Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Annu Rev Neurosci ; 40: 149-166, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28772100

RESUMO

The tragedy of epilepsy emerges from the combination of its high prevalence, impact upon sufferers and their families, and unpredictability. Childhood epilepsies are frequently severe, presenting in infancy with pharmaco-resistant seizures; are often accompanied by debilitating neuropsychiatric and systemic comorbidities; and carry a grave risk of mortality. Here, we review the most current basic science and translational research findings on several of the most catastrophic forms of pediatric epilepsy. We focus largely on genetic epilepsies and the research that is discovering the mechanisms linking disease genes to epilepsy syndromes. We also describe the strides made toward developing novel pharmacological and interventional treatment strategies to treat these disorders. The research reviewed provides hope for a complete understanding of, and eventual cure for, these childhood epilepsy syndromes.


Assuntos
Encéfalo/fisiopatologia , Epilepsia/diagnóstico , Plasticidade Neuronal/fisiologia , Convulsões/diagnóstico , Criança , Epilepsia/fisiopatologia , Humanos , Convulsões/fisiopatologia
2.
J Neurosci ; 41(14): 3105-3119, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33637558

RESUMO

Interneurons contribute to the complexity of neural circuits and maintenance of normal brain function. Rodent interneurons originate in embryonic ganglionic eminences, but developmental origins in other species are less understood. Here, we show that transcription factor expression patterns in porcine embryonic subpallium are similar to rodents, delineating a distinct medial ganglionic eminence (MGE) progenitor domain. On the basis of Nkx2.1, Lhx6, and Dlx2 expression, in vitro differentiation into neurons expressing GABA, and robust migratory capacity in explant assays, we propose that cortical and hippocampal interneurons originate from a porcine MGE region. Following xenotransplantation into adult male and female rat hippocampus, we further demonstrate that porcine MGE progenitors, like those from rodents, migrate and differentiate into morphologically distinct interneurons expressing GABA. Our findings reveal that basic rules for interneuron development are conserved across species, and that porcine embryonic MGE progenitors could serve as a valuable source for interneuron-based xenotransplantation therapies.SIGNIFICANCE STATEMENT Here we demonstrate that porcine medial ganglionic eminence, like rodents, exhibit a distinct transcriptional and interneuron-specific antibody profile, in vitro migratory capacity and are amenable to xenotransplantation. This is the first comprehensive examination of embryonic interneuron origins in the pig; and because a rich neurodevelopmental literature on embryonic mouse medial ganglionic eminence exists (with some additional characterizations in other species, e.g., monkey and human), our work allows direct neurodevelopmental comparisons with this literature.


Assuntos
Gânglios/embriologia , Gânglios/transplante , Interneurônios/transplante , Eminência Mediana/embriologia , Eminência Mediana/transplante , Transplante Heterólogo/métodos , Animais , Feminino , Gânglios/citologia , Masculino , Eminência Mediana/citologia , Ratos , Ratos Sprague-Dawley , Suínos , Técnicas de Cultura de Tecidos/métodos
3.
Hum Mol Genet ; 26(18): 3630-3638, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28911203

RESUMO

Mutations in FOXC1 and PITX2 constitute the most common causes of ocular anterior segment dysgenesis (ASD), and confer a high risk for secondary glaucoma. The genetic causes underlying ASD in approximately half of patients remain unknown, despite many of them being screened by whole exome sequencing. Here, we performed whole genome sequencing on DNA from two affected individuals from a family with dominantly inherited ASD and glaucoma to identify a 748-kb deletion in a gene desert that contains conserved putative PITX2 regulatory elements. We used CRISPR/Cas9 to delete the orthologous region in zebrafish in order to test the pathogenicity of this structural variant. Deletion in zebrafish reduced pitx2 expression during development and resulted in shallow anterior chambers. We screened additional patients for copy number variation of the putative regulatory elements and found an overlapping deletion in a second family and in a potentially-ancestrally-related index patient with ASD and glaucoma. These data suggest that mutations affecting conserved non-coding elements of PITX2 may constitute an important class of mutations in patients with ASD for whom the molecular cause of their disease have not yet been identified. Improved functional annotation of the human genome and transition to sequencing of patient genomes instead of exomes will be required before the magnitude of this class of mutations is fully understood.


Assuntos
Anormalidades do Olho/genética , Glaucoma/genética , Proteínas de Homeodomínio/genética , Fatores de Transcrição/genética , Animais , Segmento Anterior do Olho/metabolismo , Sequência Conservada , Variações do Número de Cópias de DNA , Modelos Animais de Doenças , Anormalidades do Olho/metabolismo , Deleção de Genes , Glaucoma/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Íntrons , Músculos , Mutação , Linhagem , Deleção de Sequência , Fatores de Transcrição/metabolismo , Peixe-Zebra/genética , Proteína Homeobox PITX2
4.
Cereb Cortex ; 28(11): 3797-3815, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028947

RESUMO

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/biossíntese , Animais , Córtex Cerebral/citologia , Feminino , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Interneurônios/citologia , Masculino , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
5.
Ann Neurol ; 82(4): 530-542, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28833459

RESUMO

OBJECTIVE: A significant proportion of the more than 50 million people worldwide currently suffering with epilepsy are resistant to antiepileptic drugs (AEDs). As an alternative to AEDs, novel therapies based on cell transplantation offer an opportunity for long-lasting modification of epileptic circuits. To develop such a treatment requires careful preclinical studies in a chronic epilepsy model featuring unprovoked seizures, hippocampal histopathology, and behavioral comorbidities. METHODS: Transplantation of progenitor cells from embryonic medial or caudal ganglionic eminence (MGE, CGE) were made in a well-characterized mouse model of status epilepticus-induced epilepsy (systemic pilocarpine). Behavioral testing (handling and open field), continuous video-electroencephalographic (vEEG) monitoring, and slice electrophysiology outcomes were obtained up to 270 days after transplantation (DAT). Post-hoc immunohistochemistry was used to confirm cell identity. RESULTS: MGE progenitors transplanted into the hippocampus of epileptic mice rescued handling and open field deficits starting at 60 DAT. In these same mice, an 84% to 88% reduction in seizure activity was observed between 180 and 210 DAT. Inhibitory postsynaptic current frequency, measured on pyramidal neurons in acute hippocampal slices at 270 DAT, was reduced in epileptic mice but restored to naïve levels in epileptic mice receiving MGE transplants. No reduction in seizure activity was observed in epileptic mice receiving intrahippocampal CGE progenitors. INTERPRETATION: Our findings demonstrate that transplanted MGE progenitors enhance functional GABA-mediated inhibition, reduce spontaneous seizure frequency, and rescue behavioral deficits in a chronic epileptic animal model more than 6 months after treatment. Ann Neurol 2017;82:530-542.


Assuntos
Epilepsia/cirurgia , Transplante de Células-Tronco/métodos , Ácido gama-Aminobutírico/metabolismo , Animais , Diferenciação Celular , Convulsivantes/toxicidade , Modelos Animais de Doenças , Embrião de Mamíferos , Epilepsia/induzido quimicamente , Comportamento Exploratório/fisiologia , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/efeitos dos fármacos , Interneurônios/fisiologia , Masculino , Eminência Mediana/citologia , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Pilocarpina/toxicidade , Escopolamina/toxicidade , Células-Tronco/metabolismo , Fator Nuclear 1 de Tireoide , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
6.
Brain ; 140(3): 669-683, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28073790

RESUMO

Dravet syndrome is a catastrophic childhood epilepsy with early-onset seizures, delayed language and motor development, sleep disturbances, anxiety-like behaviour, severe cognitive deficit and an increased risk of fatality. It is primarily caused by de novo mutations of the SCN1A gene encoding a neuronal voltage-activated sodium channel. Zebrafish with a mutation in the SCN1A homologue recapitulate spontaneous seizure activity and mimic the convulsive behavioural movements observed in Dravet syndrome. Here, we show that phenotypic screening of drug libraries in zebrafish scn1 mutants rapidly and successfully identifies new therapeutics. We demonstrate that clemizole binds to serotonin receptors and its antiepileptic activity can be mimicked by drugs acting on serotonin signalling pathways e.g. trazodone and lorcaserin. Coincident with these zebrafish findings, we treated five medically intractable Dravet syndrome patients with a clinically-approved serotonin receptor agonist (lorcaserin, Belviq®) and observed some promising results in terms of reductions in seizure frequency and/or severity. Our findings demonstrate a rapid path from preclinical discovery in zebrafish, through target identification, to potential clinical treatments for Dravet syndrome.


Assuntos
Anticonvulsivantes/uso terapêutico , Benzimidazóis/uso terapêutico , Epilepsias Mioclônicas/tratamento farmacológico , Convulsões/tratamento farmacológico , Serotonina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adolescente , Animais , Animais Geneticamente Modificados , Anticonvulsivantes/farmacologia , Benzazepinas/farmacologia , Benzazepinas/uso terapêutico , Benzimidazóis/farmacologia , Criança , Modelos Animais de Doenças , Epilepsias Mioclônicas/complicações , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/metabolismo , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Larva , Masculino , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/genética , Receptores de Serotonina/metabolismo , Convulsões/etiologia , Transdução de Sinais/genética , Resultado do Tratamento , Peixe-Zebra
7.
Nature ; 491(7422): 109-13, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23041929

RESUMO

Cortical inhibitory circuits are formed by γ-aminobutyric acid (GABA)-secreting interneurons, a cell population that originates far from the cerebral cortex in the embryonic ventral forebrain. Given their distant developmental origins, it is intriguing how the number of cortical interneurons is ultimately determined. One possibility, suggested by the neurotrophic hypothesis, is that cortical interneurons are overproduced, and then after their migration into cortex the excess interneurons are eliminated through a competition for extrinsically derived trophic signals. Here we characterize the developmental cell death of mouse cortical interneurons in vivo, in vitro and after transplantation. We found that 40% of developing cortical interneurons were eliminated through Bax (Bcl-2-associated X)-dependent apoptosis during postnatal life. When cultured in vitro or transplanted into the cortex, interneuron precursors died at a cellular age similar to that at which endogenous interneurons died during normal development. Over transplant sizes that varied 200-fold, a constant fraction of the transplanted population underwent cell death. The death of transplanted neurons was not affected by the cell-autonomous disruption of TrkB (tropomyosin kinase receptor B), the main neurotrophin receptor expressed by neurons of the central nervous system. Transplantation expanded the cortical interneuron population by up to 35%, but the frequency of inhibitory synaptic events did not scale with the number of transplanted interneurons. Taken together, our findings indicate that interneuron cell death is determined intrinsically, either cell-autonomously or through a population-autonomous competition for survival signals derived from other interneurons.


Assuntos
Apoptose , Interneurônios/citologia , Neocórtex/citologia , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Contagem de Células , Sobrevivência Celular , Senescência Celular/fisiologia , Feminino , Potenciais Pós-Sinápticos Inibidores , Interneurônios/metabolismo , Interneurônios/transplante , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neocórtex/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/transplante , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Células Piramidais/citologia , Células Piramidais/metabolismo , Proteína X Associada a bcl-2/deficiência , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(1): 492-7, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24344303

RESUMO

Chronic changes in excitability and activity can induce homeostatic plasticity. These perturbations may be associated with neurological disorders, particularly those involving loss or dysfunction of GABA interneurons. In distal-less homeobox 1 (Dlx1(-/-)) mice with late-onset interneuron loss and reduced inhibition, we observed both excitatory synaptic silencing and decreased intrinsic neuronal excitability. These homeostatic changes do not fully restore normal circuit function, because synaptic silencing results in enhanced potential for long-term potentiation and abnormal gamma oscillations. Transplanting medial ganglionic eminence interneuron progenitors to introduce new GABAergic interneurons, we demonstrate restoration of hippocampal function. Specifically, miniature excitatory postsynaptic currents, input resistance, hippocampal long-term potentiation, and gamma oscillations are all normalized. Thus, in vivo homeostatic plasticity is a highly dynamic and bidirectional process that responds to changes in inhibition.


Assuntos
Proteínas de Homeodomínio/genética , Interneurônios/patologia , Células-Tronco Neurais/transplante , Plasticidade Neuronal , Fatores de Transcrição/genética , Animais , Morte Celular , Transplante de Células , Eletrofisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Neurônios GABAérgicos/metabolismo , Inativação Gênica , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/metabolismo , Homeostase , Imuno-Histoquímica , Interneurônios/metabolismo , Potenciação de Longa Duração , Masculino , Camundongos , Neurônios/metabolismo , Oscilometria , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
9.
J Neurophysiol ; 116(2): 472-8, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226453

RESUMO

Interneuron-based cell transplantation is a powerful method to modify network function in a variety of neurological disorders, including epilepsy. Whether new interneurons integrate into native neural networks in a subtype-specific manner is not well understood, and the therapeutic mechanisms underlying interneuron-based cell therapy, including the role of synaptic inhibition, are debated. In this study, we tested subtype-specific integration of transplanted interneurons using acute cortical brain slices and visualized patch-clamp recordings to measure excitatory synaptic inputs, intrinsic properties, and inhibitory synaptic outputs. Fluorescently labeled progenitor cells from the embryonic medial ganglionic eminence (MGE) were used for transplantation. At 5 wk after transplantation, MGE-derived parvalbumin-positive (PV+) interneurons received excitatory synaptic inputs, exhibited mature interneuron firing properties, and made functional synaptic inhibitory connections to native pyramidal cells that were comparable to those of native PV+ interneurons. These findings demonstrate that MGE-derived PV+ interneurons functionally integrate into subtype-appropriate physiological niches within host networks following transplantation.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/cirurgia , Interneurônios/transplante , Transplante de Células-Tronco , Fatores Etários , Animais , Animais Recém-Nascidos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Eminência Mediana/citologia , Camundongos , Camundongos Transgênicos , Parvalbuminas/metabolismo , Técnicas de Patch-Clamp
10.
J Neurosci ; 34(36): 12168-81, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25186760

RESUMO

During brain development, neural progenitor cells proliferate and differentiate into neural precursors. These neural precursors migrate along the radial glial processes and localize at their final destination in the cortex. Numerous reports have revealed that 14-3-3 proteins are involved in many neuronal activities, although their functions in neurogenesis remain unclear. Here, using 14-3-3ε/ζ double knock-out mice, we found that 14-3-3 proteins are important for proliferation and differentiation of neural progenitor cells in the cortex, resulting in neuronal migration defects and seizures. 14-3-3 deficiency resulted in the increase of δ-catenin and the decrease of ß-catenin and αN-catenin. 14-3-3 proteins regulated neuronal differentiation into neurons via direct interactions with phosphorylated δ-catenin to promote F-actin formation through a catenin/Rho GTPase/Limk1/cofilin signaling pathway. Conversely, neuronal migration defects seen in the double knock-out mice were restored by phosphomimic Ndel1 mutants, but not δ-catenin. Our findings provide new evidence that 14-3-3 proteins play important roles in neurogenesis and neuronal migration via the regulation of distinct signaling cascades.


Assuntos
Proteínas 14-3-3/metabolismo , Córtex Cerebral/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese , Proteínas 14-3-3/genética , Actinas/metabolismo , Animais , Cateninas/metabolismo , Movimento Celular , Proliferação de Células , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Ligação Proteica
11.
Hum Mol Genet ; 21(8): 1744-59, 2012 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-22210625

RESUMO

Lowe syndrome, which is characterized by defects in the central nervous system, eyes and kidneys, is caused by mutation of the phosphoinositide 5-phosphatase OCRL1. The mechanisms by which loss of OCRL1 leads to the phenotypic manifestations of Lowe syndrome are currently unclear, in part, owing to the lack of an animal model that recapitulates the disease phenotype. Here, we describe a zebrafish model for Lowe syndrome using stable and transient suppression of OCRL1 expression. Deficiency of OCRL1, which is enriched in the brain, leads to neurological defects similar to those reported in Lowe syndrome patients, namely increased susceptibility to heat-induced seizures and cystic brain lesions. In OCRL1-deficient embryos, Akt signalling is reduced and there is both increased apoptosis and reduced proliferation, most strikingly in the neural tissue. Rescue experiments indicate that catalytic activity and binding to the vesicle coat protein clathrin are essential for OCRL1 function in these processes. Our results indicate a novel role for OCRL1 in neural development, and support a model whereby dysregulation of phosphoinositide metabolism and clathrin-mediated membrane traffic leads to the neurological symptoms of Lowe syndrome.


Assuntos
Encéfalo/embriologia , Modelos Animais de Doenças , Síndrome Oculocerebrorrenal , Monoéster Fosfórico Hidrolases/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra , Animais , Encéfalo/patologia , Sobrevivência Celular , Clatrina/metabolismo , Embrião não Mamífero , Desenvolvimento Embrionário , Endossomos/metabolismo , Perfilação da Expressão Gênica , Complexo de Golgi/metabolismo , Temperatura Alta , Fosfatidilinositol 4,5-Difosfato/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Processamento de Proteína , Proteínas Proto-Oncogênicas c-akt/metabolismo , Convulsões/fisiopatologia , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/metabolismo
12.
Adv Exp Med Biol ; 813: 283-94, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25012385

RESUMO

Despite the development of numerous novel antiepileptic drugs (AEDs) in recent years, several unmet clinical needs remain, including resistance to AEDs in about 30 % of patients with epilepsy, adverse effects of AEDs that can reduce quality of life, and the lack of treatments that can prevent development of epilepsy in patients at risk. Animal models of seizures and epilepsy have been instrumental in the discovery and preclinical development of novel AEDs, but obviously the previously used models have failed to identify drugs that address unmet medical needs. Thus, we urgently need fresh ideas for improving preclinical AED development. In this review, a number of promising models will be described, including the use of simple vertebrates such as zebrafish (Danio rerio), large animal models such as the dog and newly characterized rodent models of pharmacoresistant epilepsy. While these strategies, like any animal model approach also have their limitations, they offer hope that new more effective AEDs will be identified in the coming years.


Assuntos
Anticonvulsivantes/uso terapêutico , Epilepsia/tratamento farmacológico , Modelos Biológicos , Animais , Cães , Descoberta de Drogas , Humanos , Roedores , Peixe-Zebra
13.
Sci Rep ; 14(1): 3610, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351191

RESUMO

Interneuron progenitor transplantation can ameliorate disease symptoms in a variety of neurological disorders. The strategy is based on transplantation of embryonic medial ganglionic eminence (MGE) progenitors. Elucidating how host brain environment influences the integration of interneuron progenitors is critical for optimizing this strategy across different disease states. Here, we systematically evaluated the influence of age and brain region on survival, migration, and differentiation of transplant-derived cells. We find that early postnatal MGE transplantation yields superior survival and more extensive migratory capabilities compared to transplantation during the juvenile or adult stages. MGE progenitors migrate more widely in the cortex compared to the hippocampus. Maturation to interneuron subtypes is regulated by age and brain region. MGE progenitors transplanted into the dentate gyrus sub-region of the early postnatal hippocampus can differentiate into astrocytes. Our results suggest that the host brain environment critically regulates survival, spatial distribution, and maturation of MGE-derived interneurons following transplantation. These findings inform and enable optimal conditions for interneuron transplant therapies.


Assuntos
Encéfalo , Eminência Ganglionar , Córtex Cerebral , Hipocampo , Interneurônios/fisiologia , Eminência Mediana
14.
Brain Commun ; 6(3): fcae135, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707709

RESUMO

Dravet syndrome is a severe genetic epilepsy primarily caused by de novo mutations in a voltage-activated sodium channel gene (SCN1A). Patients face life-threatening seizures that are largely resistant to available anti-seizure medications. Preclinical Dravet syndrome animal models are a valuable tool to identify candidate anti-seizure medications for these patients. Among these, scn1lab mutant zebrafish, exhibiting spontaneous seizure-like activity, are particularly amenable to large-scale drug screening. Thus far, we have screened more than 3000 drug candidates in scn1lab zebrafish mutants, identifying valproate, stiripentol, and fenfluramine e.g. Food and Drug Administration-approved drugs, with clinical application in the Dravet syndrome population. Successful phenotypic screening in scn1lab mutant zebrafish is rigorous and consists of two stages: (i) a locomotion-based assay measuring high-velocity convulsive swim behaviour and (ii) an electrophysiology-based assay, using in vivo local field potential recordings, to quantify electrographic seizure-like events. Historically, nearly 90% of drug candidates fail during translation from preclinical models to the clinic. With such a high failure rate, it becomes necessary to address issues of replication and false positive identification. Leveraging our scn1lab zebrafish assays is one approach to address these problems. Here, we curated a list of nine anti-seizure drug candidates recently identified by other groups using preclinical Dravet syndrome models: 1-Ethyl-2-benzimidazolinone, AA43279, chlorzoxazone, donepezil, lisuride, mifepristone, pargyline, soticlestat and vorinostat. First-stage locomotion-based assays in scn1lab mutant zebrafish identified only 1-Ethyl-2-benzimidazolinone, chlorzoxazone and lisuride. However, second-stage local field potential recording assays did not show significant suppression of spontaneous electrographic seizure activity for any of the nine anti-seizure drug candidates. Surprisingly, soticlestat induced frank electrographic seizure-like discharges in wild-type control zebrafish. Taken together, our results failed to replicate clear anti-seizure efficacy for these drug candidates highlighting a necessity for strict scientific standards in preclinical identification of anti-seizure medications.

15.
J Neurosci ; 32(37): 12862-75, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22973010

RESUMO

Type I lissencephaly, a neuronal migration disorder characterized by cognitive disability and refractory epilepsy, is often caused by heterozygous mutations in the LIS1 gene. Histopathologies of malformation-associated epilepsies have been well described, but it remains unclear whether hyperexcitability is attributable to disruptions in neuronal organization or abnormal circuit function. Here, we examined the effect of LIS1 deficiency on excitatory synaptic function in the dentate gyrus of hippocampus, a region believed to serve critical roles in seizure generation and learning and memory. Mice with heterozygous deletion of LIS1 exhibited robust granule cell layer dispersion, and adult-born granule cells labeled with enhanced green fluorescent protein were abnormally positioned in the molecular layer, hilus, and granule cell layer. In whole-cell patch-clamp recordings, reduced LIS1 function was associated with greater excitatory synaptic input to mature granule cells that was consistent with enhanced release probability at glutamatergic synapses. Adult-born granule cells that were ectopically positioned in the molecular layer displayed a more rapid functional maturation and integration into the synaptic network compared with newborn granule cells located in the hilus or granule cell layer or in wild-type controls. In a conditional knock-out mouse, induced LIS1 deficiency in adulthood also enhanced the excitatory input to granule cells in the absence of neuronal disorganization. These findings indicate that disruption of LIS1 has direct effects on excitatory synaptic transmission independent of laminar disorganization, and the ectopic position of adult-born granule cells within a malformed dentate gyrus critically influences their functional maturation and integration.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Envelhecimento , Núcleos Cerebelares/fisiopatologia , Lissencefalias Clássicas e Heterotopias Subcorticais em Banda/fisiopatologia , Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios , Sinapses , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/genética , Transmissão Sináptica
16.
J Neurophysiol ; 109(2): 429-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23100132

RESUMO

LIS1 gene mutations lead to a rare neurological disorder, classical lissencephaly, characterized by brain malformations, mental retardation, seizures, and premature death. Mice heterozygous for Lis1 (Lis1(+/-)) exhibit cortical malformations, defects in neuronal migration, increased glutamate-mediated synaptic transmission, and spontaneous electrographic seizures. Recent work demonstrated that in utero treatment of Lis1(+/-) mutant dams with ALLN, a calpain inhibitor, partially rescues neuronal migration defects in the offspring. Given the challenges of in utero drug administration, we examined the therapeutic potential of ALLN on postnatal lissencephalic cells. Voltage- and current-clamp studies were performed with acute hippocampal slices obtained from Lis1 mutant mice and age-matched littermate control mice. Specifically, we determined whether postnatal ALLN treatment can reverse excitatory synaptic transmission deficits, namely, an increase in spontaneous and miniature excitatory postsynaptic current (EPSC) frequency, on CA1 pyramidal neurons observed in tissue slices from Lis1(+/-) mice. We found that acute application of ALLN restored spontaneous and miniature EPSC frequencies to wild-type levels without affecting inhibitory postsynaptic synaptic current. Furthermore, Western blot analysis of protein expression, including proteins involved in excitatory synaptic transmission, demonstrated that ALLN blocks the cleavage of the calpain substrate αII-spectrin but does not rescue Lis1 protein levels in Lis1(+/-) mutants.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Inibidores de Cisteína Proteinase/uso terapêutico , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Leupeptinas/uso terapêutico , Lisencefalia/tratamento farmacológico , Proteínas Associadas aos Microtúbulos/genética , Animais , Calpaína/antagonistas & inibidores , Calpaína/metabolismo , Expressão Gênica , Heterozigoto , Lisencefalia/genética , Lisencefalia/fisiopatologia , Camundongos , Camundongos Mutantes , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Mutação , Proteólise , Células Piramidais/metabolismo , Células Piramidais/fisiopatologia , Espectrina/metabolismo
18.
Ann Neurol ; 72(2): 175-83, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22926851

RESUMO

OBJECTIVE: Myoclonus is characterized by sudden, brief involuntary movements, and its presence is debilitating. We identified a family suffering from adult onset, cortical myoclonus without associated seizures. We performed clinical, electrophysiological, and genetic studies to define this phenotype. METHODS: A large, 4-generation family with a history of myoclonus underwent careful questioning, examination, and electrophysiological testing. Thirty-five family members donated blood samples for genetic analysis, which included single nucleotide polymorphism mapping, microsatellite linkage, targeted massively parallel sequencing, and Sanger sequencing. In silico and in vitro experiments were performed to investigate functional significance of the mutation. RESULTS: We identified 11 members of a Canadian Mennonite family suffering from adult onset, slowly progressive, disabling, multifocal myoclonus. Somatosensory evoked potentials indicated a cortical origin of the myoclonus. There were no associated seizures. Some severely affected individuals developed signs of progressive cerebellar ataxia of variable severity late in the course of their illness. The phenotype was inherited in an autosomal dominant fashion. We demonstrated linkage to chromosome 16q21-22.1. We then sequenced all coding sequence in the critical region, identifying only a single cosegregating, novel, nonsynonymous mutation, which resides in the gene NOL3. Furthermore, this mutation was found to alter post-translational modification of NOL3 protein in vitro. INTERPRETATION: We propose that familial cortical myoclonus is a novel movement disorder that may be caused by mutation in NOL3. Further investigation of the role of NOL3 in neuronal physiology may shed light on neuronal membrane hyperexcitability and pathophysiology of myoclonus and related disorders.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Saúde da Família , Predisposição Genética para Doença/genética , Proteínas Musculares/genética , Mutação/genética , Mioclonia/genética , Adolescente , Adulto , Idade de Início , Animais , Canadá , Linhagem Celular Transformada , Mapeamento Cromossômico , Cromossomos Humanos Par 16 , Eletroencefalografia , Feminino , Ácido Glutâmico/genética , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mioclonia/diagnóstico , Fenótipo , Prolina/genética , Transfecção
19.
Front Neurosci ; 17: 1177678, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123353

RESUMO

Impairment of development, migration, or function of inhibitory interneurons are key features of numerous circuit-based neurological disorders, such as epilepsy. From a therapeutic perspective, symptomatic treatment of these disorders often relies upon drugs or deep brain stimulation approaches to provide a general enhancement of GABA-mediated inhibition. A more effective strategy to target these pathological circuits and potentially provide true disease-modifying therapy, would be to selectively add new inhibitory interneurons into these circuits. One such strategy, using embryonic medial ganglionic (MGE) progenitor cells as a source of a unique sub-population of interneurons, has already proven effective as a cell transplantation therapy in a variety of preclinical models of neurological disorders, especially in mouse models of acquired epilepsy. Here we will discuss the evolution of this interneuron-based transplantation therapy in acquired epilepsy models, with an emphasis on the recent adaptation of MGE progenitor cells for xenotransplantation into larger mammals.

20.
Proc Natl Acad Sci U S A ; 106(36): 15472-7, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706400

RESUMO

Epilepsy, a disease characterized by abnormal brain activity, is a disabling and potentially life-threatening condition for nearly 1% of the world population. Unfortunately, modulation of brain excitability using available antiepileptic drugs can have serious side effects, especially in the developing brain, and some patients can only be improved by surgical removal of brain regions containing the seizure focus. Here, we show that bilateral transplantation of precursor cells from the embryonic medial ganglionic eminence (MGE) into early postnatal neocortex generates mature GABAergic interneurons in the host brain. In mice receiving MGE cell grafts, GABA-mediated synaptic and extrasynaptic inhibition onto host brain pyramidal neurons is significantly increased. Bilateral MGE cell grafts in epileptic mice lacking a Shaker-like potassium channel (a gene mutated in one form of human epilepsy) resulted in significant reductions in the duration and frequency of spontaneous electrographic seizures. Our findings suggest that MGE-derived interneurons could be used to ameliorate abnormal excitability and possibly act as an effective strategy in the treatment of epilepsy.


Assuntos
Epilepsia/cirurgia , Interneurônios/citologia , Canal de Potássio Kv1.1/genética , Transplante de Células-Tronco Mesenquimais/métodos , Animais , Eletroencefalografia , Eletrofisiologia , Epilepsia/prevenção & controle , Imuno-Histoquímica , Interneurônios/transplante , Camundongos , Camundongos Mutantes , Microscopia Eletrônica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA