Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
J Infect Dis ; 216(suppl_4): S566-S574, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28934455

RESUMO

Background: Neuraminidase (NA) inhibitors are the recommended antiviral medications for influenza treatment. However, their therapeutic efficacy can be compromised by NA changes that emerge naturally and/or following antiviral treatment. Knowledge of which molecular changes confer drug resistance of influenza A(H7N9) viruses (group 2NA) remains sparse. Methods: Fourteen amino acid substitutions were introduced into the NA of A/Shanghai/2/2013(H7N9). Recombinant N9 (recN9) proteins were expressed in a baculovirus system in insect cells and tested using the Centers for Disease Control and Prevention standardized NA inhibition (NI) assay with oseltamivir, zanamivir, peramivir, and laninamivir. The wild-type N9 crystal structure was determined in complex with oseltamivir, zanamivir, or sialic acid, and structural analysis was performed. Results: All substitutions conferred either reduced or highly reduced inhibition by at least 1 NA inhibitor; half of them caused reduced inhibition or highly reduced inhibition by all NA inhibitors. R292K conferred the highest increase in oseltamivir half-maximal inhibitory concentration (IC50), and E119D conferred the highest zanamivir IC50. Unlike N2 (another group 2NA), H274Y conferred highly reduced inhibition by oseltamivir. Additionally, R152K, a naturally occurring variation at the NA catalytic residue of A(H7N9) viruses, conferred reduced inhibition by laninamivir. Conclusions: The recNA method is a valuable tool for assessing the effect of NA changes on drug susceptibility of emerging influenza viruses.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral Múltipla/genética , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Ácidos Carbocíclicos , Ciclopentanos/farmacologia , Bases de Dados Genéticas , Inibidores Enzimáticos/farmacologia , Guanidinas/farmacologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Influenza Humana/tratamento farmacológico , Concentração Inibidora 50 , Neuraminidase/genética , Oseltamivir/farmacologia , Conformação Proteica , Piranos , Proteínas Recombinantes/genética , Ácidos Siálicos , Proteínas Virais/genética , Zanamivir/análogos & derivados , Zanamivir/farmacologia
2.
Emerg Infect Dis ; 23(4): 686-690, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28322707

RESUMO

In February 2016, three influenza B/Victoria/2/87 lineage viruses exhibiting 4- to 158-fold reduced inhibition by neuraminidase inhibitors were detected in Laos. These viruses had an H134N substitution in the neuraminidase and replicated efficiently in vitro and in ferrets. Current antiviral drugs may be ineffective in controlling infections caused by viruses harboring this mutation.


Assuntos
Antivirais/farmacologia , Farmacorresistência Viral/genética , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/epidemiologia , Influenza Humana/virologia , Neuraminidase/genética , Adolescente , Adulto , Idoso , Substituição de Aminoácidos , Criança , Pré-Escolar , Feminino , Regulação Enzimológica da Expressão Gênica , Regulação Viral da Expressão Gênica , Humanos , Lactente , Vírus da Influenza B/genética , Laos/epidemiologia , Masculino , Pessoa de Meia-Idade , Adulto Jovem
3.
J Clin Microbiol ; 55(1): 145-154, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27795346

RESUMO

The rapid evolution of influenza A(H3N2) viruses necessitates close monitoring of their antigenic properties so the emergence and spread of antigenic drift variants can be rapidly identified. Changes in hemagglutinin (HA) acquired by contemporary A(H3N2) viruses hinder antigenic characterization by traditional methods, thus complicating vaccine strain selection. Sequence-based approaches have been used to infer virus antigenicity; however, they are time consuming and mid-throughput. To facilitate virological surveillance and epidemiological studies, we developed and validated a pyrosequencing approach that enables identification of six HA clades of contemporary A(H3N2) viruses. The identification scheme of viruses of the H3 clades 3C.2, 3C.2a, 3C.2b, 3C.3, 3C.3a, and 3C.3b is based on the interrogation of five single nucleotide polymorphisms (SNPs) within three neighboring HA regions, namely 412 to 431, 465 to 481, and 559 to 571. Two bioinformatics tools, IdentiFire (Qiagen) and FireComb (developed in-house), were utilized to expedite pyrosequencing data analysis. The assay's analytical sensitivity was 10 focus forming units, and respiratory specimens with threshold cycle (CT) values of <34 typically produced good quality pyrograms. When applied to 120 A(H3N2) virus isolates and 27 respiratory specimens, the assay displayed 100% agreement with clades determined by HA sequencing coupled with phylogenetics. The multi-SNP analysis described here was readily adopted by another laboratory with pyrosequencing capabilities. The implementation of this approach enhanced the findings from virological surveillance and epidemiological studies between 2013 and 2016, which examined more than 3,000 A(H3N2) viruses.


Assuntos
Deriva Genética , Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/genética , Influenza Humana/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade
4.
Antimicrob Agents Chemother ; 60(4): 2118-31, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26787699

RESUMO

Most cases of severe influenza are associated with pulmonary complications, such as acute respiratory distress syndrome (ARDS), and no antiviral drugs of proven value for treating such complications are currently available. The use of monoclonal antibodies targeting the stem of the influenza virus surface hemagglutinin (HA) is a rapidly developing strategy for the control of viruses of multiple HA subtypes. However, the mechanisms of action of these antibodies are not fully understood, and their ability to mitigate severe complications of influenza has been poorly studied. We evaluated the effect of treatment with VIS410, a human monoclonal antibody targeting the HA stem region, on the development of ARDS in BALB/c mice after infection with influenza A(H7N9) viruses. Prophylactic administration of VIS410 resulted in the complete protection of mice against lethal A(H7N9) virus challenge. A single therapeutic dose of VIS410 given 24 h after virus inoculation resulted in dose-dependent protection of up to 100% of mice inoculated with neuraminidase inhibitor-susceptible or -resistant A(H7N9) viruses. Compared to the outcomes in mock-treated controls, a single administration of VIS410 improved viral clearance from the lungs, reduced virus spread in lungs in a dose-dependent manner, resulting in a lower lung injury score, reduced the extent of the alteration in lung vascular permeability and protein accumulation in bronchoalveolar lavage fluid, and improved lung physiologic function. Thus, antibodies targeting the HA stem can reduce the severity of ARDS and show promise as agents for controlling pulmonary complications in influenza.


Assuntos
Anticorpos Monoclonais/farmacologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Subtipo H7N9 do Vírus da Influenza A/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Síndrome do Desconforto Respiratório/prevenção & controle , Animais , Líquido da Lavagem Broncoalveolar/virologia , Permeabilidade Capilar/efeitos dos fármacos , Modelos Animais de Doenças , Cães , Relação Dose-Resposta a Droga , Relação Dose-Resposta Imunológica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Subtipo H7N9 do Vírus da Influenza A/crescimento & desenvolvimento , Pulmão/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Neutralização , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/mortalidade , Infecções por Orthomyxoviridae/virologia , Síndrome do Desconforto Respiratório/etiologia , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/virologia , Análise de Sobrevida , Carga Viral/efeitos dos fármacos
5.
Antimicrob Agents Chemother ; 59(3): 1495-504, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25534734

RESUMO

Compounds that target the cellular factors essential for influenza virus replication represent an innovative approach to antiviral therapy. Sp2CBMTD is a genetically engineered multivalent protein that masks sialic acid-containing cellular receptors on the respiratory epithelium, which are recognized by influenza viruses. Here, we evaluated the antiviral potential of Sp2CBMTD against lethal infection in mice with an emerging A/Anhui/1/2013 (H7N9) influenza virus and addressed the mechanistic basis of its activity in vivo. Sp2CBMTD was administered to mice intranasally as a single or repeated dose (0.1, 1, 10, or 100 µg) before (day -7, -3, and/or -1) or after (6 or 24 h) H7N9 virus inoculation. A single Sp2CBMTD dose (10 or 100 µg) protected 80% to 100% of the mice when administered 7 days before the H7N9 lethal challenge. Repeated Sp2CBMTD administration conferred the highest protection, resulting in 100% survival of the mice even at the lowest dose tested (0.1 µg). When treatment began 24 h after exposure to the H7N9 virus, a single administration of 100 µg of Sp2CBMTD protected 40% of the mice from death. The administration of Sp2CBMTD induced the pulmonary expression of proinflammatory mediators (interleukin-6 [IL-6], IL-1ß, RANTES, monocyte chemotactic protein-1 [MCP-1], macrophage inflammatory protein-1α [MIP-1α], and inducible protein [IP-10]) and recruited neutrophils to the respiratory tract before H7N9 virus infection, which resulted in less pronounced inflammation and rapid virus clearance from mouse lungs. Sp2CBMTD administration did not affect the virus-specific adaptive immune response, which was sufficient to protect against reinfection with a higher dose of homologous H7N9 virus or heterologous H5N1 virus. Thus, Sp2CBMTD was effective in preventing H7N9 infections in a lethal mouse model and holds promise as a prophylaxis option against zoonotic influenza viruses.


Assuntos
Antivirais/uso terapêutico , Proteínas de Transporte/uso terapêutico , Subtipo H7N9 do Vírus da Influenza A , Infecções por Orthomyxoviridae/tratamento farmacológico , Receptores de Superfície Celular/fisiologia , Ácidos Siálicos/metabolismo , Animais , Quimiocinas/biossíntese , Citocinas/biossíntese , Feminino , Pulmão/imunologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae/imunologia , Replicação Viral
6.
J Virol ; 88(12): 6714-28, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696469

RESUMO

UNLABELLED: Viruses modulate cellular signaling pathways at almost every step of the infection cycle. Cellular signaling pathways activated at later times of influenza infection have previously been investigated; however, early influenza virus-host cell interactions remain understudied. Focal adhesion kinase (FAK) is a cytoplasmic tyrosine kinase that regulates phosphatidylinositol 3-kinase (PI3K) activation and actin reorganization, two critical processes during influenza A virus (IAV) infection in most cell types. Using 6 influenza A virus strains (A/Puerto Rico/8/1934, A/Aichi/2/1968 × A/Puerto Rico/8/1934 reassortant [X-31], A/California/04/2009, mouse-adapted A/California/04/2009, A/WSN/1933, and A/New Caledonia/20/1999), we examined the role of FAK during IAV entry. We found that influenza virus attachment induced PI3K-dependent FAK-Y397 phosphorylation. Pharmacological FAK inhibition or expression of a kinase-dead mutant of FAK led to disruption of the actin meshwork that resulted in sequestration of IAV at the cell periphery and reduced virion localization to early endosomes. Additionally, FAK inhibition impeded viral RNA replication at later times of infection and ultimately resulted in significantly reduced viral titers in both A549 and differentiated normal human bronchial epithelial (NHBE) cells. Although not all tested strains activated FAK, all of them exhibited a reduction in viral replication in response to inhibition of FAK signaling. These findings highlight novel biphasic roles of FAK activation during IAV infection and indicate that FAK serves as a central link between receptor-mediated PI3K activation and actin reorganization during IAV infection. IMPORTANCE: We found that FAK links early activation of PI3K and actin reorganization, thereby regulating influenza virus entry. Surprisingly, we also found that FAK can regulate viral RNA replication independently of its role in entry. Our study addresses a knowledge gap in the understanding of signaling events triggered by influenza virus that mediate its internalization and initiation of the infection cycle. Understanding of these fundamental molecular events will be necessary to identify novel host targets, such as FAK, and development of future anti-influenza virus therapeutics.


Assuntos
Citoplasma/enzimologia , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Vírus da Influenza A/fisiologia , Influenza Humana/enzimologia , Internalização do Vírus , Replicação Viral , Animais , Linhagem Celular , Citoplasma/genética , Citoplasma/virologia , Proteína-Tirosina Quinases de Adesão Focal/genética , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/virologia , Camundongos
7.
J Virol ; 88(2): 1175-88, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24227848

RESUMO

H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.


Assuntos
Reservatórios de Doenças/virologia , Vírus da Influenza A Subtipo H2N2/patogenicidade , Influenza Aviária/virologia , Influenza Humana/virologia , Animais , Animais Selvagens/virologia , Aves , Linhagem Celular , Furões , Humanos , Vírus da Influenza A Subtipo H2N2/genética , Vírus da Influenza A Subtipo H2N2/isolamento & purificação , Vírus da Influenza A Subtipo H2N2/fisiologia , Camundongos , Camundongos Endogâmicos DBA , Medição de Risco , Suínos , Replicação Viral
8.
J Infect Dis ; 209(9): 1343-53, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24133191

RESUMO

BACKGROUND: High mortality and uncertainty about the effectiveness of neuraminidase inhibitors (NAIs) in humans infected with influenza A(H7N9) viruses are public health concerns. METHODS: Susceptibility of N9 viruses to NAIs was determined in a fluorescence-based assay. The NAI oseltamivir (5, 20, or 80 mg/kg/day) was administered to BALB/c mice twice daily starting 24, 48, or 72 hours after A/Anhui/1/2013 (H7N9) virus challenge. RESULTS: All 12 avian N9 and 3 human H7N9 influenza viruses tested were susceptible to NAIs. Without prior adaptation, A/Anhui/1/2013 (H7N9) caused lethal infection in mice that was restricted to the respiratory tract and resulted in pulmonary edema and acute lung injury with hyaline membrane formation, leading to decreased oxygenation, all characteristics of human acute respiratory distress syndrome. Oseltamivir at 20 and 80 mg/kg protected 80% and 88% of mice when initiated after 24 hours, and the efficacy decreased to 70% and 60%, respectively, when treatment was delayed by 48 hours. Emergence of oseltamivir-resistant variants was not detected. CONCLUSIONS: H7N9 viruses are comparable to currently circulating influenza A viruses in susceptibility to NAIs. Based on these animal studies, early treatment is associated with improved outcomes.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Oseltamivir/farmacologia , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/virologia , Lesão Pulmonar Aguda/virologia , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Farmacorresistência Viral , Feminino , Pulmão/patologia , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/antagonistas & inibidores , Replicação Viral/efeitos dos fármacos
9.
Antimicrob Agents Chemother ; 58(5): 2718-30, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24566185

RESUMO

Influenza B viruses cause annual outbreaks of respiratory illness in humans and are increasingly recognized as a major cause of influenza-associated pediatric mortality. Neuraminidase (NA) inhibitors (NAIs) are the only available therapy for patients infected with influenza B viruses, and the potential emergence of NAI-resistant viruses is a public health concern. The NA substitutions located within the enzyme active site could not only reduce NAI susceptibility of influenza B virus but also affect virus fitness. In this study, we investigated the effect of single NA substitutions on the fitness of influenza B/Yamanashi/166/1998 viruses (Yamagata lineage). We generated recombinant viruses containing either wild-type (WT) NA or NA with a substitution in the catalytic (R371K) or framework (E119A, D198E, D198Y, I222T, H274Y, and N294S) residues. We assessed NAI susceptibility, NA biochemical properties, NA protein expression, and virus replication in vitro and in differentiated normal human bronchial epithelial (NHBE) cells. Our results showed that four NA substitutions (D198E, I222T, H274Y, and N294S) conferred reduced inhibition by oseltamivir and three (E119A, D198Y, and R371K) conferred highly reduced inhibition by oseltamivir, zanamivir, and peramivir. All NA substitutions, except for D198Y and R371K, were genetically stable after seven passages in MDCK cells. Cell surface NA protein expression was significantly increased by H274Y and N294S substitutions. Viruses with the E119A, I222T, H274Y, or N294S substitution were not attenuated in replication efficiency in vitro or in NHBE cells. Overall, viruses with the E119A or H274Y NA substitution possess fitness comparable to NAI-susceptible virus, and the acquisition of these substitutions by influenza B viruses should be closely monitored.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/enzimologia , Neuraminidase/genética , Animais , Linhagem Celular , Células Cultivadas , Cães , Farmacorresistência Viral/genética , Estrutura Secundária de Proteína , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
10.
J Virol ; 87(6): 3578-82, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23283950

RESUMO

The rarely identified influenza A viruses of the H15 hemagglutinin subtype have been isolated exclusively in Australia. Here we report the isolation of an H15N4 influenza A virus (A/teal/Chany/7119/2008) in Western Siberia, Russia. Phylogenetic analysis demonstrated that the internal genes of the A/teal/Chany/7119/2008 strain belong to the Eurasian clade and that the H15 and N4 genes were introduced into the gene pool of circulating endemic avian influenza viruses through reassortment events.


Assuntos
Vírus da Influenza A/isolamento & purificação , Influenza Aviária/virologia , Sequência de Aminoácidos , Animais , Anseriformes , Análise por Conglomerados , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Sibéria
11.
J Virol ; 87(7): 3741-51, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23325689

RESUMO

Several novel anti-influenza compounds are in various phases of clinical development. One of these, T-705 (favipiravir), has a mechanism of action that is not fully understood but is suggested to target influenza virus RNA-dependent RNA polymerase. We investigated the mechanism of T-705 activity against influenza A (H1N1) viruses by applying selective drug pressure over multiple sequential passages in MDCK cells. We found that T-705 treatment did not select specific mutations in potential target proteins, including PB1, PB2, PA, and NP. Phenotypic assays based on cell viability confirmed that no T-705-resistant variants were selected. In the presence of T-705, titers of infectious virus decreased significantly (P < 0.0001) during serial passage in MDCK cells inoculated with seasonal influenza A (H1N1) viruses at a low multiplicity of infection (MOI; 0.0001 PFU/cell) or with 2009 pandemic H1N1 viruses at a high MOI (10 PFU/cell). There was no corresponding decrease in the number of viral RNA copies; therefore, specific virus infectivity (the ratio of infectious virus yield to viral RNA copy number) was reduced. Sequence analysis showed enrichment of G→A and C→T transversion mutations, increased mutation frequency, and a shift of the nucleotide profiles of individual NP gene clones under drug selection pressure. Our results demonstrate that T-705 induces a high rate of mutation that generates a nonviable viral phenotype and that lethal mutagenesis is a key antiviral mechanism of T-705. Our findings also explain the broad spectrum of activity of T-705 against viruses of multiple families.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Mutagênese/efeitos dos fármacos , Infecções por Orthomyxoviridae/tratamento farmacológico , Pirazinas/farmacologia , Análise de Variância , Animais , Cães , Descoberta de Drogas/métodos , Técnicas In Vitro , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Madin Darby de Rim Canino , Mutagênese/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
12.
J Virol ; 87(17): 9911-22, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23824818

RESUMO

Influenza virus entry is mediated by the acidic-pH-induced activation of hemagglutinin (HA) protein. Here, we investigated how a decrease in the HA activation pH (an increase in acid stability) influences the properties of highly pathogenic H5N1 influenza virus in mammalian hosts. We generated isogenic A/Vietnam/1203/2004 (H5N1) (VN1203) viruses containing either wild-type HA protein (activation pH 6.0) or an HA2-K58I point mutation (K to I at position 58) (activation pH 5.5). The VN1203-HA2-K58I virus had replication kinetics similar to those of wild-type VN1203 in MDCK and normal human bronchial epithelial cells and yet had reduced growth in human alveolar A549 cells, which were found to have a higher endosomal pH than MDCK cells. Wild-type and HA2-K58I viruses promoted similar levels of morbidity and mortality in C57BL/6J mice and ferrets, and neither virus transmitted efficiently to naive contact cage-mate ferrets. The acid-stabilizing HA2-K58I mutation, which diminishes H5N1 replication and transmission in ducks, increased the virus load in the ferret nasal cavity early during infection while simultaneously reducing the virus load in the lungs. Overall, a single, acid-stabilizing mutation was found to enhance the growth of an H5N1 influenza virus in the mammalian upper respiratory tract, and yet it was insufficient to enable contact transmission in ferrets in the absence of additional mutations that confer α(2,6) receptor binding specificity and remove a critical N-linked glycosylation site. The information provided here on the contribution of HA acid stability to H5N1 influenza virus fitness and transmissibility in mammals in the background of a non-laboratory-adapted virus provides essential information for the surveillance and assessment of the pandemic potential of currently circulating H5N1 viruses.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/fisiologia , Virus da Influenza A Subtipo H5N1/fisiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Infecções por Orthomyxoviridae/transmissão , Substituição de Aminoácidos , Animais , Linhagem Celular , Cães , Furões , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Especificidade de Hospedeiro/genética , Humanos , Concentração de Íons de Hidrogênio , Virus da Influenza A Subtipo H5N1/genética , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Estabilidade Proteica , Sistema Respiratório/virologia , Virulência/genética , Internalização do Vírus
14.
J Clin Microbiol ; 49(1): 125-30, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21084523

RESUMO

Neuraminidase inhibitors are agents used against influenza viruses; however, the emergence of drug-resistant strains is a major concern. Recently, the prevalence of oseltamivir-resistant seasonal influenza A (H1N1) virus increased globally and the emergence of oseltamivir-resistant pandemic influenza A (H1N1) 2009 viruses was reported. In this study, we developed a cycling probe real-time PCR method for the detection of oseltamivir-resistant seasonal influenza A (H1N1) and pandemic influenza A (H1N1) 2009 viruses. We designed two sets of primers and probes that were labeled with 6-carboxyfluorescein or 6-carboxy-X-rhodamine to identify single nucleotide polymorphisms (SNPs) that correspond to a histidine and a tyrosine at position 275 in the neuraminidase protein, respectively. These SNPs confer susceptibility and resistance to oseltamivir, respectively. In the 2007-2008 season, the prevalence of oseltamivir-resistant H1N1 viruses was 0% (0/72), but in the 2008-2009 season, it increased to 100% (282/282). In the 2009-2010 season, all of the pandemic influenza A (H1N1) 2009 viruses were susceptible to oseltamivir (0/73, 0%). This method is sensitive and specific for the screening of oseltamivir-resistant influenza A (H1N1) viruses. This method is applicable to routine laboratory-based monitoring of drug resistance and patient management during antiviral therapy.


Assuntos
Substituição de Aminoácidos/genética , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Influenza Humana/virologia , Tipagem Molecular/métodos , Neuraminidase/genética , Oseltamivir/farmacologia , Proteínas Virais/genética , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Testes de Sensibilidade Microbiana/métodos , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade
16.
J Clin Microbiol ; 48(4): 1085-92, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20129961

RESUMO

The emergence and widespread occurrence of antiviral drug-resistant seasonal human influenza A viruses, especially oseltamivir-resistant A/H1N1 virus, are major concerns. To understand the genetic background of antiviral drug-resistant A/H1N1 viruses, we performed full genome sequencing of prepandemic A/H1N1 strains. Seasonal influenza A/H1N1 viruses, including antiviral-susceptible viruses, amantadine-resistant viruses, and oseltamivir-resistant viruses, obtained from several areas in Japan during the 2007-2008 and 2008-2009 influenza seasons were analyzed. Sequencing of the full genomes of these viruses was performed, and the phylogenetic relationships among the sequences of each individual genome segment were inferred. Reference genome sequences from the Influenza Virus Resource database were included to determine the closest ancestor for each segment. Phylogenetic analysis revealed that the oseltamivir-resistant strain evolved from a reassortant oseltamivir-susceptible strain (clade 2B) which circulated in the 2007-2008 season by acquiring the H275Y resistance-conferring mutation in the NA gene. The oseltamivir-resistant lineage (corresponding to the Northern European resistant lineage) represented 100% of the H1N1 isolates from the 2008-2009 season and further acquired at least one mutation in each of the polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), hemagglutinin (HA), and neuraminidase (NA) genes. Therefore, a reassortment event involving two distinct oseltamivir-susceptible lineages, followed by the H275Y substitution in the NA gene and other mutations elsewhere in the genome, contributed to the emergence of the oseltamivir-resistant lineage. In contrast, amantadine-resistant viruses from the 2007-2008 season distinctly clustered in clade 2C and were characterized by extensive amino acid substitutions across their genomes, suggesting that a fitness gap among its genetic components might have driven these mutations to maintain it in the population.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Influenza Humana/virologia , Oseltamivir/farmacologia , Substituição de Aminoácidos/genética , Análise por Conglomerados , Genoma Viral , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Japão , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência , Proteínas Virais/genética
17.
J Med Virol ; 82(7): 1224-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20513088

RESUMO

The emergence of antiviral drug-resistant strains of the influenza virus in addition to the rapid spread of the recent pandemic A(H1N1) 2009 virus highlight the importance of surveillance of influenza in identifying new variants as they appear. In this study, genetic characteristics and antiviral susceptibility patterns of influenza samples collected in Lebanon during the 2008-09 season were investigated. Forty influenza virus samples were isolated from 89 nasopharyngeal swabs obtained from patients with influenza-like illness. Of these samples, 33 (82.5%) were A(H3N2), 3 (7.5%) were A(H1N1), and 4 (10%) were B. All the H3N2 viruses were resistant to amantadine but were sensitive to oseltamivir and zanamivir; while all the H1N1 viruses were resistant to oseltamivir (possessed H275Y mutation, N1 numbering, in their NA) but were sensitive to amantadine and zanamivir. In the case of influenza B, both Victoria and Yamagata lineages were identified (three and one isolates each, respectively) and they showed decreased susceptibility to oseltamivir and zanamivir when compared to influenza A viruses. Influenza circulation patterns in Lebanon were very similar to those in Europe during the same season. Continued surveillance is important to fully elucidate influenza patterns in Lebanon and the Middle East in general, especially in light of the current influenza pandemic.


Assuntos
Amantadina/farmacologia , Antivirais/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Influenza Humana/epidemiologia , Oseltamivir/farmacologia , Zanamivir/farmacologia , Animais , Linhagem Celular , Pré-Escolar , Cães , Farmacorresistência Viral , Monitoramento Ambiental , Monitoramento Epidemiológico , Feminino , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Influenza Humana/virologia , Líbano/epidemiologia , Masculino , Testes de Sensibilidade Microbiana , Filogenia , Estações do Ano
18.
Intervirology ; 52(6): 310-20, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19776616

RESUMO

OBJECTIVES: To perform genetic analysis of influenza A and B viruses in Myanmar from 2005 to 2007 and to determine the prevalence of amantadine-resistant influenza A viruses. METHODS: Phylogenies of the HA and NA genes were analyzed and mutations in M2 that confer resistance to amantadine were screened. RESULTS: Influenza in Myanmar exhibited seasonality, which coincided during the rainy season from June to August. Out of 2,618 samples, 76 influenza A and 132 influenza B viruses were isolated. Phylogenetic analysis showed that in 2005, 11 A/H1N1 isolates formed one cluster with A/Solomon Islands/3/2006 and were amantadine-sensitive strains. One A/H3N2 isolate was amantadine-resistant harboring S31N mutation in M2 and possessing S193F and D225N substitutions in HA (clade N), similar to A/Wisconsin/67/2005. No viruses were isolated in 2006 due to sample storage failure. In 2007, all 64 A/H3N2 isolates were amantadine-resistant and similar to A/Brisbane/10/2007. For influenza B, 3 Yamagata-lineage and 17 Victoria-lineage isolates were detected in 2005 and 112 Victoria-lineage viruses were isolated in 2007. All Victoria-lineage isolates were reassortants possessing NA derived from the Yamagata lineage. CONCLUSION: Continuous surveillance in tropical countries is important for elucidating the seasonality of influenza and determining the molecular characteristics of circulating strains.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza B/genética , Influenza Humana/epidemiologia , Amantadina/farmacologia , Antivirais/farmacologia , Farmacorresistência Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza B/efeitos dos fármacos , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Dados de Sequência Molecular , Mianmar/epidemiologia , Neuraminidase/genética , Filogenia , RNA Viral/análise , RNA Viral/genética , Estações do Ano , Análise de Sequência de RNA
19.
Sci Rep ; 6: 36216, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796371

RESUMO

Since the emergence of human H3N2 influenza A viruses in the pandemic of 1968, these viruses have become established as strains of moderate severity. A decline in virulence has been accompanied by glycan accumulation on the hemagglutinin globular head, and hemagglutinin receptor binding has changed from recognition of a broad spectrum of glycan receptors to a narrower spectrum. The relationship between increased glycosylation, binding changes, and reduction in H3N2 virulence is not clear. We evaluated the effect of hemagglutinin glycosylation on receptor binding and virulence of engineered H3N2 viruses. We demonstrate that low-binding virus is as virulent as higher binding counterparts, suggesting that H3N2 infection does not require either recognition of a wide variety of, or high avidity binding to, receptors. Among the few glycans recognized with low-binding virus, there were two structures that were bound by the vast majority of H3N2 viruses isolated between 1968 and 2012. We suggest that these two structures support physiologically relevant binding of H3N2 hemagglutinin and that this physiologically relevant binding has not changed since the 1968 pandemic. Therefore binding changes did not contribute to reduced severity of seasonal H3N2 viruses. This work will help direct the search for factors enhancing influenza virulence.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H3N2 , Ligação Viral , Células A549 , Animais , Chlorocebus aethiops , Cães , Glicosilação , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A Subtipo H3N2/patogenicidade , Células Madin Darby de Rim Canino , Células Vero
20.
Antiviral Res ; 117: 10-9, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25701593

RESUMO

Antiviral drug susceptibility is one of the evaluation criteria of pandemic potential posed by an influenza virus. Influenza A viruses of swine (IAV-S) can play an important role in generating novel variants, yet limited information is available on the drug resistance profiles of IAV-S circulating in the U.S. Phenotypic analysis of the IAV-S isolated in the U.S. (2009-2011) (n=105) revealed normal inhibition by the neuraminidase (NA) inhibitors (NAIs) oseltamivir, zanamivir, and peramivir. Screening NA sequences from IAV-S collected in the U.S. (1930-2014) showed 0.03% (1/3396) sequences with clinically relevant H274Y-NA substitution. Phenotypic analysis of IAV-S isolated in the U.S. (2009-2011) confirmed amantadine resistance caused by the S31N-M2 and revealed an intermediate level of resistance caused by the I27T-M2. The majority (96.7%, 589/609) of IAV-S with the I27T-M2 in the influenza database were isolated from pigs in the U.S. The frequency of amantadine-resistant markers among IAV-S in the U.S. was high (71%), and their distribution was M-lineage dependent. All IAV-S of the Eurasian avian M lineage were amantadine-resistant and possessed either a single S31N-M2 substitution (78%, 585/747) or its combination with the V27A-M2 (22%, 162/747). The I27T-M2 substitution accounted for 43% (429/993) of amantadine resistance in classic swine M lineage. Phylogenetic analysis showed that both S31N-M2 and I27T-M2 emerged stochastically but appeared to be fixed in the U.S. IAV-S population. This study defines a drug-susceptibility profile, identifies the frequency of drug-resistant markers, and establishes a phylogenetic approach for continued antiviral-susceptibility monitoring of IAV-S in the U.S.


Assuntos
Adamantano/farmacologia , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Neuraminidase/antagonistas & inibidores , Infecções por Orthomyxoviridae/veterinária , Oseltamivir/farmacologia , Doenças dos Suínos/virologia , Ácidos Carbocíclicos , Substituição de Aminoácidos , Animais , Sequência de Bases , Ciclopentanos/farmacologia , Cães , Farmacorresistência Viral/genética , Inibidores Enzimáticos/farmacologia , Genótipo , Guanidinas/farmacologia , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N2/genética , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A/genética , Células Madin Darby de Rim Canino , Mutação de Sentido Incorreto , Infecções por Orthomyxoviridae/tratamento farmacológico , Infecções por Orthomyxoviridae/virologia , Fenótipo , Filogenia , Suínos , Fatores de Tempo , Estados Unidos , Proteínas Virais/genética , Zanamivir/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA