Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Therm Biol ; 97: 102889, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33863448

RESUMO

For successful reproduction of farmed fish, it is important to understand the relationship between gonadal development and environmental factors such as temperature and photoperiod. In this study, we determined the effects of temperature (T) and photoperiod (Pp) on serum estradiol-17ß (E2) and progesterone (P) contents, gonadosomatic index (GSI), and oocyte development in female tilapia. We used a central composite experimental design and response surface methodology. The experimental ranges were 18-36 °C for T and 0-24 h for Pp. The results show that the quadratic effects of T and Pp were highly significant for serum E2 and P contents, GSI, and the ratio of stage III to stage II oocytes (P < 0.01), and that the linear effects of T and Pp were also significant for these indicators (P < 0.05). The T × Pp interaction significantly affected serum E2 content (P < 0.05). Serum E2 and P content, GSI, and the ratio of stage III to stage II oocytes increased and then decreased with increasing T or Pp. The best combination of T and Pp for egg development was 28.6 °C/14.29 h. We observed the part of ovarian tissue containing stage V oocytes that are about to be discharged. Shortening the photoperiod or lowering the water temperature delayed the development of ovarian tissue so that most oocytes remained at stage II, and there were many atretic follicles. There were significant positive correlations between female GSI and serum E2, P, and the ratio of stage III to stage II oocytes. The results of this study provide a reference for the regulation of temperature and photoperiod to control broodstock gonadal maturation and hormone-induced broodstock spawning.


Assuntos
Ciclídeos/sangue , Ciclídeos/fisiologia , Fotoperíodo , Temperatura , Animais , Aquicultura/métodos , Estradiol/sangue , Feminino , Oócitos/crescimento & desenvolvimento , Oogênese , Ovário/crescimento & desenvolvimento , Progesterona/sangue
2.
Fish Shellfish Immunol ; 92: 395-404, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31226419

RESUMO

Vitamin E plays an important role in maintaining normal metabolism and physiological functions in animals. The health of fish fingerlings directly affects the rate of disease incidence in adult fish, and healthy fingerlings ultimately result in better breeding outcomes for cultured fish. To date, no previous studies have focused on the effects vitamin E deficiency on tilapia at the fingerling stage. In this study, we investigated the effects of dietary vitamin E on the growth, fat metabolism, antioxidant capacity, and inflammatory response of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) fingerlings. Vitamin E at different concentrations (0, 20, 40, 80, 160, and 320 mg/kg) was added to the diet and GIFT were fed for 55 days. Then, the GIFT were intraperitoneally injected with Streptococcus iniae and tested for infection. Vitamin E deficiency decreased growth and increased the food conversion ratio of GIFT fingerlings. Vitamin E deficiency also reduced the white blood cell count, increased hematocrit and hemoglobin contents in the blood, increased serum aspartate aminotransferase and alanine aminotransferase activities, and increased liver stress (P < 0.05). Vitamin E deficiency inhibited fat metabolism, down-regulated the expression of genes encoding lipoprotein lipase and heart-type and liver-type fatty acid-binding proteins, and increased serum total protein and fat deposition. Vitamin E deficiency significantly decreased superoxide dismutase, glutathione peroxidase, and catalase activities, increased malondialdehyde content, and caused oxidative damage. Vitamin E deficiency also up-regulated the expression of genes encoding interleukin 1ß and tumor necrosis factor α in the head kidney, and stimulated a pro-inflammatory response. Overall, vitamin E deficiency inhibited growth, impaired fat metabolism, and disrupted the inflammatory response of GIFT fingerlings, whereas vitamin E supplementation in the diet reversed these negative effects. The diets with high concentrations of vitamin E (160-320 mg/kg) led to vitamin E accumulation in the fish tissues and rapid activation of the inflammatory response and antioxidant capacity in GIFT fingerlings exposed to S. iniae.


Assuntos
Antioxidantes/metabolismo , Ciclídeos/imunologia , Doenças dos Peixes/imunologia , Inflamação/imunologia , Metabolismo dos Lipídeos , Vitamina E/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Metabolismo dos Lipídeos/efeitos dos fármacos , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia , Vitamina E/administração & dosagem , Vitaminas/administração & dosagem , Vitaminas/metabolismo
3.
Fish Shellfish Immunol ; 63: 367-375, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28235637

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'-untranslated regions (3'-UTRs) of their target mRNAs. The miR-92 family is an important miRNA family, which was discovered to be related to regulation of tumor proliferation, apoptosis, invasion, and metastasis. Inhibition of miR-92d-3p was found previously in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to Streptococcus iniae infection. In this study, we found that miR-92d-3p regulated complement C3 mRNA levels by binding to its 3'-UTR by 3'-UTR luciferase reporter assay, and reduced miR-92d-3p expression resulted in increased C3 mRNA levels. We detected a negative relationship between the expression levels of miR-92d-3p and C3 in GIFT injected with miRNA antagomir. We performed in vivo functional analysis by miR-92d-3p silencing. Inhibition of miR-92d-3p levels in GIFT head kidney caused a significant increase in C3 expression, which consequently increased the white blood cell counts and interleukin-1ß, tumor necrosis factor-α, and interferon-γ mRNA levels, all of which may help to activate the inflammatory response in GIFT post-infection with S. iniae. Our findings indicate that miR-92d-3p regulated C3 levels by binding with the C3 mRNA 3'-UTR, and this interaction affected S. iniae infection induction and the immune response in GIFT. We concluded that miR-92d-3p plays an important role in modulating the inflammatory response in GIFT head kidney. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to S. iniae infection.


Assuntos
Ciclídeos , Complemento C3/genética , Doenças dos Peixes/genética , Proteínas de Peixes/genética , Inflamação/veterinária , MicroRNAs/genética , Infecções Estreptocócicas/veterinária , Animais , Ciclídeos/genética , Complemento C3/metabolismo , Doenças dos Peixes/imunologia , Doenças dos Peixes/microbiologia , Proteínas de Peixes/metabolismo , Regulação da Expressão Gênica , Imunidade Inata , Inflamação/genética , Inflamação/imunologia , Inflamação/microbiologia , MicroRNAs/metabolismo , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/microbiologia , Streptococcus iniae/fisiologia
4.
J Therm Biol ; 69: 191-198, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29037382

RESUMO

Darkbarbel catfish (Pelteobagrus vachellii) is an important freshwater fish in China. Water temperature greatly influences the absorption and utilization of dietary lipid by fish. Response values (including growth, hepatic fat deposition, and gene expression) for darkbarbel catfish mediated by two factors (water temperature 20-34°C; dietary lipid level 2-17%) were the focus of this study. The relationship between the two factors and the response values was evaluated by the response surface method using the central composite design. The experiment was conducted under laboratory conditions and lasted for seven weeks. A total of 975 experimental fish (average weight 11.75 ± 0.17g) were selected and placed in 39 plastic tanks. The results showed that the linear effects of lipid level on feed conversion rate (FCR), hepatopancreas somatic index (HSI), hepatic triglycerides (TG), cholesterol (TC), and lipoprotein lipase (LPL) gene expression were significant (P < 0.05). The linear effects of water temperature on specific growth rate (SGR), HSI, TC level, and LPL mRNA expression were significant (P < 0.05). The quadratic effects of water temperature and lipid level on SGR and FCR were significant (P < 0.05). Low water temperature and low lipid diets significantly inhibited growth, increased HSI, and reduced hepatic TG and TC levels, and LPL mRNA expression. The adjusted R2 values for the SGR, FCR, HSI, TC, TG, and LPL mRNA regression models were 0.77, 0.85, 0.62, 0.73, 0.85, and 0.91, respectively. The optimal combination of water temperature and dietary lipid level was 27.5°C and 9.2%, at which the greatest growth and FCR were 2.13%.d-1 and 1.31 respectively, with desirability of 0.904. These results indicated that water temperature may mediate the requirement and utilization of dietary lipid, and intervene in hepatic fat deposition. The results of this study can be used to help optimize the culture conditions of darkbarbel catfish.


Assuntos
Ração Animal , Peixes-Gato/crescimento & desenvolvimento , Gorduras na Dieta , Proteínas de Peixes/genética , Metabolismo dos Lipídeos , Lipase Lipoproteica/genética , Ração Animal/análise , Animais , Peixes-Gato/genética , Peixes-Gato/metabolismo , Gorduras na Dieta/análise , Gorduras/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Temperatura
5.
Front Physiol ; 11: 713, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655418

RESUMO

Selenium (Se) is an essential trace element for aquatic animals. The aquatic plant Potamogeton maackianus is an important natural food of Chinese mitten crab (Eriocheir sinensis). The aim of this study was to determine whether the antioxidant and immune responses of Chinese mitten crab are affected by including Se-cultured P. maackianus in the diet. Three groups of P. maackianus were cultured at levels of 0.02 mg/kg Se, 8.83 mg/kg Se, and 16.92 mg/kg Se, and the plants in these groups were used in experimental diets fed to crabs (dietary Se content of 0.05, 0.43, and 0.82 mg/kg, respectively). Compared with crabs in the 0.05 mg/kg group, those in the 0.82 mg/kg group showed significantly increased specific growth rate, protease and lipase activities, triglyceride and cholesterol contents, and Se content in the hepatopancreas and muscle (P < 0.05); increased activities of glutathione peroxidase, glutathione reductase, and catalase in the antioxidant system; increased transcript levels of MT (encoding metallothionein); and decreased malondialdehyde content (P < 0.05). At the end of the rearing experiment, the crabs in the different groups were exposed to copper (Cu2+) stress for 96 h. All the juvenile crabs in the 0.43 and 0.82 mg/kg groups survived 96 h of Cu2+ stress. Crabs in the 0.82 mg/kg group showed enhanced antioxidant responses under Cu2+ stress, increased transcript levels of MT and LYZ, and increased resistance. Therefore, supplementation of the diet of Chinese mitten crab with increased levels of Se-cultured P. maackianus can reduce oxidative stress under Cu2+ exposure, activate the immune response, and benefit growth.

6.
PLoS One ; 15(11): e0238897, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33180826

RESUMO

miR-92a miRNAs are immune molecules that regulate apoptosis (programmed cell death) during the immune response. Apoptosis helps to maintain the dynamic balance in tissues of fish under hypoxia stress. The aim of this study was to explore the role and potential mechanisms of miR-92a in the liver of tilapia under hypoxia stress. We first confirmed that CaSR (encoding a calcium-sensing receptor) is a target gene of miR-92a in genetically improved farmed tilapia (GIFT) using luciferase reporter gene assays. In GIFT under hypoxia stress, miR-92a was up-regulated and CaSR was down-regulated in a time-dependent manner. Knocked-down CaSR expression led to inhibited expression of p53, TP53INP1, and caspase-3/8, reduced the proportion of apoptotic hepatocytes, and decreased the activity of calcium ions induced by hypoxia in hepatocytes. GIFT injected in the tail vein with an miR-92a agomir showed up-regulation of miR-92a and down-regulation of CaSR, p53, TP53INP1, and caspase-3/8 genes in the liver, resulting in lower serum aspartate aminotransferase and alanine aminotransferase activities under hypoxia stress. These findings suggest that stimulation of miR-92a interferes with hypoxia-induced apoptosis in hepatocytes of GIFT by targeting CaSR, thereby alleviating liver damage. These results provide new insights into the adaptation mechanisms of GIFT to hypoxia stress.


Assuntos
Apoptose/genética , Ciclídeos/genética , Hipóxia/genética , MicroRNAs/genética , Transdução de Sinais/genética , Tilápia/genética , Proteína Supressora de Tumor p53/genética , Animais , Cálcio/metabolismo , Regulação para Baixo/genética , Hepatócitos/metabolismo , Fígado/metabolismo , Receptores de Detecção de Cálcio/genética , Regulação para Cima/genética
7.
Front Physiol ; 11: 670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612542

RESUMO

In fish under hypoxia stress, homeostasis can become imbalanced, leading to tissue and organ damage and decreased survival. Therefore, it is useful to explore the molecular and physiological regulation mechanisms that function in fish under hypoxia stress. The microRNA miR-34a is involved in fat and glycogen metabolism, and in apoptosis. In this study, we first verified that GLUT1, the gene encoding glucose transporter 1, is a potential target gene of miR-34a in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) by dual luciferase reporter assays. Then, we clarified the regulatory relationship between miR-34a and GLUT1 by qRT-PCR analyses. We analyzed the regulatory effects of knockdown or promotion of GLUT1 expression in vitro and in vivo in GIFT under hypoxia stress. The results confirm that GLUT1 is a target gene of miR-34a in GIFT. Down-regulation of miR-34a significantly promoted GLUT1 expression. Knockdown of GLUT1 reduced the glycogen content in GIFT liver cells, inhibited HIF-1a gene expression, up-regulated the expression of genes involved in P53 signaling pathways (P53 and CASPASE-3 genes), and accelerated hepatocyte apoptosis under hypoxia stress. Compared with the control group, the group injected in the tail vein with miR-34a antagomir showed up-regulated expression of GLUT1 in the liver, increased liver glycogen content at 96 h of hypoxia stress, down-regulated expression of P53 and CASPASE-3, and decreased serum aspartate aminotransferase and alanine aminotransferase enzyme activities. Our results provide information about the molecular regulation mechanism of miRNAs and their target genes in fish during the response to hypoxia stress.

8.
PLoS One ; 14(11): e0224995, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31714944

RESUMO

High-density aquaculture and nutritional imbalances may promote fatty liver in genetically improved farmed tilapia (GIFT, Oreochromis niloticus), thus reducing the gains achieved by breeding. In this study, apple peel powder (APP) was used as a feed additive for GIFT. A control group (fed on a diet without APP) and five groups fed on diets supplemented with APP (at 0.05%, 0.1%, 0.2%, 0.4%, or 0.8% of the diet, by weight) were established to investigate the effects of APP on GIFT growth performance and physiological parameters, and on gene expression as determined by transcriptomic analysis. Dietary supplementation with APP at 0.2% promoted GIFT growth, reduced total cholesterol and triacylglycerol levels in the serum and liver, and decreased alanine aminotransferase and aspartate aminotransferase activities in the serum. Gene expression profiles in the liver were compared among the control, 0.2% APP, and 0.8% APP groups, and differentially expressed genes among these groups were identified. Annotation analyses using tools at the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases showed that the differentially expressed genes were mainly involved in the regulation of immunity and fat metabolism. The results showed that excessive supplementation with APP in the diet significantly inhibited the expression of insulin-like growth factor 2 and liver-type fatty acid-binding protein, and stimulated the expression of fatty acid desaturase 2, heat shock protein 90 beta family member 1, and nuclear factor kappa B. This resulted in disordered lipid metabolism and increased pro-inflammatory reactions, which in turn caused liver damage. Therefore, APP has good potential as an environmentally friendly feed additive for GIFT at levels of 0.1%-0.2% in the diet, but excessive amounts can have adverse effects.


Assuntos
Suplementos Nutricionais , Fígado/metabolismo , Malus/química , Tilápia/genética , Tilápia/metabolismo , Ração Animal , Animais , Biomarcadores , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Ontologia Genética , Fígado/patologia , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Tilápia/sangue , Tilápia/crescimento & desenvolvimento
9.
Aquat Toxicol ; 182: 39-48, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27855320

RESUMO

MicroRNAs (miRNAs) are small, non-coding RNAs that regulate target gene expression by binding to the 3'untranslated region (3'UTR) of the target mRNA. MiRNAs regulate a large variety of genes, including those involved in liver homeostasis and energy metabolism. Down-regulated levels of hepatic miR-122 were found in genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to cadmium (Cd) stress. Here, we report for the first time that reduction of miR-122 post-transcriptionally increased metallothionein (MT) mRNA levels by binding to its 3'UTR, as shown by a 3' UTR luciferase reporter assay. The expression levels of miR-122 were negatively related to MT levels in GIFT under Cd stress. We performed in vivo functional analysis of miR-122 by injecting the fish with a miR-122 antagomir. Inhibition of miR-122 levels in GIFT liver caused a significant increase in MT expression, affected white blood cell and red blood cell counts, and serum alanine and aspartate aminotransferase activities, and glucose levels, all of which may help to relieve Cd stress-related liver stress. miR-122 silencing modulated oxidative stress and stimulated the activity of antioxidant enzymes. Our findings indicate that miR-122 regulated MT levels by binding to the 3'UTR of MT mRNA, and this interaction affected Cd stress induction and the resistance response in GIFT. We concluded that miR-122 plays an important role in regulating the stress response in GIFT liver. Our findings may contribute to understanding the mechanisms of miRNA-mediated gene regulation in tilapia in response to environmental stresses.


Assuntos
Cádmio/toxicidade , Ciclídeos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Metalotioneína/genética , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Ciclídeos/genética , Ciclídeos/metabolismo , Inativação Gênica , Fígado/metabolismo , Estresse Oxidativo/genética , Oxirredutases/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA