Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Development ; 138(12): 2511-21, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21561988

RESUMO

RanBPM is a recently identified scaffold protein that links and modulates interactions between cell surface receptors and their intracellular signaling pathways. RanBPM has been shown to interact with a variety of functionally unrelated proteins; however, its function remains unclear. Here, we show that RanBPM is essential for normal gonad development as both male and female RanBPM(-/-) mice are sterile. In the mutant testis there was a marked decrease in spermatogonia proliferation during postnatal development. Strikingly, the first wave of spermatogenesis was totally compromised, as seminiferous tubules of homozygous mutant animals were devoid of post-meiotic germ cells. We determined that spermatogenesis was arrested around the late pachytene-diplotene stages of prophase I; surprisingly, without any obvious defect in chromosome synapsis. Interestingly, RanBPM deletion led to a remarkably quick disappearance of all germ cell types at around one month of age, suggesting that spermatogonia stem cells are also affected by the mutation. Moreover, in chimeric mice generated with RanBPM(-/-) embryonic stem cells all mutant germ cells disappeared by 3 weeks of age suggesting that RanBPM is acting in a cell-autonomous way in germ cells. RanBPM homozygous mutant females displayed a premature ovarian failure due to a depletion of the germ cell pool at the end of prophase I, as in males. Taken together, our results highlight a crucial role for RanBPM in mammalian gametogenesis in both genders.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas do Citoesqueleto/fisiologia , Proteínas Nucleares/fisiologia , Oogênese , Espermatogênese , Animais , Feminino , Gônadas/crescimento & desenvolvimento , Masculino , Prófase Meiótica I , Camundongos , Insuficiência Ovariana Primária/etiologia
2.
J Neurosci ; 32(7): 2252-62, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22396401

RESUMO

The molecular mechanisms underlying the effects of electroconvulsive shock (ECS) therapy, a fast-acting and very effective antidepressant therapy, are poorly understood. Changes related to neuroplasticity, including enhanced adult hippocampal neurogenesis and neuronal arborization, are believed to play an important role in mediating the effects of ECS. Here we show a dynamic upregulation of the scaffold protein tamalin, selectively in the hippocampus of animals subjected to ECS. Interestingly, this gene upregulation is functionally significant because tamalin deletion in mice abrogated ECS-induced neurogenesis in the adult mouse hippocampus. Furthermore, loss of tamalin blunts mossy fiber sprouting and dendritic arborization caused by ECS. These data suggest an essential role for tamalin in ECS-induced adult neuroplasticity and provide new insight into the pathways that are involved in mediating ECS effects.


Assuntos
Proteínas de Transporte/fisiologia , Eletrochoque , Hipocampo/crescimento & desenvolvimento , Proteínas de Membrana/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Eletrochoque/métodos , Células-Tronco Embrionárias/fisiologia , Feminino , Hipocampo/citologia , Hipocampo/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Proteínas de Membrana/deficiência , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes Neurológicos , Neurogênese/fisiologia , Distribuição Aleatória
3.
Am J Physiol Cell Physiol ; 302(1): C141-53, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21865582

RESUMO

Neurotrophin-dependent activation of the tyrosine kinase receptor trkB.FL modulates neuromuscular synapse maintenance and function; however, it is unclear what role the alternative splice variant, truncated trkB (trkB.T1), may have in the peripheral neuromuscular axis. We examined this question in trkB.T1 null mice and demonstrate that in vivo neuromuscular performance and nerve-evoked muscle tension are significantly increased. In vitro assays indicated that the gain-in-function in trkB.T1(-/-) animals resulted specifically from an increased muscle contractility, and increased electrically evoked calcium release. In the trkB.T1 null muscle, we identified an increase in Akt activation in resting muscle as well as a significant increase in trkB.FL and Akt activation in response to contractile activity. On the basis of these findings, we conclude that the trkB signaling pathway might represent a novel target for intervention across diseases characterized by deficits in neuromuscular function.


Assuntos
Contração Muscular/genética , Junção Neuromuscular/genética , Receptor trkB/deficiência , Receptor trkB/genética , Animais , Cálcio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/genética , Atividade Motora/fisiologia , Contração Muscular/fisiologia , Junção Neuromuscular/fisiologia , Receptor trkB/fisiologia
4.
Exp Neurol ; 337: 113576, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33359475

RESUMO

The pathophysiology of Amyotrophic Lateral Sclerosis (ALS), a disease caused by the gradual degeneration of motoneurons, is still largely unknown. Insufficient neurotrophic support has been cited as one of the causes of motoneuron cell death. Neurotrophic factors such as BDNF have been evaluated in ALS human clinical trials, but yielded disappointing results attributed to the poor pharmacokinetics and pharmacodynamics of BDNF. In the inherited ALS G93A SOD1 animal model, deletion of the BDNF receptor TrkB.T1 delays spinal cord motoneuron cell death and muscle weakness through an unknown cellular mechanism. Here we show that TrkB.T1 is expressed ubiquitously in the spinal cord and its deletion does not change the SOD1 mutant spinal cord inflammatory state suggesting that TrkB.T1 does not influence microglia or astrocyte activation. Although TrkB.T1 knockout in astrocytes preserves muscle strength and co-ordination at early stages of disease, its specific conditional deletion in motoneurons or astrocytes does not delay motoneuron cell death during the early stage of the disease. These data suggest that TrkB.T1 may limit the neuroprotective BDNF signaling to motoneurons via a non-cell autonomous mechanism providing new understanding into the reasons for past clinical failures and insights into the design of future clinical trials employing TrkB agonists in ALS.


Assuntos
Esclerose Lateral Amiotrófica/genética , Glicoproteínas de Membrana/genética , Proteínas Tirosina Quinases/genética , Receptor trkB/genética , Esclerose Lateral Amiotrófica/patologia , Esclerose Lateral Amiotrófica/psicologia , Animais , Sinalização do Cálcio , Deleção de Genes , Interleucina-1beta/metabolismo , Ativação de Macrófagos , Glicoproteínas de Membrana/agonistas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/patologia , Neurônios Motores/patologia , Desempenho Psicomotor , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/genética , Fator de Necrose Tumoral alfa/metabolismo
5.
Neuron ; 51(1): 21-8, 2006 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-16815329

RESUMO

Imbalances in neurotrophins or their high-affinity Trk receptors have long been reported in neurodegenerative diseases. However, a molecular link between these gene products and neuronal cell death has not been established. In the trisomy 16 (Ts16) mouse there is increased apoptosis in the cortex, and hippocampal neurons undergo accelerated cell death that cannot be rescued by administration of brain-derived neurotrophic factor (BDNF). Ts16 neurons have normal levels of the TrkB tyrosine kinase receptor but an upregulation of the TrkB.T1 truncated receptor isoform. Here we show that restoration of the physiological level of the TrkB.T1 receptor by gene targeting rescues Ts16 cortical cell and hippocampal neuronal death. Moreover, it corrects resting Ca2+ levels and restores BDNF-induced intracellular signaling mediated by full-length TrkB in Ts16 hippocampal neurons. These data provide a direct link between neuronal cell death and abnormalities in Trk neurotrophin receptor levels.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Encéfalo/metabolismo , Degeneração Neural/genética , Neurônios/metabolismo , Receptor trkB/genética , Trissomia/genética , Animais , Apoptose/genética , Encéfalo/citologia , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Cálcio/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/genética , Marcação de Genes/métodos , Hipocampo/citologia , Hipocampo/metabolismo , Camundongos , Camundongos Knockout , Camundongos Mutantes Neurológicos , Peso Molecular , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/citologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Recuperação de Função Fisiológica/genética , Transdução de Sinais/genética , Trissomia/fisiopatologia
6.
J Neurosci ; 29(3): 678-85, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19158294

RESUMO

Pathological or in vitro overexpression of the truncated TrkB (TrkB.T1) receptor inhibits signaling through the full-length TrkB (TrkB.FL) tyrosine kinase receptor. However, to date, the role of endogenous TrkB.T1 is still unknown. By studying mice lacking the truncated TrkB.T1 isoform but retaining normal spatiotemporal expression of TrkB.FL, we have analyzed TrkB.T1-specific physiological functions and its effect on endogenous TrkB kinase signaling in vivo. We found that TrkB.T1-deficient mice develop normally but show increased anxiety in association with morphological abnormalities in the length and complexity of neurites of neurons in the basolateral amygdala. However, no behavioral abnormalities were detected in hippocampal-dependent memory tasks, which correlated with lack of any obvious hippocampal morphological deficits or alterations in basal synaptic transmission and long-term potentiation. In vivo reduction of TrkB signaling by removal of one BDNF allele could be partially rescued by TrkB.T1 deletion, which was revealed by an amelioration of the enhanced aggression and weight gain associated with BDNF haploinsufficiency. Our results suggest that, at the physiological level, TrkB.T1 receptors are important regulators of TrkB.FL signaling in vivo. Moreover, TrkB.T1 selectively affects dendrite complexity of certain neuronal populations.


Assuntos
Encéfalo/anormalidades , Encéfalo/anatomia & histologia , Mutação , Neurônios/fisiologia , Receptor trkB/genética , Animais , Peso Corporal/genética , Encéfalo/ultraestrutura , Fator Neurotrófico Derivado do Encéfalo/genética , Condicionamento Psicológico/fisiologia , Comportamento Exploratório/fisiologia , Medo , Hipocampo/citologia , Técnicas In Vitro , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor trkB/deficiência , Coloração pela Prata/métodos
7.
Nat Commun ; 11(1): 1950, 2020 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327658

RESUMO

BDNF signaling in hypothalamic circuitries regulates mammalian food intake. However, whether BDNF exerts metabolic effects on peripheral organs is currently unknown. Here, we show that the BDNF receptor TrkB.T1 is expressed by pancreatic ß-cells where it regulates insulin release. Mice lacking TrkB.T1 show impaired glucose tolerance and insulin secretion. ß-cell BDNF-TrkB.T1 signaling triggers calcium release from intracellular stores, increasing glucose-induced insulin secretion. Additionally, BDNF is secreted by skeletal muscle and muscle-specific BDNF knockout phenocopies the ß-cell TrkB.T1 deletion metabolic impairments. The finding that BDNF is also secreted by differentiated human muscle cells and induces insulin secretion in human islets via TrkB.T1 identifies a new regulatory function of BDNF on metabolism that is independent of CNS activity. Our data suggest that muscle-derived BDNF may be a key factor mediating increased glucose metabolism in response to exercise, with implications for the treatment of diabetes and related metabolic diseases.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Cálcio/metabolismo , Células Cultivadas , Glucose/metabolismo , Intolerância à Glucose , Humanos , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptor trkB/química , Receptor trkB/genética , Receptor trkB/metabolismo , Transdução de Sinais
8.
Mol Cell Biol ; 26(14): 5249-58, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16809763

RESUMO

Trafficking and cell adhesion are key properties of cells of the immune system. However, the molecular pathways that control these cellular behaviors are still poorly understood. Cybr is a scaffold protein highly expressed in the hematopoietic/immune system whose physiological role is still unknown. In vitro studies have shown it regulates LFA-1, a crucial molecule in lymphocyte attachment and migration. Cybr also binds cytohesin-1, a guanine nucleotide exchange factor for the ARF GTPases, which affects actin cytoskeleton remodeling during cell migration. Here we show that expression of Cybr in vivo is differentially modulated by type 1 cytokines during lymphocyte maturation. In mice, Cybr deficiency negatively affects leukocytes circulating in blood and lymphocytes present in the lymph nodes. Moreover, in a Th1-polarized mouse model, lymphocyte trafficking is impaired by loss of Cybr, and Cybr-deficient mice with aseptic peritonitis have fewer cells than controls present in the peritoneal cavity, as well as fewer leukocytes leaving the bloodstream. Mutant mice injected with Moloney murine sarcoma/leukemia virus develop significantly larger tumors than wild-type mice and have reduced lymph node enlargement, suggesting reduced cytotoxic T-lymphocyte migration. Taken together, these data support a role for Cybr in leukocyte trafficking, especially in response to proinflammatory cytokines in stress conditions.


Assuntos
Citocinas/fisiologia , Proteínas do Citoesqueleto/fisiologia , Leucócitos/fisiologia , Animais , Diferenciação Celular , Movimento Celular , Proteínas do Citoesqueleto/deficiência , Proteínas do Citoesqueleto/genética , Expressão Gênica , Leucócitos/citologia , Leucócitos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus do Sarcoma Murino de Moloney , Peritonite/imunologia , Peritonite/patologia , Infecções por Retroviridae/imunologia , Infecções por Retroviridae/patologia , Sarcoma Experimental/imunologia , Sarcoma Experimental/patologia , Linfócitos T/citologia , Linfócitos T/imunologia , Linfócitos T/fisiologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia
9.
Elife ; 82019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429825

RESUMO

Brain-derived neurotrophic factor (BDNF) is a potent modulator of brain synaptic plasticity. Signaling defects caused by dysregulation of its Ntrk2 (TrkB) kinase (TrkB.FL) and truncated receptors (TrkB.T1) have been linked to the pathophysiology of several neurological and neurodegenerative disorders. We found that upregulation of Rbfox1, an RNA binding protein associated with intellectual disability, epilepsy and autism, increases selectively hippocampal TrkB.T1 isoform expression. Physiologically, increased Rbfox1 impairs BDNF-dependent LTP which can be rescued by genetically restoring TrkB.T1 levels. RNA-seq analysis of hippocampi with upregulation of Rbfox1 in conjunction with the specific increase of TrkB.T1 isoform expression also shows that the genes affected by Rbfox1 gain of function are surprisingly different from those influenced by Rbfox1 deletion. These findings not only identify TrkB as a major target of Rbfox1 pathophysiology but also suggest that gain or loss of function of Rbfox1 regulate different genetic landscapes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração , Glicoproteínas de Membrana/biossíntese , Proteínas Tirosina Quinases/biossíntese , Fatores de Processamento de RNA/biossíntese , Regulação para Cima , Animais , Perfilação da Expressão Gênica , Camundongos , Isoformas de Proteínas/biossíntese , Análise de Sequência de RNA
10.
J Cell Biol ; 210(6): 1003-12, 2015 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-26347138

RESUMO

Brain-derived neurotrophic factor (BDNF) is critical for mammalian development and plasticity of neuronal circuitries affecting memory, mood, anxiety, pain sensitivity, and energy homeostasis. Here we report a novel unexpected role of BDNF in regulating the cardiac contraction force independent of the nervous system innervation. This function is mediated by the truncated TrkB.T1 receptor expressed in cardiomyocytes. Loss of TrkB.T1 in these cells impairs calcium signaling and causes cardiomyopathy. TrkB.T1 is activated by BDNF produced by cardiomyocytes, suggesting an autocrine/paracrine loop. These findings unveil a novel signaling mechanism in the heart that is activated by BDNF and provide evidence for a global role of this neurotrophin in the homeostasis of the organism by signaling through different TrkB receptor isoforms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cardiomiopatias/enzimologia , Glicoproteínas de Membrana/metabolismo , Força Muscular , Contração Miocárdica , Miócitos Cardíacos/enzimologia , Proteínas Tirosina Quinases/metabolismo , Animais , Comunicação Autócrina , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Sinalização do Cálcio , Cardiomiopatias/genética , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Ativação Enzimática , Genótipo , Preparação de Coração Isolado , Masculino , Glicoproteínas de Membrana/deficiência , Glicoproteínas de Membrana/genética , Camundongos Knockout , Camundongos Transgênicos , Força Muscular/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Comunicação Parácrina , Fenótipo , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Transdução de Sinais , Fatores de Tempo
11.
Nat Med ; 19(6): 695-703, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23644514

RESUMO

Anticancer chemotherapy drugs challenge hematopoietic tissues to regenerate but commonly produce long-term sequelae. Chemotherapy-induced deficits in hematopoietic stem or stromal cell function have been described, but the mechanisms mediating hematopoietic dysfunction remain unclear. Administration of multiple cycles of cisplatin chemotherapy causes substantial sensory neuropathy. Here we demonstrate that chemotherapy-induced nerve injury in the bone marrow of mice is a crucial lesion impairing hematopoietic regeneration. Using pharmacological and genetic models, we show that the selective loss of adrenergic innervation in the bone marrow alters its regeneration after genotoxic insult. Sympathetic nerves in the marrow promote the survival of constituents of the stem cell niche that initiate recovery. Neuroprotection by deletion of Trp53 in sympathetic neurons or neuroregeneration by administration of 4-methylcatechol or glial-derived neurotrophic factor (GDNF) promotes hematopoietic recovery. These results demonstrate the potential benefit of adrenergic nerve protection for shielding hematopoietic niches from injury.


Assuntos
Antineoplásicos/toxicidade , Medula Óssea/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Regeneração/efeitos dos fármacos , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Medula Óssea/inervação , Sobrevivência Celular , Feminino , Mobilização de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Receptores Adrenérgicos beta/fisiologia , Sistema Nervoso Simpático/fisiologia
12.
PLoS One ; 7(6): e39946, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761934

RESUMO

Brain Derived Neurotrophic Factor (BDNF) exerts strong pro-survival effects on developing and injured motoneurons. However, in clinical trials, BDNF has failed to benefit patients with amyotrophic lateral sclerosis (ALS). To date, the cause of this failure remains unclear. Motoneurons express the TrkB kinase receptor but also high levels of the truncated TrkB.T1 receptor isoform. Thus, we investigated whether the presence of this receptor may affect the response of diseased motoneurons to endogenous BDNF. We deleted TrkB.T1 in the hSOD1(G93A) ALS mouse model and evaluated the impact of this mutation on motoneuron death, muscle weakness and disease progression. We found that TrkB.T1 deletion significantly slowed the onset of motor neuron degeneration. Moreover, it delayed the development of muscle weakness by 33 days. Although the life span of the animals was not affected we observed an overall improvement in the neurological score at the late stage of the disease. To investigate the effectiveness of strategies aimed at bypassing the TrkB.T1 limit to BDNF signaling we treated SOD1 mutant mice with the adenosine A2A receptor agonist CGS21680, which can activate motoneuron TrkB receptor signaling independent of neurotrophins. We found that CGS21680 treatment slowed the onset of motor neuron degeneration and muscle weakness similarly to TrkB.T1 removal. Together, our data provide evidence that endogenous TrkB.T1 limits motoneuron responsiveness to BDNF in vivo and suggest that new strategies such as Trk receptor transactivation may be used for therapeutic intervention in ALS or other neurodegenerative disorders.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Receptor trkB/fisiologia , Adenosina/análogos & derivados , Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Animais , Modelos Animais de Doenças , Progressão da Doença , Camundongos , Fenetilaminas/farmacologia , Receptor trkB/genética , Superóxido Dismutase/genética
13.
Science ; 338(6112): 1357-60, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23224557

RESUMO

How neural circuits associated with sexually dimorphic organs are differentially assembled during development is unclear. Here, we report a sexually dimorphic pattern of mouse mammary gland sensory innervation and the mechanism of its formation. Brain-derived neurotrophic factor (BDNF), emanating from mammary mesenchyme and signaling through its receptor TrkB on sensory axons, is required for establishing mammary gland sensory innervation of both sexes at early developmental stages. Subsequently, in males, androgens promote mammary mesenchymal expression of a truncated form of TrkB, which prevents BDNF-TrkB signaling in sensory axons and leads to a rapid loss of mammary gland innervation independent of neuronal apoptosis. Thus, sex hormone regulation of a neurotrophic factor signal directs sexually dimorphic axonal growth and maintenance, resulting in generation of a sex-specific neural circuit.


Assuntos
Axônios/fisiologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Glândulas Mamárias Animais/embriologia , Glândulas Mamárias Animais/inervação , Caracteres Sexuais , Androgênios/metabolismo , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptor trkB/genética , Receptor trkB/metabolismo , Transdução de Sinais
14.
Development ; 131(20): 5185-95, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15459109

RESUMO

The nerve growth factor (NGF) receptor TrkA is widely expressed in non-neural tissues suggesting pleiotropic functions outside the nervous system. Based on pharmacological and immuno-depletion experiments, it has been hypothesized that NGF plays an important role in the normal development and function of the immune system. However, attempts to unravel these functions by conventional gene targeting in mice have been hampered by the early postnatal lethality caused by null mutations. We have developed a novel 'reverse conditional' gene targeting strategy by which TrkA function is restored specifically in the nervous system. Mice lacking TrkA in non-neuronal tissues are viable and appear grossly normal. All major immune system cell populations are present in normal numbers and distributions. However, mutant mice have elevated serum levels of certain immunoglobulin classes and accumulate B1 cells with aging. These data, confirmed in a classical reconstitution model using embryonic fetal liver from TrkA-null mice, demonstrate that endogenous NGF modulates B cell development through TrkA in vivo. Furthermore, they demonstrate that many of the dramatic effects previously reported by pharmacological or immuno-depletion approaches do not reflect physiological developmental roles of TrkA in the immune system.


Assuntos
Linfócitos B/metabolismo , Fator de Crescimento Neural/metabolismo , Receptor trkA/metabolismo , Animais , Linfócitos B/imunologia , Sistema Imunitário/embriologia , Imunoglobulinas/sangue , Memória Imunológica/genética , Memória Imunológica/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Camundongos , Camundongos Knockout , Fator de Crescimento Neural/deficiência , Fator de Crescimento Neural/genética , Receptor trkA/deficiência , Receptor trkA/genética , Receptor trkA/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA