RESUMO
Gentle remediation options (GROs) are risk management strategies or technologies involving plant (phyto-), fungi (myco-), and/or bacteria-based methods that result in a net gain (or at least no gross reduction) in soil function as well as effective risk management. GRO strategies can be customised along contaminant linkages, and can generate a range of wider economic, environmental and societal benefits in contaminated land management (and in brownfields management more widely). The application of GROs as practical on-site remedial solutions is still limited however, particularly in Europe and at trace element (typically metal and metalloid) contaminated sites. This paper discusses challenges to the practical adoption of GROs in contaminated land management, and outlines the decision support tools and best practice guidance developed in the European Commission FP7-funded GREENLAND project aimed at overcoming these challenges. The GREENLAND guidance promotes a refocus from phytoremediation to wider GROs- or phyto-management based approaches which place realisation of wider benefits at the core of site design, and where gentle remediation technologies can be applied as part of integrated, mixed, site risk management solutions or as part of "holding strategies" for vacant sites. The combination of GROs with renewables, both in terms of biomass generation but also with green technologies such as wind and solar power, can provide a range of economic and other benefits and can potentially support the return of low-level contaminated sites to productive usage, while combining GROs with urban design and landscape architecture, and integrating GRO strategies with sustainable urban drainage systems and community gardens/parkland (particularly for health and leisure benefits), has large potential for triggering GRO application and in realising wider benefits in urban and suburban systems. Quantifying these wider benefits and value (above standard economic returns) will be important in leveraging funding for GRO application and soft site end-use more widely at vacant or underutilized sites.
Assuntos
Biodegradação Ambiental , Poluição Ambiental , Técnicas de Apoio para a Decisão , Europa (Continente) , Metais Pesados/análise , Plantas , Gestão de Riscos/métodos , Microbiologia do Solo , Poluentes do Solo/análise , Oligoelementos/análiseRESUMO
Gentle Remediation Options (GRO) are risk management strategies or techniques for contaminated sites that result in no gross reduction in soil functionality (or a net gain) as well as risk management. Intelligently applied GROs can provide: (a) rapid risk management via pathway control, through containment and stabilisation, coupled with a longer term removal or immobilisation/isolation of the contaminant source term; and (b) a range of additional economic (e.g. biomass generation), social (e.g. leisure and recreation) and environmental (e.g. CO2 sequestration) benefits. In order for these benefits to be optimised or indeed realised, effective stakeholder engagement is required. This paper reviews current sector practice in stakeholder engagement and its importance when implementing GRO and other remediation options. From this, knowledge gaps are identified, and strategies to promote more effective stakeholder engagement during GRO application are outlined. Further work is required on integrating stakeholder engagement strategies into decision support systems and tools for GRO (to raise the profile of the benefits of effective stakeholder engagement and participation, particularly with sector professionals), and developing criteria for the identification of different stakeholder profiles/categories. Demonstrator sites can make a significant contribution to stakeholder engagement via providing evidence on the effectiveness of GRO under varying site contexts and conditions. Effective and sustained engagement strategies however will be required to ensure that site risk is effectively managed over the longer-term, and that full potential benefits of GRO (e.g. CO2 sequestration, economic returns from biomass generation and "leverage" of marginal land, amenity and educational value, ecosystem services) are realised and communicated to stakeholders.