RESUMO
We used genome-wide sequencing methods to study stimulus-dependent enhancer function in mouse cortical neurons. We identified approximately 12,000 neuronal activity-regulated enhancers that are bound by the general transcriptional co-activator CBP in an activity-dependent manner. A function of CBP at enhancers may be to recruit RNA polymerase II (RNAPII), as we also observed activity-regulated RNAPII binding to thousands of enhancers. Notably, RNAPII at enhancers transcribes bi-directionally a novel class of enhancer RNAs (eRNAs) within enhancer domains defined by the presence of histone H3 monomethylated at lysine 4. The level of eRNA expression at neuronal enhancers positively correlates with the level of messenger RNA synthesis at nearby genes, suggesting that eRNA synthesis occurs specifically at enhancers that are actively engaged in promoting mRNA synthesis. These findings reveal that a widespread mechanism of enhancer activation involves RNAPII binding and eRNA synthesis.
Assuntos
Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Neurônios/metabolismo , Transcrição Gênica/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína de Ligação a CREB/metabolismo , Sequência Consenso/genética , Proteínas do Citoesqueleto/genética , Genes Reporter , Genes fos/genética , Histonas/metabolismo , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , RNA Polimerase II/metabolismo , RNA não Traduzido/biossíntese , RNA não Traduzido/genéticaRESUMO
All eukaryotic cells alter their transcriptional program in response to the sugar glucose. In Saccharomyces cerevisiae, the best-studied downstream effector of this response is the glucose-regulated repressor Mig1. We show here that nuclear pore complexes also contribute to glucose-regulated gene expression. NPCs participate in glucose-responsive repression by physically interacting with Mig1 and mediating its function independently of nucleocytoplasmic transport. Surprisingly, despite its abundant presence in the nucleus of glucose-grown nup120Δ or nup133Δ cells, Mig1 has lost its ability to interact with target promoters. The glucose repression defect in the absence of these nuclear pore components therefore appears to result from the failure of Mig1 to access its consensus recognition sites in genomic DNA. We propose that the NPC contributes to both repression and activation at the level of transcription.