Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(50): e2307884120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38055735

RESUMO

Older adults show declines in spatial memory, although the extent of these alterations is not uniform across the healthy older population. Here, we investigate the stability of neural representations for the same and different spatial environments in a sample of younger and older adults using high-resolution functional MRI of the medial temporal lobes. Older adults showed, on average, lower neural pattern similarity for retrieving the same environment and more variable neural patterns compared to young adults. We also found a positive association between spatial distance discrimination and the distinctiveness of neural patterns between environments. Our analyses suggested that one source for this association was the extent of informational connectivity to CA1 from other subfields, which was dependent on age, while another source was the fidelity of signals within CA1 itself, which was independent of age. Together, our findings suggest both age-dependent and independent neural contributions to spatial memory performance.


Assuntos
Hipocampo , Aprendizagem Espacial , Adulto Jovem , Humanos , Idoso , Hipocampo/diagnóstico por imagem , Lobo Temporal/diagnóstico por imagem , Imageamento por Ressonância Magnética , Memória Espacial
2.
Cereb Cortex ; 33(8): 4626-4644, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36169578

RESUMO

Synapse loss and altered plasticity are significant contributors to memory loss in aged individuals. Microglia, the innate immune cells of the brain, play critical roles in maintaining synapse function, including through a recently identified role in regulating the brain extracellular matrix. This study sought to determine the relationship between age, microglia, and extracellular matrix structure densities in the macaque retrosplenial cortex. Twenty-nine macaques ranging in age from young adult to aged were behaviorally characterized on 3 distinct memory tasks. Microglia, parvalbumin (PV)-expressing interneurons and extracellular matrix structures, known as perineuronal nets (PNNs), were immuno- and histochemically labeled. Our results indicate that microglia densities increase in the retrosplenial cortex of aged monkeys, while the proportion of PV neurons surrounded by PNNs decreases. Aged monkeys with more microglia had fewer PNN-associated PV neurons and displayed slower learning and poorer performance on an object recognition task. Stepwise regression models using age and the total density of aggrecan, a chondroitin sulfate proteoglycan of PNNs, better predicted memory performance than did age alone. Together, these findings indicate that elevated microglial activity in aged brains negatively impacts cognition in part through mechanisms that alter PNN assembly in memory-associated brain regions.


Assuntos
Giro do Cíngulo , Microglia , Animais , Macaca mulatta/metabolismo , Microglia/metabolismo , Giro do Cíngulo/metabolismo , Matriz Extracelular/metabolismo , Parvalbuminas/metabolismo , Transtornos da Memória
3.
J Neurosci ; 42(22): 4505-4516, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35477900

RESUMO

Hippocampal gamma and theta oscillations are associated with mnemonic and navigational processes and adapt to changes in the behavioral state of an animal to optimize spatial information processing. It has been shown that locomotor activity modulates gamma and theta frequencies in rats, although how age alters this modulation has not been well studied. Here, we examine gamma and theta local-field potential and place cell activity in the hippocampus CA1 region of young and old male rats as they performed a spatial eye-blink conditioning task across 31 d. Although mean gamma frequency was similar in both groups, gamma frequency increased with running speed at a slower rate in old animals. By contrast, theta frequencies scaled with speed similarly in both groups but were lower across speeds in old animals. Although these frequencies scaled equally well with deceleration and speed, acceleration was less correlated with gamma frequency in both age groups. Additionally, spike phase-locking to gamma, but not theta, was greater in older animals. Finally, aged rats had reduced within-field firing rates but greater spatial information per spike within the field. These data support a strong relationship between locomotor behavior and local-field potential activity and suggest that age significantly affects this relationship. Furthermore, observed changes in CA1 place cell firing rates and information content lend support to the hypothesis that age may result in more general and context-invariant hippocampal representations over more detailed information. These results may explain the observation that older adults tend to recall the gist of an experience rather than the details.SIGNIFICANCE STATEMENT Hippocampal oscillations and place cell activity are sensitive to sensorimotor input generated from active locomotion, yet studies of aged hippocampal function often do not account for this. By considering locomotion and spatial location, we identify novel age-associated differences in the scaling of oscillatory activity with speed, spike-field coherence, spatial information content, and within-field firing rates of CA1 place cells. These results indicate that age has an impact on the relationship between locomotion and hippocampal oscillatory activity, perhaps indicative of alterations to afferent input. These data also support the hypothesis that aged hippocampal place cells, compared with young, may more often represent more general spatial information. If true, these results may help explain why older humans tend to recall less specific and more gist-like information.


Assuntos
Região CA1 Hipocampal , Células de Lugar , Animais , Masculino , Ratos , Potenciais de Ação , Hipocampo , Ritmo Teta
4.
Proc Natl Acad Sci U S A ; 116(52): 26247-26254, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31871147

RESUMO

The use of animal models in brain aging research has led to numerous fundamental insights into the neurobiological processes that underlie changes in brain function associated with normative aging. Macaque monkeys have become the predominant nonhuman primate model system in brain aging research due to their striking similarities to humans in their behavioral capacities, sensory processing abilities, and brain architecture. Recent public concern about nonhuman primate research has made it imperative to attempt to clearly articulate the potential benefits to human health that this model enables. The present review will highlight how nonhuman primates provide a critical bridge between experiments conducted in rodents and development of therapeutics for humans. Several studies discussed here exemplify how nonhuman primate research has enriched our understanding of cognitive and sensory decline in the aging brain, as well as how this work has been important for translating mechanistic implications derived from experiments conducted in rodents to human brain aging research.

5.
J Neurosci ; 40(46): 8913-8923, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051354

RESUMO

Deficits in auditory and visual processing are commonly encountered by older individuals. In addition to the relatively well described age-associated pathologies that reduce sensory processing at the level of the cochlea and eye, multiple changes occur along the ascending auditory and visual pathways that further reduce sensory function in each domain. One fundamental question that remains to be directly addressed is whether the structure and function of the central auditory and visual systems follow similar trajectories across the lifespan or sustain the impacts of brain aging independently. The present study used diffusion magnetic resonance imaging and electrophysiological assessments of auditory and visual system function in adult and aged macaques to better understand how age-related changes in white matter connectivity at multiple levels of each sensory system might impact auditory and visual function. In particular, the fractional anisotropy (FA) of auditory and visual system thalamocortical and interhemispheric corticocortical connections was estimated using probabilistic tractography analyses. Sensory processing and sensory system FA were both reduced in older animals compared with younger adults. Corticocortical FA was significantly reduced only in white matter of the auditory system of aged monkeys, while thalamocortical FA was lower only in visual system white matter of the same animals. Importantly, these structural alterations were significantly associated with sensory function within each domain. Together, these results indicate that age-associated deficits in auditory and visual processing emerge in part from microstructural alterations to specific sensory white matter tracts, and not from general differences in white matter condition across the aging brain.SIGNIFICANCE STATEMENT Age-associated deficits in sensory processing arise from structural and functional alterations to both peripheral sensory organs and central brain regions. It remains unclear whether different sensory systems undergo similar or distinct trajectories in function across the lifespan. To provide novel insights into this question, this study combines electrophysiological assessments of auditory and visual function with diffusion MRI in aged macaques. The results suggest that age-related sensory processing deficits in part result from factors that impact the condition of specific white matter tracts, and not from general decreases in connectivity between sensory brain regions. Such anatomic specificity argues for a framework aimed at understanding vulnerabilities with relatively local influence and brain region specificity.


Assuntos
Envelhecimento/fisiologia , Córtex Auditivo/crescimento & desenvolvimento , Córtex Auditivo/fisiologia , Córtex Visual/crescimento & desenvolvimento , Córtex Visual/fisiologia , Substância Branca/crescimento & desenvolvimento , Substância Branca/fisiologia , Estimulação Acústica , Animais , Imagem de Difusão por Ressonância Magnética , Imagem de Tensor de Difusão , Eletroencefalografia , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Masculino , Vias Neurais/fisiologia , Estimulação Luminosa , Tálamo/fisiologia
6.
Neuroimage ; 225: 117518, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33137472

RESUMO

Animal neuroimaging studies can provide unique insights into brain structure and function, and can be leveraged to bridge the gap between animal and human neuroscience. In part, this power comes from the ability to combine mechanistic interventions with brain-wide neuroimaging. Due to their phylogenetic proximity to humans, nonhuman primate neuroimaging holds particular promise. Because nonhuman primate neuroimaging studies are often underpowered, there is a great need to share data amongst translational researchers. Data sharing efforts have been limited, however, by the lack of standardized tools and repositories through which nonhuman neuroimaging data can easily be archived and accessed. Here, we provide an extension of the Neurovault framework to enable sharing of statistical maps and related voxelwise neuroimaging data from other species and template-spaces. Neurovault, which was previously limited to human neuroimaging data, now allows researchers to easily upload and share nonhuman primate neuroimaging results. This promises to facilitate open, integrative, cross-species science while affording researchers the increased statistical power provided by data aggregation. In addition, the Neurovault code-base now enables the addition of other species and template-spaces. Together, these advances promise to bring neuroimaging data sharing to research in other species, for supplemental data, location-based atlases, and data that would otherwise be relegated to a "file-drawer". As increasing numbers of researchers share their nonhuman neuroimaging data on Neurovault, this resource will enable novel, large-scale, cross-species comparisons that were previously impossible.


Assuntos
Encéfalo/diagnóstico por imagem , Disseminação de Informação/métodos , Neuroimagem , Animais , Bases de Dados Factuais , Neuroimagem Funcional , Macaca mulatta , Imageamento por Ressonância Magnética , Neurociências , Tomografia por Emissão de Pósitrons
7.
Cereb Cortex ; 30(5): 2789-2803, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31833551

RESUMO

Deficits in auditory function and cognition are hallmarks of normative aging. Recent evidence suggests that hearing-impaired individuals have greater risks of developing cognitive impairment and dementia compared to people with intact auditory function, although the neurobiological bases underlying these associations are poorly understood. Here, a colony of aging macaques completed a battery of behavioral tests designed to probe frontal and temporal lobe-dependent cognition. Auditory brainstem responses (ABRs) and visual evoked potentials were measured to assess auditory and visual system function. Structural and diffusion magnetic resonance imaging were then performed to evaluate the microstructural condition of multiple white matter tracts associated with cognition. Animals showing higher cognitive function had significantly better auditory processing capacities, and these associations were selectively observed with tasks that primarily depend on temporal lobe brain structures. Tractography analyses revealed that the fractional anisotropy (FA) of the fimbria-fornix and hippocampal commissure were associated with temporal lobe-dependent visual discrimination performance and auditory sensory function. Conversely, FA of frontal cortex-associated white matter was not associated with auditory processing. Visual sensory function was not associated with frontal or temporal lobe FA, nor with behavior. This study demonstrates significant and selective relationships between ABRs, white matter connectivity, and higher-order cognitive ability.


Assuntos
Envelhecimento/fisiologia , Percepção Auditiva/fisiologia , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/fisiologia , Substância Branca/diagnóstico por imagem , Substância Branca/fisiologia , Animais , Cognição/fisiologia , Potenciais Evocados Visuais/fisiologia , Feminino , Macaca radiata , Reconhecimento Visual de Modelos/fisiologia
8.
Molecules ; 26(20)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34684847

RESUMO

Brain G-protein coupled receptors have been hypothesized to be potential targets for maintaining or restoring cognitive function in normal aged individuals or in patients with neurodegenerative disease. A number of recent reports suggest that activation of melanocortin receptors (MCRs) in the brain can significantly improve cognitive functions of normal rodents and of different rodent models of the Alzheimer's disease. However, the potential impact of normative aging on the expression of MCRs and their potential roles for modulating cognitive function remains to be elucidated. In the present study, we first investigated the expression of these receptors in six different brain regions of young (6 months) and aged (23 months) rats following assessment of their cognitive status. Correlation analysis was further performed to reveal potential contributions of MCR subtypes to spatial learning and memory. Our results revealed statistically significant correlations between the expression of several MCR subtypes in the frontal cortex/hypothalamus and the hippocampus regions and the rats' performance in spatial learning and memory only in the aged rats. These findings support the hypothesis that aging has a direct impact on the expression and function of MCRs, establishing MCRs as potential drug targets to alleviate aging-induced decline of cognitive function.


Assuntos
Envelhecimento/metabolismo , Cognição/fisiologia , Lobo Frontal/metabolismo , Hipotálamo/metabolismo , Receptores de Melanocortina/metabolismo , Animais , Aprendizagem/fisiologia , Masculino , Memória/fisiologia , Doenças Neurodegenerativas/metabolismo , Ratos , Ratos Endogâmicos F344
9.
Hippocampus ; 30(1): 28-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981255

RESUMO

Hippocampal sharp-wave ripples are brief high-frequency (120-250 Hz) oscillatory events that support mnemonic processes during sleep and awake behavior. Although ripples occurring during sleep are believed to facilitate memory consolidation, waking ripples may also be involved in planning and memory retrieval. Recent work from our group determined that normal aging results in a significant reduction in the peak oscillatory frequency and rate-of-occurrence of ripples during sleep that may contribute to age-associated memory decline. It is unknown, however, how aging alters waking ripples. We investigated whether characteristics of waking ripples undergo age-dependent changes. Sharp-wave ripple events were recorded from the CA1 region of the hippocampus in old (n = 5) and young (n = 6) F344 male rats as they performed a place-dependent eyeblink conditioning task. Several novel observations emerged from this analysis. First, although aged rats expressed more waking ripples than young rats during track running and reward consumption, this effect was eliminated, and, in the case of track-running, reversed when time spent in each location was accounted for. Thus, aged rats emit more ripples, but young rats express a higher ripple rate. This likely results from reduced locomotor activity in aged animals. Furthermore, although ripple rates increased as young rats approached rewards, rates did not increase in aged rats, and rates in aged and young animals were not affected by eyeblink conditioning. Finally, although the oscillatory frequency of ripples was lower in aged animals during rest, frequencies in aged rats increased during behavior to levels indistinguishable from young rats. Given the involvement of waking ripples in memory retrieval, a possible consequence of slower movement speeds of aged animals is to provide more opportunity to replay task-relevant information and compensate for age-related declines in ripple rate during task performance.


Assuntos
Envelhecimento/fisiologia , Ondas Encefálicas/fisiologia , Condicionamento Palpebral/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Vigília/fisiologia , Fatores Etários , Animais , Masculino , Atividade Motora/fisiologia , Ratos , Ratos Endogâmicos F344
10.
Hippocampus ; 29(5): 409-421, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-29072793

RESUMO

Identification of primate hippocampal subfields in vivo using structural MRI imaging relies on variable anatomical guidelines, signal intensity differences, and heuristics to differentiate between regions (Yushkevich et al., 2015a). Thus, a clear anatomically-driven basis for subfield demarcation is lacking. Recent work, however, has begun to develop methods to use ex vivo histology or ex vivo MRI (Adler et al., 2014; Iglesias et al., 2015) that have the potential to inform subfield demarcations of in vivo images. For optimal results, however, ex vivo and in vivo images should ideally be matched within the same healthy brains, with the goal to develop a neuroanatomically-driven basis for in vivo structural MRI images. Here, we address this issue in young and aging rhesus macaques (young n = 5 and old n = 5) using ex vivo Nissl-stained sections in which we identified the dentate gyrus, CA3, CA2, CA1, subiculum, presubiculum, and parasubiculum guided by morphological cell properties (30 µm thick sections spaced at 240 µm intervals and imaged at 161 nm/pixel). The histologically identified boundaries were merged with in vivo structural MRIs (0.625 × 0.625 × 1 mm) from the same subjects via iterative rigid and diffeomorphic registration resulting in probabilistic atlases of young and old rhesus macaques. Our results indicate stability in hippocampal subfield volumes over an age range of 13 to 32 years, consistent with previous results showing preserved whole hippocampal volume in aged macaques (Shamy et al., 2006). Together, our methods provide a novel approach for identifying hippocampal subfields in non-human primates and a potential 'ground truth' for more accurate identification of hippocampal subfield boundaries on in vivo MRIs. This could, in turn, have applications in humans where accurately identifying hippocampal subfields in vivo is a critical research goal.


Assuntos
Envelhecimento , Atlas como Assunto , Hipocampo/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Animais , Macaca mulatta
11.
Neuromodulation ; 22(4): 435-440, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30016006

RESUMO

BACKGROUND: Ensemble recording methods are pervasive in basic and clinical neuroscience research. Invasive neural implants are used in patients with drug resistant epilepsy to localize seizure origin, in neuropsychiatric or Parkinson's patients to alleviate symptoms via deep brain stimulation, and with animal models to conduct basic research. Studies addressing the brain's physiological response to chronic electrode implants demonstrate that the mechanical trauma of insertion is followed by an acute inflammatory response as well as a chronic foreign body response. Despite use of invasive recording methods with animal models and humans, little is known of their effect on behavior in healthy populations. OBJECTIVE: To quantify the effect of chronic electrode implantation targeting the hippocampus on recognition memory performance. METHODS: Four healthy female rhesus macaques were tested in a delayed nonmatching-to-sample (DNMS) recognition memory task before and after hippocampal implantation with a tetrode array device. RESULTS: Trials to criterion and recognition memory performance were not significantly different before vs. after chronic electrode implantation. CONCLUSION: Our results suggest that chronic implants did not produce significant impairments on DNMS performance.


Assuntos
Cérebro/fisiologia , Cognição/fisiologia , Eletrodos Implantados/tendências , Memória/fisiologia , Desempenho Psicomotor/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Eletroencefalografia/instrumentação , Eletroencefalografia/tendências , Feminino , Macaca mulatta , Fatores de Tempo
12.
J Neurosci ; 37(37): 8965-8974, 2017 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-28821661

RESUMO

The perirhinal cortex (PER), which is critical for associative memory and stimulus discrimination, has been described as a wall of inhibition between the neocortex and hippocampus. With advanced age, rats show deficits on PER-dependent behavioral tasks and fewer PER principal neurons are activated by stimuli, but the role of PER interneurons in these altered circuit properties in old age has not been characterized. In the present study, PER neurons were recorded while rats traversed a circular track bidirectionally in which the track was either empty or contained eight novel objects evenly spaced around the track. Putative interneurons were discriminated from principal cells based on the autocorrelogram, waveform parameters, and firing rate. While object modulation of interneuron firing was observed in both young and aged rats, PER interneurons recorded from old animals had lower firing rates compared with those from young animals. This difference could not be accounted for by differences in running speed, as the firing rates of PER interneurons did not show significant velocity modulation. Finally, in the aged rats, relative to young rats, there was a significant reduction in detected excitatory and inhibitory monosynaptic connections. Together these data suggest that with advanced age there may be reduced afferent drive from excitatory cells onto interneurons that may compromise the wall of inhibition between the hippocampus and cortex. This circuit dysfunction could erode the function of temporal lobe networks and ultimately contribute to cognitive aging.SIGNIFICANCE STATEMENT We report that lower firing rates observed in aged perirhinal cortical principal cells are associated with weaker interneuron activity and reduced monosynaptic coupling between excitatory and inhibitory cells. This is likely to affect feedforward inhibition from the perirhinal to the entorhinal cortex that gates the flow of information to the hippocampus. This is significant because cognitive dysfunction in normative and pathological aging has been linked to hyperexcitability in the aged CA3 subregion of the hippocampus in rats, monkeys, and humans. The reduced inhibition in the perirhinal cortex reported here could contribute to this circuit imbalance, and may be a key point to consider for therapeutic interventions aimed at restoring network function to optimize cognition.


Assuntos
Potenciais de Ação/fisiologia , Envelhecimento/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia , Córtex Perirrinal/fisiologia , Sinapses/fisiologia , Potenciais Sinápticos/fisiologia , Animais , Conectoma , Potenciais Pós-Sinápticos Excitadores/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Masculino , Neurônios/classificação , Neurônios/citologia , Ratos , Ratos Endogâmicos F344 , Transmissão Sináptica/fisiologia
13.
J Neurosci ; 37(10): 2795-2801, 2017 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-28174334

RESUMO

Decades of research identify the hippocampal formation as central to memory storage and recall. Events are stored via distributed population codes, the parameters of which (e.g., sparsity and overlap) determine both storage capacity and fidelity. However, it remains unclear whether the parameters governing information storage are similar between species. Because episodic memories are rooted in the space in which they are experienced, the hippocampal response to navigation is often used as a proxy to study memory. Critically, recent studies in rodents that mimic the conditions typical of navigation studies in humans and nonhuman primates (i.e., virtual reality) show that reduced sensory input alters hippocampal representations of space. The goal of this study was to quantify this effect and determine whether there are commonalities in information storage across species. Using functional molecular imaging, we observe that navigation in virtual environments elicits activity in fewer CA1 neurons relative to real-world conditions. Conversely, comparable neuronal activity is observed in hippocampus region CA3 and the dentate gyrus under both conditions. Surprisingly, we also find evidence that the absolute number of neurons used to represent an experience is relatively stable between nonhuman primates and rodents. We propose that this convergence reflects an optimal ensemble size for episodic memories.SIGNIFICANCE STATEMENT One primary factor constraining memory capacity is the sparsity of the engram, the proportion of neurons that encode a single experience. Investigating sparsity in humans is hampered by the lack of single-cell resolution and differences in behavioral protocols. Sparsity can be quantified in freely moving rodents, but extrapolating these data to humans assumes that information storage is comparable across species and is robust to restraint-induced reduction in sensory input. Here, we test these assumptions and show that species differences in brain size build memory capacity without altering the structure of the data being stored. Furthermore, sparsity in most of the hippocampus is resilient to reduced sensory information. This information is vital to integrating animal data with human imaging navigation studies.


Assuntos
Evolução Biológica , Hipocampo/fisiologia , Memória Episódica , Rede Nervosa/fisiologia , Orientação/fisiologia , Animais , Medicina Baseada em Evidências , Macaca mulatta , Masculino , Especificidade da Espécie
14.
J Neurosci ; 36(48): 12217-12227, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903730

RESUMO

The ability to navigate through space involves complex interactions between multiple brain systems. Although it is clear that spatial navigation is impaired during aging, the networks responsible for these altered behaviors are not well understood. Here, we used a within-subject design and [18F]FDG-microPET to capture whole-brain activation patterns in four distinct spatial behaviors from young and aged rhesus macaques: constrained space (CAGE), head-restrained passive locomotion (CHAIR), constrained locomotion in space (TREADMILL), and unconstrained locomotion (WALK). The results reveal consistent networks activated by these behavior conditions that were similar across age. For the young animals, however, the coactivity patterns were distinct between conditions, whereas older animals tended to engage the same networks in each condition. The combined observations of less differentiated networks between distinct behaviors and alterations in functional connections between targeted regions in aging suggest changes in network dynamics as one source of age-related deficits in spatial cognition. SIGNIFICANCE STATEMENT: We report how whole-brain networks are involved in spatial navigation behaviors and how normal aging alters these network patterns in nonhuman primates. This is the first study to examine whole-brain network activity in young or old nonhuman primates while they actively or passively traversed an environment. The strength of this study resides in our ability to identify and differentiate whole-brain networks associated with specific navigational behaviors within the same nonhuman primate and to compare how these networks change with age. The use of high-resolution PET (microPET) to capture brain activity of real-world behaviors adds significantly to our understanding of how active circuits critical for navigation are affected by aging.


Assuntos
Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Rede Nervosa/fisiologia , Plasticidade Neuronal/fisiologia , Navegação Espacial/fisiologia , Adaptação Fisiológica/fisiologia , Animais , Mapeamento Encefálico , Feminino , Humanos , Macaca mulatta , Masculino , Vias Neurais/fisiologia
15.
Nat Rev Neurosci ; 12(10): 585-601, 2011 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-21897434

RESUMO

The hippocampal formation has been implicated in a growing number of disorders, from Alzheimer's disease and cognitive ageing to schizophrenia and depression. How can the hippocampal formation, a complex circuit that spans the temporal lobes, be involved in a range of such phenotypically diverse and mechanistically distinct disorders? Recent neuroimaging findings indicate that these disorders differentially target distinct subregions of the hippocampal circuit. In addition, some disorders are associated with hippocampal hypometabolism, whereas others show evidence of hypermetabolism. Interpreted in the context of the functional and molecular organization of the hippocampal circuit, these observations give rise to a unified pathophysiological framework of hippocampal dysfunction.


Assuntos
Envelhecimento/fisiologia , Hipocampo/fisiopatologia , Transtornos Mentais/fisiopatologia , Neurônios/fisiologia , Humanos , Vias Neurais/fisiopatologia
16.
Cereb Cortex ; 25(9): 2631-47, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24700585

RESUMO

The medial prefrontal cortex is thought to be important for guiding behavior according to an animal's expectations. Efforts to decode the region have focused not only on the question of what information it computes, but also how distinct circuit components become engaged during behavior. We find that the activity of regular-firing, putative projection neurons contains rich information about behavioral context and firing fields cluster around reward sites, while activity among putative inhibitory and fast-spiking neurons is most associated with movement and accompanying sensory stimulation. These dissociations were observed even between adjacent neurons with apparently reciprocal, inhibitory-excitatory connections. A smaller population of projection neurons with burst-firing patterns did not show clustered firing fields around rewards; these neurons, although heterogeneous, were generally less selective for behavioral context than regular-firing cells. The data suggest a network that tracks an animal's behavioral situation while, at the same time, regulating excitation levels to emphasize high valued positions. In this scenario, the function of fast-spiking inhibitory neurons is to constrain network output relative to incoming sensory flow. This scheme could serve as a bridge between abstract sensorimotor information and single-dimensional codes for value, providing a neural framework to generate expectations from behavioral state.


Assuntos
Potenciais de Ação/fisiologia , Lobo Frontal/citologia , Movimento/fisiologia , Neurônios/classificação , Neurônios/fisiologia , Recompensa , Análise de Variância , Animais , Comportamento de Escolha , Sinais (Psicologia) , Masculino , Rede Nervosa/fisiologia , Ratos , Ratos Endogâmicos F344 , Tempo de Reação/fisiologia
17.
J Neurosci ; 34(25): 8462-6, 2014 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-24948801

RESUMO

Although the circuit mediating contextual fear conditioning has been extensively described, the precise contribution that specific anatomical nodes make to behavior has not been fully elucidated. To clarify the roles of the dorsal hippocampus (DH), basolateral amygdala (BLA), and medial prefrontal cortex (mPFC) in contextual fear conditioning, activity within these regions was mapped using cellular compartment analysis of temporal activity using fluorescence in situ hybridization (catFISH) for Arc mRNA. Rats were delay-fear conditioned or immediately shocked (controls) and thereafter reexposed to the shocked context to test for fear memory recall. Subsequent catFISH analyses revealed that in the DH, cells were preferentially reactivated during the context test, regardless of whether animals had been fear conditioned or immediately shocked, suggesting that the DH encodes spatial information specifically, rather then the emotional valence of an environment. In direct contrast, neuronal ensembles in the BLA were only reactivated at test if animals had been fear conditioned, suggesting that the amygdala specifically tracks the emotional properties of a context. Interestingly, Arc expression in the mPFC was consistent with both amygdala- and hippocampus-like patterns, supporting a role for the mPFC in both fear and contextual processing. Collectively, these data provide crucial insight into the region-specific behavior of neuronal ensembles during contextual fear conditioning and demonstrate a dissociable role for the hippocampus and amygdala in processing the contextual and emotional properties of a fear memory.


Assuntos
Tonsila do Cerebelo/fisiologia , Medo/fisiologia , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Córtex Pré-Frontal/fisiologia , Tonsila do Cerebelo/citologia , Animais , Estimulação Elétrica/efeitos adversos , Medo/psicologia , Hipocampo/citologia , Masculino , Rede Nervosa/citologia , Rede Nervosa/patologia , Neurônios/patologia , Córtex Pré-Frontal/citologia , Ratos , Ratos Long-Evans
18.
J Neurosci ; 34(45): 15022-31, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25378167

RESUMO

During movement, there is a transition of activity across the population, such that place-field centers ahead of the rat are sequentially activated in the order that they will be encountered. Although the mechanisms responsible for this sequence updating are unknown, two classes of models can be considered. The first class involves head-direction information for activating neurons in the order that their place fields will be traversed. An alternative model contends that motion and turn-related information from the posterior parietal cortex shift the subset of active hippocampal cells across the population. To explicitly test these two models, rodents were trained to run backward on a linear track, placing movement in opposition with head orientation. Although head-direction did not change between running conditions, place-field activity remapped and there was an increase in place-field size during backward running compared with forward. The population activity, however, could still be used to reconstruct the location of the rat accurately. Moreover, theta phase precession was maintained in both running conditions, indicating preservation of place-field sequences on short-time scales. The observation that sequence encoding persists even when the animal is orientated away from the direction of movement favors the concept that posterior parietal cortical mechanisms may be partially responsible for updating hippocampal activity patterns.


Assuntos
Movimentos da Cabeça , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Caminhada , Animais , Ondas Encefálicas , Hipocampo/citologia , Masculino , Rede Nervosa/citologia , Orientação , Lobo Parietal/citologia , Lobo Parietal/fisiologia , Células Piramidais/fisiologia , Ratos , Ratos Endogâmicos F344
19.
J Neurosci ; 34(2): 467-80, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24403147

RESUMO

The perirhinal cortex (PRC) is proposed to both represent high-order sensory information and maintain those representations across delays. These cognitive processes are required for recognition memory, which declines during normal aging. Whether or not advanced age affects the ability of PRC principal cells to support these dual roles, however, is not known. The current experiment recorded PRC neurons as young and aged rats traversed a track. When objects were placed on the track, a subset of the neurons became active at discrete locations adjacent to objects. Importantly, the aged rats had a lower proportion of neurons that were activated by objects. Once PRC activity patterns in the presence of objects were established, however, both age groups maintained these representations across delays up to 2 h. These data support the hypothesis that age-associated deficits in stimulus recognition arise from impairments in high-order stimulus representation rather than difficulty in sustaining stable activity patterns over time.


Assuntos
Envelhecimento/fisiologia , Memória/fisiologia , Reconhecimento Psicológico/fisiologia , Animais , Eletrofisiologia , Masculino , Ratos , Ratos Endogâmicos F344
20.
J Neurosci ; 34(30): 9905-16, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057193

RESUMO

The orbitofrontal cortex (OFC) and amygdala are both necessary for decisions based on expected outcomes. Although behavioral and imaging data suggest that these brain regions are affected by advanced age, the extent to which aging alters appetitive processes coordinated by the OFC and the amygdala is unknown. In the current experiment, young and aged bonnet macaques were trained on OFC- and amygdala-dependent tasks that test the degree to which response selection is guided by reward value and can be adapted when expected outcomes change. To assess whether the structural integrity of these regions varies with levels of performance on reward devaluation and object reversal tasks, volumes of areas 11/13 and 14 of the OFC, central/medial (CM), and basolateral (BL) nuclei of the amygdala were determined from high-resolution anatomical MRIs. With age, there were significant reductions in OFC, but not CM and BL, volume. Moreover, the aged monkeys showed impairments in the ability to associate an object with a higher value reward, and to reverse a previously learned association. Interestingly, greater OFC volume of area 11/13, but not 14, was significantly correlated with an animal's ability to anticipate the reward outcome associated with an object, and smaller BL volume was predictive of an animal's tendency to choose a higher value reward, but volume of neither region correlated with reversal learning. Together, these data indicate that OFC volume has an impact on monkeys' ability to guide choice behavior based on reward value but does not impact ability to reverse a previously learned association.


Assuntos
Tonsila do Cerebelo/fisiologia , Lobo Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Reversão de Aprendizagem/fisiologia , Recompensa , Fatores Etários , Animais , Feminino , Previsões , Macaca radiata , Tamanho do Órgão/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA