Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 40(6): 769-780, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30446733

RESUMO

Tissue factor (TF)-dependent coagulation contributes to lung inflammation and the pathogenesis of acute lung injury (ALI). In this study, we explored the roles of targeted endothelial anticoagulation in ALI using two strains of transgenic mice expressing either a membrane-tethered human tissue factor pathway inhibitor (hTFPI) or hirudin fusion protein on CD31+ cells, including vascular endothelial cells (ECs). ALI was induced by intratracheal injection of LPS, and after 24 h the expression of TF and protease-activated receptors (PARs) on EC in lungs were assessed, alongside the extent of inflammation and injury. The expression of TF and PARs on the EC in lungs was upregulated after ALI. In the two strains of transgenic mice, expression of either of hTFPI or hirudin by EC was associated with significant reduction of inflammation, as assessed by the extent of leukocyte infiltration or the levels of proinflammatory cytokines, and promoted survival after LPS-induced ALI. The beneficial outcomes were associated with inhibition of the expression of chemokine CCL2 in lung tissues. The protection observed in the CD31-TFPI-transgenic strain was abolished by injection of an anti-hTFPI antibody, but not by prior engraftment of the transgenic strains with WT bone marrow, confirming that the changes observed were a specific transgenic expression of anticoagulants by EC. These results demonstrate that the inflammation in ALI is TF and thrombin dependent, and that expression of anticoagulants by EC significantly inhibits the development of ALI via repression of leukocyte infiltration, most likely via inhibition of chemokine gradients. These data enhance our understanding of the pathology of ALI and suggest a novel therapeutic strategy for treatment.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Células Endoteliais/metabolismo , Hirudinas/metabolismo , Inflamação/metabolismo , Lipoproteínas/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Coagulação Sanguínea/fisiologia , Quimiocinas/metabolismo , Quimiotaxia de Leucócito/fisiologia , Hirudinas/genética , Humanos , Inflamação/induzido quimicamente , Sanguessugas/química , Lipopolissacarídeos , Lipoproteínas/genética , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Pseudomonas aeruginosa/química , Receptores Ativados por Proteinase/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Trombina/metabolismo , Tromboplastina/metabolismo
2.
J Allergy Clin Immunol ; 140(2): 418-430, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28043871

RESUMO

BACKGROUND: Asthmatic inflammation is dominated by accumulation of either eosinophils, neutrophils, or both in the airways. Disposal of these inflammatory cells is the key to disease control. Eosinophilic airway inflammation is responsive to corticosteroid treatment, whereas neutrophilic inflammation is resistant and increases the burden of global health care. Corticosteroid-resistant neutrophilic asthma remains mechanistically poorly understood and requires novel effective therapeutic strategies. OBJECTIVE: We sought to explore the underlying mechanisms of airway inflammation persistence, as well as corticosteroid resistance, and to investigate a new strategy of effective treatment against corticosteroid-insensitive neutrophilic asthma. METHODS: Mouse models of either eosinophil-dominated or neutrophil-dominated airway inflammation were used in this study to test corticosteroid sensitivity in vivo and in vitro. We also used vav-Bcl-2 transgenic mice to confirm the importance of granulocytes apoptosis in the clearance of airway inflammation. Finally, the Bcl-2 inhibitors ABT-737 or ABT-199 were tested for their therapeutic effects against eosinophilic or neutrophilic airway inflammation and airway hyperresponsiveness. RESULTS: Overexpression of Bcl-2 protein was found to be responsible for persistence of granulocytes in bronchoalveolar lavage fluid after allergic challenge. This was important because allergen-induced airway inflammation aggravated and persisted in vav-Bcl-2 transgenic mice, in which nucleated hematopoietic cells were overexpressed with Bcl-2 and resistant to apoptosis. The Bcl-2 inhibitors ABT-737 or ABT-199 play efficient roles in alleviation of either eosinophilic or corticosteroid-resistant neutrophilic airway inflammation by inducing apoptosis of immune cells, such as eosinophils, neutrophils, TH2 cells, TH17 cells, and dendritic cells. Moreover, these inhibitors were found to be more efficient than steroids to induce granulocyte apoptosis ex vivo from patients with severe asthma. CONCLUSION: Apoptosis of inflammatory cells is essential for clearance of allergen-induced airway inflammation. The Bcl-2 inhibitors ABT-737 or ABT-199 might be promising drugs for the treatment of airway inflammation, especially for corticosteroid-insensitive neutrophilic airway inflammation.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Compostos de Bifenilo/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Nitrofenóis/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Sulfonamidas/uso terapêutico , Corticosteroides/farmacologia , Corticosteroides/uso terapêutico , Alérgenos/imunologia , Compostos de Alúmen , Animais , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Asma/imunologia , Asma/metabolismo , Compostos de Bifenilo/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Líquido da Lavagem Broncoalveolar/citologia , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Resistência a Medicamentos/efeitos dos fármacos , Eosinófilos/efeitos dos fármacos , Eosinófilos/imunologia , Adjuvante de Freund/imunologia , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia , Nitrofenóis/farmacologia , Ovalbumina/imunologia , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sulfonamidas/farmacologia
3.
FEBS Open Bio ; 14(1): 127-137, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37964494

RESUMO

Sorafenib resistance greatly restricts its clinical application in patients with hepatocellular carcinoma (HCC). Numerous studies have reported that ID1 exerts a crucial effect in cancer initiation and development. Our previous research revealed an inhibitory role of ID1 in sorafenib resistance. However, the upstream regulatory mechanism of ID1 expression is unclear. Here, we discovered that ID1 expression is negatively correlated with promoter methylation, which is regulated by DNMT3B. Knockdown of DNMT3B significantly inhibited ID1 methylation status and resulted in an increase of ID1 expression. The demethylating agent 5-aza-2'-deoxycytidine (5-aza) remarkably upregulated ID1 expression. The combination of 5-aza with sorafenib showed a synergistic effect on the inhibition of cell viability.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Azacitidina/farmacologia , Metilação , Proteína 1 Inibidora de Diferenciação/genética , Proteína 1 Inibidora de Diferenciação/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA