Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Am J Hum Genet ; 110(11): 1919-1937, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37827158

RESUMO

Misregulation of histone lysine methylation is associated with several human cancers and with human developmental disorders. DOT1L is an evolutionarily conserved gene encoding a lysine methyltransferase (KMT) that methylates histone 3 lysine-79 (H3K79) and was not previously associated with a Mendelian disease in OMIM. We have identified nine unrelated individuals with seven different de novo heterozygous missense variants in DOT1L through the Undiagnosed Disease Network (UDN), the SickKids Complex Care genomics project, and GeneMatcher. All probands had some degree of global developmental delay/intellectual disability, and most had one or more major congenital anomalies. To assess the pathogenicity of the DOT1L variants, functional studies were performed in Drosophila and human cells. The fruit fly DOT1L ortholog, grappa, is expressed in most cells including neurons in the central nervous system. The identified DOT1L variants behave as gain-of-function alleles in flies and lead to increased H3K79 methylation levels in flies and human cells. Our results show that human DOT1L and fly grappa are required for proper development and that de novo heterozygous variants in DOT1L are associated with a Mendelian disease.


Assuntos
Anormalidades Congênitas , Deficiências do Desenvolvimento , Histona-Lisina N-Metiltransferase , Humanos , Mutação com Ganho de Função , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Histonas/metabolismo , Lisina , Metilação , Metiltransferases/genética , Neoplasias/genética , Drosophila/genética , Proteínas de Drosophila/genética , Deficiências do Desenvolvimento/genética , Anormalidades Congênitas/genética
2.
Hum Mol Genet ; 31(17): 2934-2950, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-35405010

RESUMO

DROSHA encodes a ribonuclease that is a subunit of the Microprocessor complex and is involved in the first step of microRNA (miRNA) biogenesis. To date, DROSHA has not yet been associated with a Mendelian disease. Here, we describe two individuals with profound intellectual disability, epilepsy, white matter atrophy, microcephaly and dysmorphic features, who carry damaging de novo heterozygous variants in DROSHA. DROSHA is constrained for missense variants and moderately intolerant to loss-of-function (o/e = 0.24). The loss of the fruit fly ortholog drosha causes developmental arrest and death in third instar larvae, a severe reduction in brain size and loss of imaginal discs in the larva. Loss of drosha in eye clones causes small and rough eyes in adult flies. One of the identified DROSHA variants (p.Asp1219Gly) behaves as a strong loss-of-function allele in flies, while another variant (p.Arg1342Trp) is less damaging in our assays. In worms, a knock-in that mimics the p.Asp1219Gly variant at a worm equivalent residue causes loss of miRNA expression and heterochronicity, a phenotype characteristic of the loss of miRNA. Together, our data show that the DROSHA variants found in the individuals presented here are damaging based on functional studies in model organisms and likely underlie the severe phenotype involving the nervous system.


Assuntos
Epilepsia , Deficiência Intelectual , MicroRNAs , Microcefalia , Malformações do Sistema Nervoso , Humanos , Deficiência Intelectual/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Microcefalia/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(52)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-34949639

RESUMO

A growing list of Alzheimer's disease (AD) genetic risk factors is being identified, but the contribution of each variant to disease mechanism remains largely unknown. We have previously shown that elevated levels of reactive oxygen species (ROS) induces lipid synthesis in neurons leading to the sequestration of peroxidated lipids in glial lipid droplets (LD), delaying neurotoxicity. This neuron-to-glia lipid transport is APOD/E-dependent. To identify proteins that modulate these neuroprotective effects, we tested the role of AD risk genes in ROS-induced LD formation and demonstrate that several genes impact neuroprotective LD formation, including homologs of human ABCA1, ABCA7, VLDLR, VPS26, VPS35, AP2A, PICALM, and CD2AP Our data also show that ROS enhances Aß42 phenotypes in flies and mice. Finally, a peptide agonist of ABCA1 restores glial LD formation in a humanized APOE4 fly model, highlighting a potentially therapeutic avenue to prevent ROS-induced neurotoxicity. This study places many AD genetic risk factors in a ROS-induced neuron-to-glia lipid transfer pathway with a critical role in protecting against neurotoxicity.


Assuntos
Doença de Alzheimer , Gotículas Lipídicas/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Drosophila , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Fármacos Neuroprotetores
4.
Am J Hum Genet ; 107(6): 1096-1112, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33232675

RESUMO

SWI/SNF-related intellectual disability disorders (SSRIDDs) are rare neurodevelopmental disorders characterized by developmental disability, coarse facial features, and fifth digit/nail hypoplasia that are caused by pathogenic variants in genes that encode for members of the SWI/SNF (or BAF) family of chromatin remodeling complexes. We have identified 12 individuals with rare variants (10 loss-of-function, 2 missense) in the BICRA (BRD4 interacting chromatin remodeling complex-associated protein) gene, also known as GLTSCR1, which encodes a subunit of the non-canonical BAF (ncBAF) complex. These individuals exhibited neurodevelopmental phenotypes that include developmental delay, intellectual disability, autism spectrum disorder, and behavioral abnormalities as well as dysmorphic features. Notably, the majority of individuals lack the fifth digit/nail hypoplasia phenotype, a hallmark of most SSRIDDs. To confirm the role of BICRA in the development of these phenotypes, we performed functional characterization of the zebrafish and Drosophila orthologs of BICRA. In zebrafish, a mutation of bicra that mimics one of the loss-of-function variants leads to craniofacial defects possibly akin to the dysmorphic facial features seen in individuals harboring putatively pathogenic BICRA variants. We further show that Bicra physically binds to other non-canonical ncBAF complex members, including the BRD9/7 ortholog, CG7154, and is the defining member of the ncBAF complex in flies. Like other SWI/SNF complex members, loss of Bicra function in flies acts as a dominant enhancer of position effect variegation but in a more context-specific manner. We conclude that haploinsufficiency of BICRA leads to a unique SSRIDD in humans whose phenotypes overlap with those previously reported.


Assuntos
Proteínas Cromossômicas não Histona/genética , Deficiências do Desenvolvimento/genética , Mutação de Sentido Incorreto , Fenótipo , Proteínas Supressoras de Tumor/genética , Adolescente , Animais , Criança , Pré-Escolar , Proteínas de Drosophila/genética , Drosophila melanogaster , Feminino , Genes Dominantes , Variação Genética , Haploinsuficiência , Humanos , Lactente , Masculino , Microscopia Confocal , Neuroglia/metabolismo , Neurônios/metabolismo , Ligação Proteica , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
5.
PLoS Genet ; 14(8): e1007560, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30102700

RESUMO

In Drosophila, 50 classes of olfactory receptor neurons (ORNs) connect to 50 class-specific and uniquely positioned glomeruli in the antennal lobe. Despite the identification of cell surface receptors regulating axon guidance, how ORN axons sort to form 50 stereotypical glomeruli remains unclear. Here we show that the heterophilic cell adhesion proteins, DIPs and Dprs, are expressed in ORNs during glomerular formation. Many ORN classes express a unique combination of DIPs/dprs, with neurons of the same class expressing interacting partners, suggesting a role in class-specific self-adhesion between ORN axons. Analysis of DIP/Dpr expression revealed that ORNs that target neighboring glomeruli have different combinations, and ORNs with very similar DIP/Dpr combinations can project to distant glomeruli in the antennal lobe. DIP/Dpr profiles are dynamic during development and correlate with sensilla type lineage for some ORN classes. Perturbations of DIP/dpr gene function result in local projection defects of ORN axons and glomerular positioning, without altering correct matching of ORNs with their target neurons. Our results suggest that context-dependent differential adhesion through DIP/Dpr combinations regulate self-adhesion and sort ORN axons into uniquely positioned glomeruli.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais , Axônios/fisiologia , Adesão Celular , Drosophila/genética , Proteínas de Drosophila/genética , Regulação da Expressão Gênica , Técnicas de Genotipagem , Modelos Teóricos , Análise de Sequência de RNA
6.
PLoS Genet ; 12(1): e1005780, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26765103

RESUMO

Sensory neuron diversity is required for organisms to decipher complex environmental cues. In Drosophila, the olfactory environment is detected by 50 different olfactory receptor neuron (ORN) classes that are clustered in combinations within distinct sensilla subtypes. Each sensilla subtype houses stereotypically clustered 1-4 ORN identities that arise through asymmetric divisions from a single multipotent sensory organ precursor (SOP). How each class of SOPs acquires a unique differentiation potential that accounts for ORN diversity is unknown. Previously, we reported a critical component of SOP diversification program, Rotund (Rn), increases ORN diversity by generating novel developmental trajectories from existing precursors within each independent sensilla type lineages. Here, we show that Rn, along with BarH1/H2 (Bar), Bric-à-brac (Bab), Apterous (Ap) and Dachshund (Dac), constitutes a transcription factor (TF) network that patterns the developing olfactory tissue. This network was previously shown to pattern the segmentation of the leg, which suggests that this network is functionally conserved. In antennal imaginal discs, precursors with diverse ORN differentiation potentials are selected from concentric rings defined by unique combinations of these TFs along the proximodistal axis of the developing antennal disc. The combinatorial code that demarcates each precursor field is set up by cross-regulatory interactions among different factors within the network. Modifications of this network lead to predictable changes in the diversity of sensilla subtypes and ORN pools. In light of our data, we propose a molecular map that defines each unique SOP fate. Our results highlight the importance of the early prepatterning gene regulatory network as a modulator of SOP and terminally differentiated ORN diversity. Finally, our model illustrates how conserved developmental strategies are used to generate neuronal diversity.


Assuntos
Diferenciação Celular/genética , Redes Reguladoras de Genes , Neurônios Receptores Olfatórios , Olfato/genética , Animais , Caderinas/genética , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Regulação da Expressão Gênica no Desenvolvimento , Discos Imaginais/crescimento & desenvolvimento , Proteínas com Homeodomínio LIM/genética , Rede Nervosa/crescimento & desenvolvimento , Fatores de Transcrição/genética
7.
Curr Biol ; 34(9): 2020-2029.e6, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38614080

RESUMO

Low genomic diversity is generally indicative of small population size and is considered detrimental by decreasing long-term adaptability.1,2,3,4,5,6 Moreover, small population size may promote gene flow with congeners and outbreeding depression.7,8,9,10,11,12,13 Here, we examine the connection between habitat availability, effective population size (Ne), and extinction by generating a 40× nuclear genome from the extinct blue antelope (Hippotragus leucophaeus). Historically endemic to the relatively small Cape Floristic Region in southernmost Africa,14,15 populations were thought to have expanded and contracted across glacial-interglacial cycles, tracking suitable habitat.16,17,18 However, we found long-term low Ne, unaffected by glacial cycles, suggesting persistence with low genomic diversity for many millennia prior to extinction in ∼AD 1800. A lack of inbreeding, alongside high levels of genetic purging, suggests adaptation to this long-term low Ne and that human impacts during the colonial era (e.g., hunting and landscape transformation), rather than longer-term ecological processes, were central to its extinction. Phylogenomic analyses uncovered gene flow between roan (H. equinus) and blue antelope, as well as between roan and sable antelope (H. niger), approximately at the time of divergence of blue and sable antelope (∼1.9 Ma). Finally, we identified the LYST and ASIP genes as candidates for the eponymous bluish pelt color of the blue antelope. Our results revise numerous aspects of our understanding of the interplay between genomic diversity and evolutionary history and provide the resources for uncovering the genetic basis of this extinct species' unique traits.


Assuntos
Antílopes , Extinção Biológica , Densidade Demográfica , Animais , Antílopes/genética , Antílopes/fisiologia , Variação Genética , Fluxo Gênico , Adaptação Fisiológica/genética , Ecossistema , Genoma
8.
J Vis Exp ; (136)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29985372

RESUMO

The olfactory system of Drosophila is a widely used system in developmental neurobiology, systems neuroscience, as well as neurophysiology, behavior, and behavioral evolution. Drosophila olfactory tissues house the olfactory receptor neurons (ORNs) that detect volatile chemical cues in addition to hydro- and thermo-sensory neurons. In this protocol, we describe the dissection of developing peripheral olfactory tissue of the adult Drosophila species. We first describe how to stage and age Drosophila larvae, followed by the dissection of the antennal disc from early pupal stages, followed by the dissection of the antennae from mid-pupal stages and adults. We also show methods where preparations can be utilized in molecular techniques, such as the RNA extraction for qRT-PCR, RNAseq, or immunohistochemistry. These methods can also be applied to other Drosophila species after species-specific pupal development times are determined, and respective stages are calculated for appropriate aging.


Assuntos
Proteínas de Drosophila/imunologia , Drosophila/imunologia , Imuno-Histoquímica/métodos , Condutos Olfatórios/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Animais
9.
Sci Rep ; 7: 40873, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28102318

RESUMO

Drosophila uses 50 different olfactory receptor neuron (ORN) classes that are clustered within distinct sensilla subtypes to decipher their chemical environment. Each sensilla subtype houses 1-4 ORN identities that arise through asymmetric divisions of a single sensory organ precursor (SOP). Despite a number of mutational studies investigating the regulation of ORN development, a majority of the transcriptional programs that lead to the different ORN classes in the developing olfactory system are unknown. Here we use transcriptional profiling across the time series of antennal development to identify novel transcriptional programs governing the differentiation of ORNs. We surveyed four critical developmental stages of the olfactory system: 3rd instar larval (prepatterning), 8 hours after puparium formation (APF, SOP selection), 40 hrs APF (neurogenesis), and adult antennae. We focused on the expression profiles of olfactory receptor genes and transcription factors-the two main classes of genes that regulate the sensory identity of ORNs. We identify distinct clusters of genes that have overlapping temporal expression profiles suggesting they have a key role during olfactory system development. We show that the expression of the transcription factor distal antenna (dan) is highly similar to other prepatterning factors and is required for the expression of a subset of ORs.


Assuntos
Antenas de Artrópodes/metabolismo , Drosophila/metabolismo , Receptores Odorantes/metabolismo , Animais , Análise por Conglomerados , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mutagênese , Neurônios Receptores Olfatórios/metabolismo , Análise de Componente Principal , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Receptores Odorantes/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
10.
Sci Rep ; 7(1): 8804, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28821769

RESUMO

Organisms have evolved strikingly parallel phenotypes in response to similar selection pressures suggesting that there may be shared constraints limiting the possible evolutionary trajectories. For example, the behavioral adaptation of specialist Drosophila species to specific host plants can exhibit parallel changes in their adult olfactory neuroanatomy. We investigated the genetic basis of these parallel changes by comparing gene expression during the development of the olfactory system of two specialist Drosophila species to that of four other generalist species. Our results suggest that the parallelism observed in the adult olfactory neuroanatomy of ecological specialists extends more broadly to their developmental antennal expression profiles, and to the transcription factor combinations specifying olfactory receptor neuron (ORN) fates. Additionally, comparing general patterns of variation for the antennal transcriptional profiles in the adult and developing olfactory system of the six species suggest the possibility that specific, non-random components of the developmental programs underlying the Drosophila olfactory system harbor a disproportionate amount of interspecies variation. Further examination of these developmental components may be able to inform a deeper understanding of how traits evolve.


Assuntos
Antenas de Artrópodes/embriologia , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Variação Genética , Organogênese/genética , Transcriptoma , Animais , Mucosa Olfatória/embriologia , Neurônios Receptores Olfatórios/metabolismo , Reprodutibilidade dos Testes
11.
Wiley Interdiscip Rev Dev Biol ; 4(6): 609-21, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26088441

RESUMO

Detection of a broad range of chemosensory signals is necessary for the survival of multicellular organisms. Chemical signals are the main facilitators of foraging, escape, and social behaviors. To increase detection coverage, animal sensory systems have evolved to create a large number of neurons with highly specific functions. The olfactory system, much like the nervous system as a whole, is astonishingly diverse. The mouse olfactory system has millions of neurons with over a thousand classes, whereas the more compact Drosophila genome has approximately 80 odorant receptor genes that give rise to 50 neuronal classes and 1300 neurons in the adult.(4) Understanding how neuronal diversity is generated remains one of the central questions in developmental neurobiology. Here, we review the current knowledge on the development of the adult Drosophila olfactory system and the progress that has been made toward answering this central question.


Assuntos
Proteínas de Drosophila/genética , Drosophila/fisiologia , Neurônios Receptores Olfatórios/fisiologia , Receptores Odorantes/genética , Animais , Drosophila/genética
12.
G3 (Bethesda) ; 5(12): 2809-16, 2015 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-26497147

RESUMO

The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.


Assuntos
Sistemas CRISPR-Cas/genética , Proteínas de Drosophila/genética , Drosophila/embriologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Bulbo Olfatório/embriologia , Bulbo Olfatório/metabolismo , Fatores de Transcrição/genética , Animais , Proteínas de Drosophila/metabolismo , Expressão Gênica , Marcação de Genes , Recombinação Homóloga , Transporte Proteico , Edição de RNA , RNA Guia de Cinetoplastídeos/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA