolonged cultivation of halophytes substantially augmented soil microbial diversity, particularly from the third year of cultivation. Moreover, we identified positive associations between soil multifunctionality, seed yield, and taxonomic richness within a pivotal microbial network module. Soils enriched with taxa from this module showed enhanced multifunctionality and greater seed yields, correlating with the presence of functional genes implicated in nitrogen fixation and nitrification. Genomic analysis suggests that these taxa have elevated gene copy numbers of crucial functional genes related to nutrient cycling. Overall, our study emphasizes that the continuous cultivation of S. salsa enhances soil microbial diversity and recovers soil multifunctionality, expanding the understanding of plant-soil-microbe feedback in bioremediation.IMPORTANCEThe restoration of saline soils utilizing euhalophytes offers a viable alternative to conventional irrigation techniques for salt abatement and soil quality enhancement. The ongoing cultivation of the annual Suaeda salsa and its associated plant traits, soil microbial diversity, and functionalities are, however, largely underexplored. Our investigation sheds light on these dynamics, revealing that cultivation of S. salsa sustains robust plant productivity while fostering soil microbial diversity and multifunctionality. Notably, the links between enhanced soil multifunctionality, increased seed yield, and network-dependent taxa were found, emphasizing the importance of key microbial taxa linked with functional genes vital to nitrogen fixation and nitrification. These findings introduce a novel understanding of the role of soil microbes in bioremediation and advance our knowledge of the ecological processes that are vital for the rehabilitation of saline environments.


Assuntos
Chenopodiaceae , Solo , Solo/química , Solução Salina , Cloreto de Sódio , Nitrificação , Plantas Tolerantes a Sal
2.
Glob Chang Biol ; 29(11): 3177-3192, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36897740

RESUMO

Organic carbon and aggregate stability are key features of soil quality and are important to consider when evaluating the potential of agricultural soils as carbon sinks. However, we lack a comprehensive understanding of how soil organic carbon (SOC) and aggregate stability respond to agricultural management across wide environmental gradients. Here, we assessed the impact of climatic factors, soil properties and agricultural management (including land use, crop cover, crop diversity, organic fertilization, and management intensity) on SOC and the mean weight diameter of soil aggregates, commonly used as an indicator for soil aggregate stability, across a 3000 km European gradient. Soil aggregate stability (-56%) and SOC stocks (-35%) in the topsoil (20 cm) were lower in croplands compared with neighboring grassland sites (uncropped sites with perennial vegetation and little or no external inputs). Land use and aridity were strong drivers of soil aggregation explaining 33% and 20% of the variation, respectively. SOC stocks were best explained by calcium content (20% of explained variation) followed by aridity (15%) and mean annual temperature (10%). We also found a threshold-like pattern for SOC stocks and aggregate stability in response to aridity, with lower values at sites with higher aridity. The impact of crop management on aggregate stability and SOC stocks appeared to be regulated by these thresholds, with more pronounced positive effects of crop diversity and more severe negative effects of crop management intensity in nondryland compared with dryland regions. We link the higher sensitivity of SOC stocks and aggregate stability in nondryland regions to a higher climatic potential for aggregate-mediated SOC stabilization. The presented findings are relevant for improving predictions of management effects on soil structure and C storage and highlight the need for site-specific agri-environmental policies to improve soil quality and C sequestration.


Assuntos
Carbono , Solo , Solo/química , Agricultura , Sequestro de Carbono
3.
Environ Sci Technol ; 56(19): 13686-13695, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36099238

RESUMO

The intensive use of pesticides and their subsequent distribution to the environment and non-target organisms is of increasing concern. So far, little is known about the occurrence of pesticides in soils of untreated areas─such as ecological refuges─as well as the processes contributing to this unwanted pesticide contamination. In this study, we analyzed the presence and abundance of 46 different pesticides in soils from extensively managed grassland sites, as well as organically and conventionally managed vegetable fields (60 fields in total). Pesticides were found in all soils, including the extensive grassland sites, demonstrating a widespread background contamination of soils with pesticides. The results suggest that after conversion from conventional to organic farming, the organic fields reach pesticide levels as low as those of grassland sites not until 20 years later. Furthermore, the different pesticide composition patterns in grassland sites and organically managed fields facilitated differentiation between long-term persistence of residues and diffuse contamination processes, that is, short-scale redistribution (spray drift) and long-scale dispersion (atmospheric deposition), to offsite contamination.


Assuntos
Praguicidas , Solo , Agricultura , Pradaria , Praguicidas/análise , Solo/química , Verduras
4.
Environ Sci Technol ; 56(18): 12975-12987, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-36067360

RESUMO

Persistent microbial symbioses can confer greater fitness to their host under unfavorable conditions, but manipulating such beneficial interactions necessitates a mechanistic understanding of the consistently important microbiomes for the plant. Here, we examined the phylogenetic profiles and plant-beneficial traits of the core microbiota that consistently inhabits the rhizosphere of four divergent Cd hyperaccumulators and an accumulator. We evidenced the existence of a conserved core rhizosphere microbiota in each plant distinct from that in the non-hyperaccumulating plant. Members of Burkholderiaceae and Sphingomonas were the shared cores across hyperaccumulators and accumulators. Several keystone taxa in the rhizosphere networks were part of the core microbiota, the abundance of which was an important predictor of plant Cd accumulation. Furthermore, an inoculation experiment with synthetic communities comprising isolates belonging to the shared cores indicated that core microorganisms could facilitate plant growth and metal tolerance. Using RNA-based stable isotope probing, we discovered that abundant core taxa overlapped with active rhizobacteria utilizing root exudates, implying that the core rhizosphere microbiota assimilating plant-derived carbon may provide benefits to plant growth and host phenotype such as Cd accumulation. Our study suggests common principles underpinning hyperaccumulator-microbiome interactions, where plants consistently interact with a core set of microbes contributing to host fitness and plant performance. These findings lay the foundation for harnessing the persistent root microbiomes to accelerate the restoration of metal-disturbed soils.


Assuntos
Metais Pesados , Microbiota , Bactérias/genética , Cádmio , Carbono , Filogenia , Raízes de Plantas/microbiologia , Plantas/genética , RNA , Rizosfera , Solo , Microbiologia do Solo
5.
Environ Microbiol ; 23(12): 7483-7496, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34259375

RESUMO

Composting is widely used to reduce the abundance of antibiotic resistance genes (ARGs) in solid waste. While ARG dynamics have been extensively investigated during composting, the fate and abundance of residual ARGs during the storage remain unexplored. Here, we tested experimentally how ARG and mobile genetic element (MGE) abundances change during compost storage using metagenomics, quantitative PCR and direct culturing. We found that 43.8% of ARGs and 39.9% of MGEs quickly recovered already during the first week of storage. This rebound effect was mainly driven by the regrowth of indigenous, antibiotic-resistant bacteria that survived the composting. Bacterial transmission from the surrounding air had a much smaller effect, being most evident as MGE rebound during the later stages of storage. While hyperthermophilic composting was more efficient at reducing the relative abundance of ARGs and MGEs, relatively greater ARG rebound was observed during the storage of hyperthermophilic compost, exceeding the initial levels of untreated sewage sludge. Our study reveals that residual ARGs and MGEs left in the treated compost can quickly rebound during the storage via airborne introduction and regrowth of surviving bacteria, highlighting the need to develop better storage strategies to prevent the rebound of ARGs and MGEs after composting.


Assuntos
Compostagem , Microbiota , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Genes Bacterianos , Esterco , Microbiota/genética
6.
Environ Sci Technol ; 55(5): 2919-2928, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33534554

RESUMO

Pesticides are applied in large quantities to agroecosystems worldwide. To date, few studies assessed the occurrence of pesticides in organically managed agricultural soils, and it is unresolved whether these pesticide residues affect soil life. We screened 100 fields under organic and conventional management with an analytical method containing 46 pesticides (16 herbicides, 8 herbicide transformation products, 17 fungicides, seven insecticides). Pesticides were found in all sites, including 40 organic fields. The number of pesticide residues was two times and the concentration nine times higher in conventional compared to organic fields. Pesticide number and concentrations significantly decreased with the duration of organic management. Even after 20 years of organic agriculture, up to 16 different pesticide residues were present. Microbial biomass and specifically the abundance of arbuscular mycorrhizal fungi, a widespread group of beneficial plant symbionts, were significantly negatively linked to the amount of pesticide residues in soil. This indicates that pesticide residues, in addition to abiotic factors such as pH, are a key factor determining microbial soil life in agroecosystems. This comprehensive study demonstrates that pesticides are a hidden reality in agricultural soils, and our results suggest that they have harmful effects on beneficial soil life.


Assuntos
Resíduos de Praguicidas , Praguicidas , Poluentes do Solo , Agricultura , Resíduos de Praguicidas/análise , Praguicidas/análise , Solo , Poluentes do Solo/análise
7.
Environ Microbiol ; 18(6): 1805-16, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26184386

RESUMO

Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Árvores/microbiologia , Bactérias/classificação , Bactérias/genética , Canadá , Carbono/análise , Clima , Florestas , Solo/química
8.
Can J Microbiol ; 62(6): 485-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27045904

RESUMO

Archaea are ubiquitous and highly abundant in Arctic soils. Because of their oligotrophic nature, archaea play an important role in biogeochemical processes in nutrient-limited Arctic soils. With the existing knowledge of high archaeal abundance and functional potential in Arctic soils, this study employed terminal restriction fragment length polymorphism (t-RFLP) profiling and geostatistical analysis to explore spatial dependency and edaphic determinants of the overall archaeal (ARC) and ammonia-oxidizing archaeal (AOA) communities in a high Arctic polar oasis soil. ARC communities were spatially dependent at the 2-5 m scale (P < 0.05), whereas AOA communities were dependent at the ∼1 m scale (P < 0.0001). Soil moisture, pH, and total carbon content were key edaphic factors driving both the ARC and AOA community structure. However, AOA evenness had simultaneous correlations with dissolved organic nitrogen and mineral nitrogen, indicating a possible niche differentiation for AOA in which dry mineral and wet organic soil microsites support different AOA genotypes. Richness, evenness, and diversity indices of both ARC and AOA communities showed high spatial dependency along the landscape and resembled scaling of edaphic factors. The spatial link between archaeal community structure and soil resources found in this study has implications for predictive understanding of archaea-driven processes in polar oases.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Nitrogênio/metabolismo , Solo/química , Archaea/genética , Regiões Árticas , Oxirredução , Polimorfismo de Fragmento de Restrição
9.
Sci Total Environ ; 912: 169353, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38104847

RESUMO

Soil microbial communities play a vital role in the biogeochemical cycling and ecological functioning of grassland, but may be affected by common land uses such as cattle grazing. Changes in microbial diversity and network complexity can affect key ecosystem functions such as nutrient cycling. However, it is not well known how microbial diversity and network complexity respond to grazing in the Northern Great Plains. Consequently, it is important to understand whether variation in grazing management alters the diversity and complexity of grassland microbial communities. We compared the effect of intensive adaptive multi-paddock (AMP) grazing and conventional grazing practices on soil microbial communities using 16S/ITS amplicon sequencing. Samples were collected from grasslands in 13 AMP ranches and 13 neighboring, conventional ranches located across the Canadian prairies. We found that AMP grazing increased fungal diversity and evenness, and led to more complex microbial associations. Acidobacteria, Actinobacteria, Gemmatimonadetes, and Bacteroidetes were keystone taxa associated with AMP grazing, while Actinobacteria, Acidobacteria, Proteobacteria, and Armatimonadetes were keystone taxa under conventional grazing. Besides overall grazing treatment effects, specific grazing metrics like cattle stocking rate and rest-to-grazing ratio affected microbial richness and diversity. Bacterial and fungal richness increased with elevated stocking rate, and fungal richness and diversity increased directly with the rest-to-grazing ratio. These results suggest that AMP grazing may improve ecosystem by enhancing fungal diversity and increasing microbial network complexity and connectivity.


Assuntos
Ecossistema , Microbiota , Animais , Bovinos , Humanos , Solo , Pradaria , Microbiologia do Solo , Redes Comunitárias , Canadá , Bactérias
10.
Nat Commun ; 15(1): 327, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184663

RESUMO

Soil fungi are a key constituent of global biodiversity and play a pivotal role in agroecosystems. How arable farming affects soil fungal biogeography and whether it has a disproportional impact on rare taxa is poorly understood. Here, we used the high-resolution PacBio Sequel targeting the entire ITS region to investigate the distribution of soil fungi in 217 sites across a 3000 km gradient in Europe. We found a consistently lower diversity of fungi in arable lands than grasslands, with geographic locations significantly impacting fungal community structures. Prevalent fungal groups became even more abundant, whereas rare groups became fewer or absent in arable lands, suggesting a biotic homogenization due to arable farming. The rare fungal groups were narrowly distributed and more common in grasslands. Our findings suggest that rare soil fungi are disproportionally affected by arable farming, and sustainable farming practices should protect rare taxa and the ecosystem services they support.


Assuntos
Ecossistema , Solo , Agricultura , Europa (Continente) , Fazendas
11.
Nat Rev Microbiol ; 21(1): 6-20, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35999468

RESUMO

The concept of one health highlights that human health is not isolated but connected to the health of animals, plants and environments. In this Review, we demonstrate that soils are a cornerstone of one health and serve as a source and reservoir of pathogens, beneficial microorganisms and the overall microbial diversity in a wide range of organisms and ecosystems. We list more than 40 soil microbiome functions that either directly or indirectly contribute to soil, plant, animal and human health. We identify microorganisms that are shared between different one health compartments and show that soil, plant and human microbiomes are perhaps more interconnected than previously thought. Our Review further evaluates soil microbial contributions to one health in the light of dysbiosis and global change and demonstrates that microbial diversity is generally positively associated with one health. Finally, we present future challenges in one health research and formulate recommendations for practice and evaluation.


Assuntos
Microbiota , Saúde Única , Animais , Humanos , Solo , Microbiologia do Solo , Plantas
12.
Environ Microbiol ; 14(9): 2601-13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22759091

RESUMO

Soil denitrification is one of the most significant contributors to global nitrous oxide (N(2) O) emissions, and spatial patterns of denitrifying communities and their functions may reveal the factors that drive denitrification potential and functional consortia. Although denitrifier spatial patterns have been studied extensively in most soil ecosystems, little is known about these processes in arctic soils. This study aimed to unravel the spatial relationships among denitrifier abundance, denitrification potential and soil resources in 279 soil samples collected from three Canadian arctic ecosystems encompassing 7° in latitude and 27° in longitude. The abundance of nirS (10(6) -10(8) copies g(-1) dry soil), nirK (10(3) -10(7) copies g(-1) dry soil) and nosZ (10(6) -10(7) copies g(-1) dry soil) genes in these soils is in the similar range as non-arctic soil ecosystems. Potential denitrification in Organic Cryosols (1034 ng N(2) O-N g(-1) soil) was 5-11 times higher than Static/Turbic Cryosols and the overall denitrification potential in Cryosols was also comparable to other ecosystems. We found denitrifier functional groups and potential denitrification were highly spatially dependent within a scale of 5 m. Functional groups and soil resources were significantly (P < 0.01) correlated to potential denitrifier activities and the correlations were stronger in Organic Cryosols. Soil moisture, organic carbon and nitrogen content were the predominant controls with nirK abundance also linked to potential denitrification. This study suggests that the dominant control on arctic ecosystem-level denitrification potential is moisture and organic carbon. Further, microbial abundance controls on ecosystem level activity while undoubtedly present, are masked in the nutrient-poor arctic environment by soil resource control on denitrifier ecosystem level activity.


Assuntos
Desnitrificação , Ecossistema , Microbiologia do Solo , Solo/química , Regiões Árticas , Bactérias/genética , Bactérias/metabolismo , Canadá , Nitrogênio/metabolismo , Óxido Nitroso/análise
13.
Appl Environ Microbiol ; 78(2): 346-53, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22081570

RESUMO

Ammonia oxidation is a major process in nitrogen cycling, and it plays a key role in nitrogen limited soil ecosystems such as those in the arctic. Although mm-scale spatial dependency of ammonia oxidizers has been investigated, little is known about the field-scale spatial dependency of aerobic ammonia oxidation processes and ammonia-oxidizing archaeal and bacterial communities, particularly in arctic soils. The purpose of this study was to explore the drivers of ammonia oxidation at the field scale in cryosols (soils with permafrost within 1 m of the surface). We measured aerobic ammonia oxidation potential (both autotrophic and heterotrophic) and functional gene abundance (bacterial amoA and archaeal amoA) in 279 soil samples collected from three arctic ecosystems. The variability associated with quantifying genes was substantially less than the spatial variability observed in these soils, suggesting that molecular methods can be used reliably evaluate spatial dependency in arctic ecosystems. Ammonia-oxidizing archaeal and bacterial communities and aerobic ammonia oxidation were spatially autocorrelated. Gene abundances were spatially structured within 4 m, whereas biochemical processes were structured within 40 m. Ammonia oxidation was driven at small scales (<1m) by moisture and total organic carbon, whereas gene abundance and other edaphic factors drove ammonia oxidation at medium (1 to 10 m) and large (10 to 100 m) scales. In these arctic soils heterotrophs contributed between 29 and 47% of total ammonia oxidation potential. The spatial scale for aerobic ammonia oxidation genes differed from potential ammonia oxidation, suggesting that in arctic ecosystems edaphic, rather than genetic, factors are an important control on ammonia oxidation.


Assuntos
Amônia/metabolismo , Archaea/metabolismo , Bactérias/metabolismo , Ecossistema , Microbiologia do Solo , Proteínas Arqueais/genética , Regiões Árticas , Proteínas de Bactérias/genética , Biota , Canadá , Variação Genética , Oxirredução , Oxirredutases/genética
14.
Front Plant Sci ; 13: 973919, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330236

RESUMO

Drip irrigation under plastic film mulch is a common agricultural practice used to conserve water. However, compared to traditional flood irrigation with film mulch, this practice limit cotton root development from early flowering stage and may cause premature senescence in cotton. Changes of root will consequently shape the composition and activity of rhizosphere microbial communities, however, the effect of this farming practice on cotton rhizosphere microbiota remains poorly understood. This study investigated rhizosphere bacteria and soil functionality in response to different irrigation practices -including how changes in rhizosphere bacterial diversity alter soil nutrient cycling. Drip irrigation under plastic film mulch was shown to enhance bacterial diversity by lowering the salinity and increasing the soil moisture. However, the reduced root biomass and soluble sugar content of roots decreased potential copiotrophic taxa, such as Bacteroidetes, Firmicutes, and Gamma-proteobacteria, and increased potential oligotrophic taxa, such as Actinobacteria, Acidobacteria, and Armatimonadetes. A core network module was strongly correlated with the functional potential of soil. This module not only contained most of the keystone taxa but also comprised taxa belonging to Planctomycetaceae, Gemmatimonadaceae, Nitrosomonadaceae, and Rhodospirillaceae that were positively associated with functional genes involved in nutrient cycling. Drip irrigation significantly decreased the richness of the core module and reduced the functional potential of soil in the rhizosphere. Overall, this study provides evidence that drip irrigation under plastic film mulch alters the core bacterial network module and suppresses soil nutrient cycling.

15.
ISME J ; 16(10): 2448-2456, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35869387

RESUMO

Even in homogeneous conditions, plants facing a soilborne pathogen tend to show a binary outcome with individuals either remaining fully healthy or developing severe to lethal disease symptoms. As the rhizosphere microbiome is a major determinant of plant health, we postulated that such a binary outcome may result from an early divergence in the rhizosphere microbiome assembly that may further cascade into varying disease suppression abilities. We tested this hypothesis by setting up a longitudinal study of tomato plants growing in a natural but homogenized soil infested with the soilborne bacterial pathogen Ralstonia solanacearum. Starting from an originally identical species pool, individual rhizosphere microbiome compositions rapidly diverged into multiple configurations during the plant vegetative growth. This variation in community composition was strongly associated with later disease development during the later fruiting state. Most interestingly, these patterns also significantly predicted disease outcomes 2 weeks before any difference in pathogen density became apparent between the healthy and diseased groups. In this system, a total of 135 bacterial OTUs were associated with persistent healthy plants. Five of these enriched OTUs (Lysinibacillus, Pseudarthrobacter, Bordetella, Bacillus, and Chryseobacterium) were isolated and shown to reduce disease severity by 30.4-100% when co-introduced with the pathogen. Overall, our results demonstrated that an initially homogenized soil can rapidly diverge into rhizosphere microbiomes varying in their ability to promote plant protection. This suggests that early life interventions may have significant effects on later microbiome states, and highlights an exciting opportunity for microbiome diagnostics and plant disease prevention.


Assuntos
Microbiota , Rizosfera , Bactérias/genética , Humanos , Estudos Longitudinais , Raízes de Plantas/microbiologia , Plantas/microbiologia , Solo , Microbiologia do Solo
16.
Sci Total Environ ; 841: 156752, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718181

RESUMO

Ammonia oxidizing archaea (AOA) and bacteria (AOB), nitrite-oxidizing bacteria (NOB), and comammox Nitrospira (CMX) play pivotal roles in global nitrogen-cycling network. Despite its importance, the driving forces for niche specialization of these nitrifiers, as well as their relative contributions to nitrification and crop yield have not been fully understood. Here, we investigated the niche specialization and environmental prevalence of nitrifying communities, and their importance for the nitrification rate and crop yield across a gradient of nitrogen inputs in a two-decade old field experiment. The results of 15N-tracer and quantitative PCR revealed that AOB and NOB jointly determined the gross nitrification rates across mineral fertilizer treatments, whereas AOA and AOB contributed more than other nitrifiers to nitrification under with organic fertilizer amendments. Linear regression model revealed that crop yield could be linked with AOB and NOB under inorganic farming but closely associated with CMX under organic management. Amplicon sequencing of these functional genes further demonstrated that mineral and organic fertilizers have distinct influences on the ß-diversity and niche breadth of these nitrifying communities, indicating that fertilization triggered niche specialization of nitrifying guilds in agricultural soils. Notably, organic fertilization enhanced the network complexity of these nitrifiers by harboring keystone taxa. Random forest analysis provide robustly evidence for the hypothesis that abundance of functional genes contributed more than a- and ß-diversity of these nitrifiers for driving nitrification rates and crop yields. Collectively, these findings provide the empirical evidence for the environmental adaptation and niche specialization of nitrifying communities, and their contributions in nitrification and crop yield when confronted with long-term nitrogen inputs.


Assuntos
Microbiota , Nitrificação , Amônia/análise , Archaea , Bactérias , Fertilização , Fertilizantes/análise , Nitritos/análise , Nitrogênio/análise , Oxirredução , Filogenia , Solo , Microbiologia do Solo
17.
Environ Microbiome ; 17(1): 1, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991714

RESUMO

BACKGROUND: Soil microbial communities are major drivers of cycling of soil nutrients that sustain plant growth and productivity. Yet, a holistic understanding of the impact of land-use intensification on the soil microbiome is still poorly understood. Here, we used a field experiment to investigate the long-term consequences of changes in land-use intensity based on cropping frequency (continuous cropping, alternating cropping with a temporary grassland, perennial grassland) on bacterial, protist and fungal communities as well as on their co-occurrence networks. RESULTS: We showed that land use has a major impact on the structure and composition of bacterial, protist and fungal communities. Grassland and arable cropping differed markedly with many taxa differentiating between both land use types. The smallest differences in the microbiome were observed between temporary grassland and continuous cropping, which suggests lasting effects of the cropping system preceding the temporary grasslands. Land-use intensity also affected the bacterial co-occurrence networks with increased complexity in the perennial grassland comparing to the other land-use systems. Similarly, co-occurrence networks within microbial groups showed a higher connectivity in the perennial grasslands. Protists, particularly Rhizaria, dominated in soil microbial associations, as they showed a higher number of connections than bacteria and fungi in all land uses. CONCLUSIONS: Our findings provide evidence of legacy effects of prior land use on the composition of the soil microbiome. Whatever the land use, network analyses highlighted the importance of protists as a key element of the soil microbiome that should be considered in future work. Altogether, this work provides a holistic perspective of the differential responses of various microbial groups and of their associations to agricultural intensification.

18.
Sci Total Environ ; 831: 154944, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35367547

RESUMO

Salinization is an important global environmental problem influencing sustainable development of terrestrial ecosystems. Salt-tolerant halophytes are often used as a promising approach to remedy the saline soils. Yet, how rhizosphere microbes' association and functions vary with halophytes in saline ecosystems remains unclear, restricting our ability to assess the role of halophytes in remedying saline ecosystems. Herein, we examined bacterial and fungal diversities, compositions, and co-occurrence networks in the rhizospheres of six halophytes and bulk soils in a semiarid inland saline ecosystem, and related these parameters to microbial functions. The microbiomes were more diverse and complex and microbial activity and residues were higher in rhizospheres than bulk soils. The connections of taxa in the rhizosphere microbial communities increased with fungi-fungi and bacteria-fungi connections and fungal diversity. The proportion of the fungi-related central connections were larger in rhizospheres (13-73%) than bulk soils (3%). Moreover, microbial activity and residues were significantly correlated with microbial composition and co-occurrence network complexity. These results indicated that enhanced association between fungi and bacteria increased microbial co-occurring network complexity in halophytes rhizosphere, which contributed to the higher microbial functions (microbial activities and residue) in this inland saline ecosystem.


Assuntos
Microbiota , Rizosfera , Bactérias , Ecossistema , Fungos , Plantas Tolerantes a Sal/microbiologia , Solo/química , Microbiologia do Solo
19.
Microbiol Spectr ; 10(6): e0357222, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36453930

RESUMO

Bio-organic fertilizers (BOF) containing both organic amendments and beneficial microorganisms have been consistently shown to improve soils fertility and yield. However, the exact mechanisms which link amendments and yields remain disputed, and the complexity of bio-organic fertilizers may work in parallel in several ways. BOF may directly improve yield by replenishing soil nutrients or introducing beneficial microbial genes or indirectly by altering the soil microbiome to enrich native beneficial microorganisms. In this work, we aim to disentangle the relative contributions of direct and indirect effects on pear yield. We treated pear trees with either chemical fertilizer or organic fertilizer with/without the plant-beneficial bacterium Bacillus velezensis SQR9. We then assessed, in detail, soil physicochemical and biological properties (metagenome sequencing) as well as pear yield. We then evaluated the relative importance of direct and indirect effects of soil amendments on pear yield. Both organic treatments increased plant yield by up to 20%, with the addition of bacteria tripling the increase driven by organic fertilizer alone. This increase could be linked to alterations in soil physicochemical properties, bacterial community function, and metabolism. Supplementation of organic fertilizer SQR9 increased rhizosphere microbiome richness and functional diversity. Fertilizer-sensitive microbes and functions responded as whole guilds. Pear yield was most positively associated with the Mitsuaria- and Actinoplanes-dominated ecological clusters and with gene clusters involved in ion transport and secondary metabolite biosynthesis. Together, these results suggested that bio-organic fertilizers mainly act indirectly on plant yield by creating soil chemical properties which promote a plant-beneficial microbiome. IMPORTANCE Bio-organic fertilization is a widely used, eco-friendly, sustainable approach to increasing plant productivity in the agriculture and fruit industries. However, it remains unclear whether the promotion of fruit productivity is related to specific changes in microbial inoculants, the resident microbiome, and/or the physicochemical properties of rhizosphere soils. We found that bio-organic fertilizers alter soil chemical properties, thus manipulating specific microbial taxa and functions within the rhizosphere microbiome of pear plants to promote yield. Our work unveils the ecological mechanisms which underlie the beneficial impacts of bio-organic fertilizers on yield promotion in fruit orchards, which may help in the design of more efficient biofertilizers to promote sustainable fruit production.


Assuntos
Microbiota , Pyrus , Fertilizantes/análise , Rizosfera , Solo/química , Bactérias , Microbiologia do Solo
20.
Nat Ecol Evol ; 6(8): 1145-1154, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35798840

RESUMO

Phosphorus (P) acquisition is key for plant growth. Arbuscular mycorrhizal fungi (AMF) help plants acquire P from soil. Understanding which factors drive AMF-supported nutrient uptake is essential to develop more sustainable agroecosystems. Here we collected soils from 150 cereal fields and 60 non-cropped grassland sites across a 3,000 km trans-European gradient. In a greenhouse experiment, we tested the ability of AMF in these soils to forage for the radioisotope 33P from a hyphal compartment. AMF communities in grassland soils were much more efficient in acquiring 33P and transferred 64% more 33P to plants compared with AMF in cropland soils. Fungicide application best explained hyphal 33P transfer in cropland soils. The use of fungicides and subsequent decline in AMF richness in croplands reduced 33P uptake by 43%. Our results suggest that land-use intensity and fungicide use are major deterrents to the functioning and natural nutrient uptake capacity of AMF in agroecosystems.


Assuntos
Micorrizas , Praguicidas , Agricultura , Plantas/microbiologia , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA