RESUMO
This overview of severe acute respiratory syndrome coronavirus 2 circulation over 1.5 years in Guinea demonstrates that virus clades and variants of interest and concern were progressively introduced, mostly by travellers through Conakry, before spreading through the country. Sequencing is key to following virus evolution and establishing efficient control strategies.
Assuntos
COVID-19 , SARS-CoV-2 , Guiné/epidemiologia , HumanosRESUMO
BACKGROUND: Brucellosis, Q fever and Rift Valley fever are considered as Neglected Zoonotic Diseases (NZDs) leading to socioeconomic losses in livestock globally, and particularly in developing countries of Africa where they are under-reported. In this study, we evaluated the seroprevalence of these 3 zoonotic diseases in domestic ruminants in Guinea from 2017 to 2019. A total of 1357 sera, sampled from 463 cattle, 408 goats and 486 sheep, were collected in 17 Guinean prefectures and analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS: Cattle was the species with highest seroprevalence (5 to 20-fold higher than in small ruminants) for the three diseases. The seroprevalence of brucellosis, mostly focused in Western Guinea, was 11.0% (51 of 463) in cattle, 0.4% (2 in 486) in sheep while no specific antibodies were found in goats. Q fever, widespread across the country, was the most frequently detected zoonosis with a mean seroprevalence of 20.5% (95 in 463), 4.4% (18 in 408) and 2.3% (11 in 486) in cattle, goats and sheep, respectively. The mean seroprevalence of RVF was 16.4% (76 in 463) in cattle, 1.0% (4 in 408) in goats and 1.0% (5 in 486) in sheep. Among the samples 19.3% were seropositive for at least one of the three NZDs, 2.5% showed specific antibodies against at least two pathogens and 4 cattle (0.8%) were seropositive for all three pathogens. In cattle, adults over 3-years old and females presented a higher antibody seroprevalence for the three diseases, in congruence with putative exposure risk. CONCLUSIONS: This study confirms the circulation of these three zoonotic pathogens in Guinea and highlights the need for implementing a syndromic surveillance of ruminant abortions by the Guinean veterinary authorities as well as for the screening of the human population at risk (veterinarians, breeders, slaughterers) in a One Health perspective.
Assuntos
Brucelose , Doenças das Cabras , Febre Q , Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Doenças dos Ovinos , Aborto Animal , Animais , Brucelose/epidemiologia , Brucelose/veterinária , Bovinos , Ensaio de Imunoadsorção Enzimática/veterinária , Feminino , Doenças das Cabras/epidemiologia , Cabras , Guiné , Gravidez , Febre Q/epidemiologia , Febre Q/veterinária , Ruminantes , Estudos Soroepidemiológicos , Ovinos , Doenças dos Ovinos/epidemiologiaRESUMO
BACKGROUND: The diagnosis of gambiense human African trypanosomiasis (gHAT) typically involves 2 steps: a serological screen, followed by the detection of living trypanosome parasites in the blood or lymph node aspirate. Live parasites can, however, remain undetected in some seropositive individuals, who, we hypothesize, are infected with Trypanosoma brucei gambiense parasites in their extravascular dermis. METHODS: To test this hypothesis, we conducted a prospective observational cohort study in the gHAT focus of Forecariah, Republic of Guinea. Of the 5417 subjects serologically screened for gHAT, 66 were enrolled into our study and underwent a dermatological examination. At enrollment, 11 seronegative, 8 unconfirmed seropositive, and 18 confirmed seropositive individuals had blood samples and skin biopsies taken and examined for trypanosomes by molecular and immunohistological methods. RESULTS: In seropositive individuals, dermatological symptoms were significantly more frequent, relative to seronegative controls. T.b. gambiense parasites were present in the blood of all confirmed cases (n = 18) but not in unconfirmed seropositive individuals (n = 8). However, T. brucei parasites were detected in the extravascular dermis of all unconfirmed seropositive individuals and all confirmed cases. Skin biopsies of all treated cases and most seropositive untreated individuals progressively became negative for trypanosomes 6 and 20 months later. CONCLUSIONS: Our results highlight the skin as a potential reservoir for African trypanosomes, with implications for our understanding of this disease's epidemiology in the context of its planned elimination and underlining the skin as a novel target for gHAT diagnostics.
Assuntos
Tripanossomíase Africana , Animais , Guiné , Humanos , Estudos Prospectivos , Trypanosoma brucei gambiense , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologiaRESUMO
The nuclear lamina is a filamentous structure subtending the nuclear envelope and required for chromatin organization, transcriptional regulation and maintaining nuclear structure. The trypanosomatid coiled-coil NUP-1 protein is a lamina component functionally analogous to lamins, the major lamina proteins of metazoa. There is little evidence for shared ancestry, suggesting the presence of a distinct lamina system in trypanosomes. To find additional trypanosomatid lamina components we identified NUP-1 interacting proteins by affinity capture and mass-spectrometry. Multiple components of the nuclear pore complex (NPC) and a second coiled-coil protein, which we termed NUP-2, were found. NUP-2 has a punctate distribution at the nuclear periphery throughout the cell cycle and is in close proximity to NUP-1, the NPCs and telomeric chromosomal regions. RNAi-mediated silencing of NUP-2 leads to severe proliferation defects, gross alterations to nuclear structure, chromosomal organization and nuclear envelope architecture. Further, transcription is altered at telomere-proximal variant surface glycoprotein (VSG) expression sites (ESs), suggesting a role in controlling ES expression, although NUP-2 silencing does not increase VSG switching. Transcriptome analysis suggests specific alterations to Pol I-dependent transcription. NUP-1 is mislocalized in NUP-2 knockdown cells and vice versa, implying that NUP-1 and NUP-2 form a co-dependent network and identifying NUP-2 as a second trypanosomatid nuclear lamina component.
Assuntos
Lâmina Nuclear/fisiologia , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Lâmina Nuclear/ultraestrutura , Poro Nuclear/metabolismo , Poro Nuclear/ultraestrutura , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Transporte Proteico , Proteínas de Protozoários/genética , Transcriptoma , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/ultraestruturaRESUMO
Bloodstream form trypanosomes avoid the host immune response by switching the expression of their surface proteins between Variant Surface Glycoproteins (VSG), only one of which is expressed at any given time. Monoallelic transcription of the telomeric VSG Expression Site (ES) by RNA polymerase I (RNA pol I) localizes to a unique nuclear body named the ESB. Most work has focused on silencing mechanisms of inactive VSG-ESs, but the mechanisms involved in transcriptional activation of a single VSG-ES remain largely unknown. Here, we identify a highly SUMOylated focus (HSF) in the nucleus of the bloodstream form that partially colocalizes with the ESB and the active VSG-ES locus. SUMOylation of chromatin-associated proteins was enriched along the active VSG-ES transcriptional unit, in contrast to silent VSG-ES or rDNA, suggesting that it is a distinct feature of VSG-ES monoallelic expression. In addition, sequences upstream of the active VSG-ES promoter were highly enriched in SUMOylated proteins. We identified TbSIZ1/PIAS1 as the SUMO E3 ligase responsible for SUMOylation in the active VSG-ES chromatin. Reduction of SUMO-conjugated proteins by TbSIZ1 knockdown decreased the recruitment of RNA pol I to the VSG-ES and the VSG-ES-derived transcripts. Furthermore, cells depleted of SUMO conjugated proteins by TbUBC9 and TbSUMO knockdown confirmed the positive function of SUMO for VSG-ES expression. In addition, the largest subunit of RNA pol I TbRPA1 was SUMOylated in a TbSIZ-dependent manner. Our results show a positive mechanism associated with active VSG-ES expression via post-translational modification, and indicate that chromatin SUMOylation plays an important role in the regulation of VSG-ES. Thus, protein SUMOylation is linked to active gene expression in this protozoan parasite that diverged early in evolution.
Assuntos
Glicoproteínas/biossíntese , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas de Protozoários/metabolismo , Sumoilação/fisiologia , Trypanosoma brucei brucei/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica/fisiologia , Glicoproteínas/genética , Proteínas Inibidoras de STAT Ativados/genética , Processamento de Proteína Pós-Traducional/fisiologia , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
African trypanosomes infect a broad range of mammals, but humans and some higher primates are protected by serum trypanosome lytic factors that contain apolipoprotein L1 (ApoL1). In the human-infective subspecies of Trypanosoma brucei, Trypanosoma brucei rhodesiense, a gene product derived from the variant surface glycoprotein gene family member, serum resistance-associated protein (SRA protein), protects against ApoL1-mediated lysis. Protection against trypanosome lytic factor requires the direct interaction between SRA protein and ApoL1 within the endocytic apparatus of the trypanosome, but some uncertainty remains as to the precise mechanism and location of this interaction. In order to provide more insight into the mechanism of SRA-mediated resistance to trypanosome lytic factor, we assessed the localization of SRA in T. b. rhodesienseâ EATRO3 using a novel monoclonal antibody raised against SRA together with a set of well-characterized endosomal markers. By three-dimensional deconvolved immunofluorescence single-cell analysis, combined with double-labelling immunoelectron microscopy, we found that ≈ 50% of SRA protein localized to the lysosome, with the remaining population being distributed through the endocytic pathway, but apparently absent from the flagellar pocket membrane. These data suggest that the SRA/trypanolytic factor interaction is intracellular, with the concentration within the endosomes potentially crucial for ensuring a high efficiency.
Assuntos
Endossomos/química , Lisossomos/química , Glicoproteínas de Membrana/análise , Glicoproteínas de Membrana/genética , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Trypanosoma brucei brucei/química , Trypanosoma brucei rhodesiense/química , Animais , Apolipoproteína L1 , Apolipoproteínas/metabolismo , Humanos , Lipoproteínas HDL/metabolismo , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Trypanosoma brucei brucei/efeitos dos fármacos , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei rhodesiense/efeitos dos fármacos , Trypanosoma brucei rhodesiense/imunologiaRESUMO
A unifying feature of eukaryotic nuclear organization is genome segregation into transcriptionally active euchromatin and transcriptionally repressed heterochromatin. In metazoa, lamin proteins preserve nuclear integrity and higher order heterochromatin organization at the nuclear periphery, but no non-metazoan lamin orthologues have been identified, despite the likely presence of nucleoskeletal elements in many lineages. This suggests a metazoan-specific origin for lamins, and therefore that distinct protein elements must compose the nucleoskeleton in other lineages. The trypanosomatids are highly divergent organisms and possess well-documented but remarkably distinct mechanisms for control of gene expression, including polycistronic transcription and trans-splicing. NUP-1 is a large protein localizing to the nuclear periphery of Trypanosoma brucei and a candidate nucleoskeletal component. We sought to determine if NUP-1 mediates heterochromatin organization and gene regulation at the nuclear periphery by examining the influence of NUP-1 knockdown on morphology, chromatin positioning, and transcription. We demonstrate that NUP-1 is essential and part of a stable network at the inner face of the trypanosome nuclear envelope, since knockdown cells have abnormally shaped nuclei with compromised structural integrity. NUP-1 knockdown also disrupts organization of nuclear pore complexes and chromosomes. Most significantly, we find that NUP-1 is required to maintain the silenced state of developmentally regulated genes at the nuclear periphery; NUP-1 knockdown results in highly specific mis-regulation of telomere-proximal silenced variant surface glycoprotein (VSG) expression sites and procyclin loci, indicating a disruption to normal chromatin organization essential to life-cycle progression. Further, NUP-1 depletion leads to increased VSG switching and therefore appears to have a role in control of antigenic variation. Thus, analogous to vertebrate lamins, NUP-1 is a major component of the nucleoskeleton with key roles in organization of the nuclear periphery, heterochromatin, and epigenetic control of developmentally regulated loci.
Assuntos
Regulação da Expressão Gênica , Laminas/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Variação Antigênica , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Cromossomos/genética , Cromossomos/metabolismo , Técnicas de Silenciamento de Genes , Genes de Protozoários , Loci Gênicos , Heterocromatina/genética , Heterocromatina/metabolismo , Laminas/genética , Microscopia Eletrônica de Transmissão , Mitose , Membrana Nuclear/genética , Complexo de Proteínas Formadoras de Poros Nucleares , Proteínas Nucleares/genética , Conformação Proteica , Transporte Proteico , Proteínas de Protozoários/genética , Telômero/genética , Telômero/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/crescimento & desenvolvimento , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismoRESUMO
African trypanosomes are protozoan parasites transmitted by a tsetse fly vector to a mammalian host. The life cycle includes highly proliferative forms and quiescent forms, the latter being adapted to host transmission. The signaling pathways controlling the developmental switch between the two forms remain unknown. Trypanosoma brucei contains two target of rapamycin (TOR) kinases, TbTOR1 and TbTOR2, and two TOR complexes, TbTORC1 and TbTORC2. Surprisingly, two additional TOR kinases are encoded in the T. brucei genome. We report that TbTOR4 associates with an Armadillo domain-containing protein (TbArmtor), a major vault protein, and LST8 to form a unique TOR complex, TbTORC4. Depletion of TbTOR4 caused irreversible differentiation of the parasite into the quiescent form. AMP and hydrolysable analogs of cAMP inhibited TbTOR4 expression and induced the stumpy quiescent form. Our results reveal unexpected complexity in TOR signaling and show that TbTORC4 negatively regulates differentiation of the proliferative form into the quiescent form.
Assuntos
Adaptação Fisiológica/fisiologia , Complexos Multiproteicos/metabolismo , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Trypanosoma brucei brucei/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Monofosfato de Adenosina/farmacologia , Western Blotting , AMP Cíclico/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Imunoprecipitação , Microscopia de Fluorescência , Complexos Multiproteicos/genética , Serina-Treonina Quinases TOR/genética , Partículas de Ribonucleoproteínas em Forma de Abóbada/metabolismoRESUMO
Trypanosoma brucei gambiense (Tbg) group 2 is a subgroup of trypanosomes able to infect humans and is found in West and Central Africa. Unlike other agents causing sleeping sickness, such as Tbg group 1 and Trypanosoma brucei rhodesiense, Tbg2 lacks the typical molecular markers associated with resistance to human serum. Only 36 strains of Tbg2 have been documented, and therefore, very limited research has been conducted despite their zoonotic nature. Some of these strains are only available in their procyclic form, which hinders human serum resistance assays and mechanistic studies. Furthermore, the understanding of Tbg2's potential to infect tsetse flies and mammalian hosts is limited. In this study, 165 Glossina palpalis gambiensis flies were experimentally infected with procyclic Tbg2 parasites. It was found that 35 days post-infection, 43 flies out of the 80 still alive were found to be Tbg2 PCR-positive in the saliva. These flies were able to infect 3 out of the 4 mice used for blood-feeding. Dissection revealed that only six flies in fact carried mature infections in their midguts and salivary glands. Importantly, a single fly with a mature infection was sufficient to infect a mammalian host. This Tbg2 transmission success confirms that Tbg2 strains can establish in tsetse flies and infect mammalian hosts. This study describes an effective in vivo protocol for transforming Tbg2 from procyclic to bloodstream form, reproducing the complete Tbg2 cycle from G. p. gambiensis to mice. These findings provide valuable insights into Tbg2's host infectivity, and will facilitate further research on mechanisms of human serum resistance.
Title: Cycle de vie expérimental in vivo de Trypanosoma brucei gambiense groupe 2 : de la forme procyclique à la forme sanguicole. Abstract: Trypanosoma brucei gambiense (Tbg) groupe 2 est un sous-groupe de trypanosomes capables d'infecter l'Homme, présent en Afrique de l'Ouest et en Afrique centrale. Contrairement aux autres agents responsables de la maladie du sommeil, tels que Tbg groupe 1 et Trypanosoma brucei rhodesiense, Tbg2 ne présente pas les marqueurs moléculaires habituellement associés à la résistance au sérum humain. Seules trente-six souches de Tbg2 ont été répertoriées, limitant considérablement les recherches sur ce sous-groupe malgré sa nature zoonotique. Certaines de ces souches ne sont disponibles que sous leur forme procyclique, ce qui freine la réalisation des tests de résistance au sérum humain et les études mécanistiques. De plus, la compréhension du potentiel de Tbg2 à infecter les glossines et les hôtes mammifères est limitée. Dans cette étude, 165 glossines Glossina palpalis gambiensis ont été infectées expérimentalement par des parasites Tbg2 sous leur forme procyclique. Trente-cinq jours après l'infection, 43 des 80 glossines encore en vie se sont révélées positives à Tbg2 en PCR sur leur salive. Ces glossines ont réussi à infecter trois des quatre souris utilisées pour leur repas de sang. La dissection des glossines a révélé que seules six d'entre elles étaient réellement porteuses d'infections matures dans leur intestin et leurs glandes salivaires. Il est important de noter qu'une seule glossine porteuse d'une infection mature a suffi pour infecter un hôte mammifère. Ce succès de transmission de Tbg2 confirme que les souches de Tbg2 peuvent s'établir dans les glossines et infecter des hôtes mammifères. Cette étude décrit un protocole in vivo pour transformer la forme procyclique de Tbg2 en forme sanguicole, en reproduisant le cycle complet de Tbg2 de G. p. gambiensis à la souris. Ces résultats fournissent des informations précieuses sur le potentiel infectieux de Tbg2 et faciliteront la recherche sur les mécanismes de résistance au sérum humain des souches.
Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Camundongos , Trypanosoma brucei gambiense , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia , Estágios do Ciclo de Vida , MamíferosRESUMO
Strategies to detect Human African Trypanosomiasis (HAT) cases rely on serological screening of populations exposed to trypanosomes. In Guinea, mass medical screening surveys performed with the Card Agglutination Test for Trypanosomiasis have been progressively replaced by door-to-door approaches using Rapid Diagnostic Tests (RDTs) since 2016. However, RDTs availability represents a major concern and medical teams must often adapt, even in the absence of prior RDT performance evaluation. For the last 5 years, the Guinean HAT National Control Program had to combine three different RDTs according to their availability and price: the SD Bioline HAT (not available anymore), the HAT Sero-K-SeT (most expensive), and recently the Abbott Bioline HAT 2.0 (limited field evaluation). Here, we assess the performance of these RDTs, alone or in different combinations, through the analysis of both prospective and retrospective data. A parallel assessment showed a higher positivity rate of Abbott Bioline HAT 2.0 (6.0%, n = 2,250) as compared to HAT Sero-K-SeT (1.9%), with a combined positive predictive value (PPV) of 20.0%. However, an evaluation of Abbott Bioline HAT 2.0 alone revealed a low PPV of 3.9% (n = 6,930) which was surpassed when using Abbott Bioline HAT 2.0 in first line and HAT Sero-K-SeT as a secondary test before confirmation, with a combined PPV reaching 44.4%. A retrospective evaluation of all 3 RDTs was then conducted on 189 plasma samples from the HAT-NCP biobank, confirming the higher sensitivity (94.0% [85.6-97.7%]) and lower specificity (83.6% [76.0-89.1%]) of Abbott Bioline HAT 2.0 as compared to SD Bioline HAT (Se 64.2% [52.2-74.6%]-Sp 98.4% [94.2-99.5%]) and HAT Sero-K-SeT (Se 88.1% [78.2-93.8%]-Sp 98.4% [94.2-99.5%]). A comparison of Abbott Bioline HAT 2.0 and malaria-RDT positivity rates on 479 subjects living in HAT-free malaria-endemic areas further revealed that a significantly higher proportion of subjects positive in Abbott Bioline HAT 2.0 were also positive in malaria-RDT, suggesting a possible cross-reaction of Abbott Bioline HAT 2.0 with malaria-related biological factors in about 10% of malaria cases. This would explain, at least in part, the limited specificity of Abbott Bioline HAT 2.0. Overall, Abbott Bioline HAT 2.0 seems suitable as first line RDT in combination with a second HAT RDT to prevent confirmatory lab overload and loss of suspects during referral for confirmation. A state-of-the-art prospective comparative study is further required for comparing all current and future HAT RDTs to propose an optimal combination of RDTs for door-to-door active screening.
Assuntos
Malária , Tripanossomíase Africana , Humanos , Animais , Tripanossomíase Africana/diagnóstico , Papua Nova Guiné , Estudos Prospectivos , Estudos RetrospectivosRESUMO
The skin is an anatomical reservoir for African trypanosomes, yet the prevalence of extravascular parasite carriage in the population at risk of gambiense Human African Trypanosomiasis (gHAT) remains unclear. Here, we conducted a prospective observational cohort study in the HAT foci of Forecariah and Boffa, Republic of Guinea. Of the 18,916 subjects serologically screened for gHAT, 96 were enrolled into our study. At enrolment and follow-up visits, participants underwent a dermatological examination and had blood samples and superficial skin snip biopsies taken for examination by molecular and immuno-histological methods. In seropositive individuals, dermatological symptoms were significantly more frequent as compared to seronegative controls. Trypanosoma brucei DNA was detected in the blood of 67% of confirmed cases (22/33) and 9% of unconfirmed seropositive individuals (3/32). However, parasites were detected in the extravascular dermis of up to 71% of confirmed cases (25/35) and 41% of unconfirmed seropositive individuals (13/32) by PCR and/or immuno-histochemistry. Six to twelve months after treatment, trypanosome detection in the skin dropped to 17% of confirmed cases (5/30), whereas up to 25% of unconfirmed, hence untreated, seropositive individuals (4/16) were still found positive. Dermal trypanosomes were observed in subjects from both transmission foci, however, the occurrence of pruritus and the PCR positivity rates were significantly higher in unconfirmed seropositive individuals in Forecariah. The lower sensitivity of superficial skin snip biopsies appeared critical for detecting trypanosomes in the basal dermis. These results are discussed in the context of the planned elimination of gHAT.
Assuntos
Pele , Trypanosoma brucei gambiense , Tripanossomíase Africana , Humanos , Guiné/epidemiologia , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/diagnóstico , Masculino , Adulto , Feminino , Trypanosoma brucei gambiense/isolamento & purificação , Estudos Prospectivos , Prevalência , Pele/parasitologia , Pele/patologia , Adulto Jovem , Pessoa de Meia-Idade , Adolescente , DNA de Protozoário/genética , CriançaRESUMO
BACKGROUND: Serological screening tests play a crucial role to diagnose gambiense human African trypanosomiasis (gHAT). Presently, they preselect individuals for microscopic confirmation, but in future "screen and treat" strategies they will identify individuals for treatment. Variability in reported specificities, the development of new rapid diagnostic tests (RDT) and the hypothesis that malaria infection may decrease RDT specificity led us to evaluate the specificity of 5 gHAT screening tests. METHODS: During active screening, venous blood samples from 1095 individuals from Côte d'Ivoire and Guinea were tested consecutively with commercial (CATT, HAT Sero-K-SeT, Abbott Bioline HAT 2.0) and prototype (DCN HAT RDT, HAT Sero-K-SeT 2.0) gHAT screening tests and with a malaria RDT. Individuals with ≥ 1 positive gHAT screening test underwent microscopy and further immunological (trypanolysis with T.b. gambiense LiTat 1.3, 1.5 and 1.6; indirect ELISA/T.b. gambiense; T.b. gambiense inhibition ELISA with T.b. gambiense LiTat 1.3 and 1.5 VSG) and molecular reference laboratory tests (PCR TBRN3, 18S and TgsGP; SHERLOCK 18S Tids, 7SL Zoon, and TgsGP; Trypanozoon S2-RT-qPCR 18S2, 177T, GPI-PLC and TgsGP in multiplex; RT-qPCR DT8, DT9 and TgsGP in multiplex). Microscopic trypanosome detection confirmed gHAT, while other individuals were considered gHAT free. Differences in fractions between groups were assessed by Chi square and differences in specificity between 2 tests on the same individuals by McNemar. RESULTS: One gHAT case was diagnosed. Overall test specificities (n = 1094) were: CATT 98.9% (95% CI: 98.1-99.4%); HAT Sero-K-SeT 86.7% (95% CI: 84.5-88.5%); Bioline HAT 2.0 82.1% (95% CI: 79.7-84.2%); DCN HAT RDT 78.2% (95% CI: 75.7-80.6%); and HAT Sero-K-SeT 2.0 78.4% (95% CI: 75.9-80.8%). In malaria positives, gHAT screening tests appeared less specific, but the difference was significant only in Guinea for Abbott Bioline HAT 2.0 (P = 0.03) and HAT Sero-K-Set 2.0 (P = 0.0006). The specificities of immunological and molecular laboratory tests in gHAT seropositives were 98.7-100% (n = 399) and 93.0-100% (n = 302), respectively. Among 44 reference laboratory test positives, only the confirmed gHAT patient and one screening test seropositive combined immunological and molecular reference laboratory test positivity. CONCLUSIONS: Although a minor effect of malaria cannot be excluded, gHAT RDT specificities are far below the 95% minimal specificity stipulated by the WHO target product profile for a simple diagnostic tool to identify individuals eligible for treatment. Unless specificity is improved, an RDT-based "screen and treat" strategy would result in massive overtreatment. In view of their inconsistent results, additional comparative evaluations of the diagnostic performance of reference laboratory tests are indicated for better identifying, among screening test positives, those at increased suspicion for gHAT. TRIAL REGISTRATION: The trial was retrospectively registered under NCT05466630 in clinicaltrials.gov on July 15 2022.
Assuntos
Sensibilidade e Especificidade , Trypanosoma brucei gambiense , Tripanossomíase Africana , Humanos , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/sangue , Côte d'Ivoire , Trypanosoma brucei gambiense/imunologia , Trypanosoma brucei gambiense/isolamento & purificação , Adulto , Guiné , Estudos Prospectivos , Masculino , Adolescente , Feminino , Adulto Jovem , Pessoa de Meia-Idade , Testes Sorológicos/métodos , Criança , Ensaio de Imunoadsorção Enzimática/métodos , Idoso , Pré-Escolar , Anticorpos Antiprotozoários/sangueRESUMO
The complex life cycle of Trypanosoma brucei provides an excellent model system to understand signalling pathways that regulate development. We described previously the classical functions of TOR (target of rapamycin) 1 and TOR2 in T. brucei. In a more recent study, we described a novel TOR kinase, named TOR4, which regulates differentiation from the proliferative infective form to the quiescent form. In contrast with TOR1 loss-of-function, down-regulation of TOR4 triggers an irreversible differentiation process through the development of the insect pre-adapted quiescent form. TOR4 governs a signalling pathway distinct from those controlled by the conventional TOR complexes TORC1 and TORC2. Depletion of TOR4 induces all well-known characteristics of the quiescent developmental stage in trypanosomes, including expression of the PAD (proteins associated with differentiation) surface proteins and transcriptional down-regulation of the VSG (variant surface glycoprotein) gene. TOR4 kinase forms a structurally and functionally distinct complex named TORC4. TOR4 associates with LST8 (lethal with sec-13 protein 8) and other factors including an armadillo-domain-containing protein and the major vault protein, which probably serves as a scaffold for this kinase. Research in T. brucei, a protozoan parasite that diverged from the eukaryotic tree early in evolution, may help to uncover new functions of TOR kinases.
Assuntos
Serina-Treonina Quinases TOR/metabolismo , Trypanosoma brucei brucei/enzimologia , Animais , Estágios do Ciclo de Vida , Transdução de Sinais , Trypanosoma brucei brucei/fisiologiaRESUMO
Human African Trypanosomiasis (HAT) is caused by Trypanosoma brucei which is transmitted by the tsetse fly insect vector (Glossina spp). It is one of the 20 Neglected Tropical Diseases (NTD) listed by the WHO. These diseases affect the poorest and most vulnerable communities, for which the WHO has established a dedicated 2021-2030 roadmap. At the time of Alphonse Laveran, HAT devastated the African continent. In the 1960s, the disease was nearly under control, but it strongly re-emerged in the 1990s. A coordinated effort of all stakeholders, with national control programs as the main actors, a strong contribution of research and important donations by the private sector, allowed to decrease the HAT burden significantly. Since 2018, less than 1000 cases are detected annually. We here review new diagnostics, treatments and vector control tools that have been implemented jointly and successfully in several endemic countries.The next key challenge will be to sustain the gains. Newly emerging research questions include long-term carriage of trypanosomes and adaptation of tools to low prevalence contexts. Challenges out of the research area comprise the continued need of funding, maintenance of dedicated human resources, and the key question of access. Sustainable elimination as "interruption of transmission", which is the 2030 NTD roadmap target, can be reached, if these challenges are solved. We stress the importance of continuing to combine the efforts in the fight against the disease, because sustainable elimination of HAT is the best long-term prevention strategy against re-emergence. As such, HAT elimination can serve as an example for other infectious diseases.
Assuntos
Trypanosoma brucei brucei , Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/epidemiologia , Trypanosoma brucei gambiense , Insetos Vetores , Doenças Negligenciadas/epidemiologiaRESUMO
Although studies on African Trypanosomiases revealed a variety of trypanosome species in the blood of various animal taxa, animal reservoirs of Trypanosoma brucei gambiense and anatomical niches such as skin have been overlooked in most epidemiological settings. This study aims to update epidemiological data on trypanosome infections in animals from human African trypanosomiasis (HAT) foci of Cameroon. Blood and skin snips were collected from 291 domestic and wild animals. DNA was extracted from blood and skin snips and molecular approaches were used to identify different trypanosomes species. Immunohistochemical analyses were used to confirm trypanosome infections in skin snips. PCR revealed 137 animals (47.1%) with at least one trypanosome species in the blood and/or in the skin. Of these 137 animals, 90 (65.7%) and 32 (23.4%) had trypanosome infections respectively in the blood and skin. Fifteen (10.9%) animals had trypanosome infections in both blood and skin snip. Animals from the Campo HAT focus (55.0%) were significantly (X2 = 17.6; P< 0.0001) more infected than those (29.7%) from Bipindi. Trypanosomes of the subgenus Trypanozoon were present in 27.8% of animals while T. vivax, T. congolense forest type and savannah type were detected in 16.5%, 10.3% and 1.4% of animals respectively. Trypanosoma b. gambiense infections were detected in the blood of 7.6% (22/291) of animals. No T. b. gambiense infection was detected in skin. This study highlights the presence of several trypanosome species in the blood and skin of various wild and domestic animals. Skin appeared as an anatomical reservoir for trypanosomes in animals. Despite methodological limitations, pigs, sheep, goats and wild animals were confirmed as potential reservoirs of T. b. gambiense. These animal reservoirs must be considered for the designing of control strategies that will lead to sustainable elimination of HAT.
Assuntos
Trypanosoma , Tripanossomíase Africana , Moscas Tsé-Tsé , Humanos , Animais , Suínos , Ovinos , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/veterinária , Camarões/epidemiologia , Prevalência , DNA de Protozoário/genética , DNA de Protozoário/química , Trypanosoma/genética , Trypanosoma brucei gambiense/genética , Animais Selvagens , Cabras , Moscas Tsé-Tsé/genéticaRESUMO
One health (OH) approaches have increasingly been used in the last decade in the fight against zoonotic neglected tropical diseases (NTDs). However, descriptions of such collaborations between the human, animal and environmental health sectors are still limited for French-speaking tropical countries. The objective of the current survey was to explore the diversity of OH experiences applied to research, surveillance and control of NTDs by scientists from French-speaking countries, and discuss their constraints and benefits. Six zoonotic NTDs were targeted: echinococcoses, trypanosomiases, leishmaniases, rabies, Taenia solium cysticercosis and leptospiroses. Invitations to fill in an online questionnaire were sent to members of francophone networks on NTDs and other tropical diseases. Results from the questionnaire were discussed during an international workshop in October 2019. The vast majority (98%) of the 171 respondents considered OH approaches relevant although only 64% had implemented them. Among respondents with OH experience, 58% had encountered difficulties mainly related to a lack of knowledge, interest and support for OH approaches by funding agencies, policy-makers, communities and researchers. Silos between disciplines and health sectors were still strong at both scientific and operational levels. Benefits were reported by 94% of respondents with OH experience, including increased intellectual stimulation, stronger collaborations, higher impact and cost-efficiency of interventions. Recommendations for OH uptake included advocacy, capacity-building, dedicated funding, and higher communities' involvement. Improved research coordination by NTD networks, production of combined human-animal health NTD impact indicators, and transversal research projects on diagnostic and reservoirs were also considered essential.
Assuntos
Doenças Negligenciadas/prevenção & controle , Medicina Tropical , Zoonoses/prevenção & controle , Animais , Pesquisa Biomédica , Humanos , Inquéritos e QuestionáriosRESUMO
BACKGROUND: The existence of an animal reservoir of Trypanosoma brucei gambiense (T. b. gambiense), the agent of human African trypanosomiasis (HAT), may compromise the interruption of transmission targeted by World Health Organization. The aim of this study was to investigate the presence of trypanosomes in pigs and people in the Vavoua HAT historical focus where cases were still diagnosed in the early 2010's. METHODS: For the human survey, we used the CATT, mini-anion exchange centrifugation technique and immune trypanolysis tests. For the animal survey, the buffy coat technique was also used as well as the PCR using Trypanosoma species specific, including the T. b. gambiense TgsGP detection using single round and nested PCRs, performed from animal blood samples and from strains isolated from subjects positive for parasitological investigations. RESULTS: No HAT cases were detected among 345 people tested. A total of 167 pigs were investigated. Free-ranging pigs appeared significantly more infected than pigs in pen. Over 70% of free-ranging pigs were positive for CATT and parasitological investigations and 27-43% were positive to trypanolysis depending on the antigen used. T. brucei was the most prevalent species (57%) followed by T. congolense (24%). Blood sample extracted DNA of T. brucei positive subjects were negative to single round TgsGP PCR. However, 1/22 and 6/22 isolated strains were positive with single round and nested TgsGP PCRs, respectively. DISCUSSION: Free-ranging pigs were identified as a multi-reservoir of T. brucei and/or T. congolense with mixed infections of different strains. This trypanosome diversity hinders the easy and direct detection of T. b. gambiense. We highlight the lack of tools to prove or exclude with certainty the presence of T. b. gambiense. This study once more highlights the need of technical improvements to explore the role of animals in the epidemiology of HAT.
Assuntos
Reservatórios de Doenças/parasitologia , Doenças dos Suínos/parasitologia , Trypanosoma brucei gambiense/isolamento & purificação , Trypanosoma congolense/isolamento & purificação , Tripanossomíase Africana/parasitologia , Tripanossomíase Africana/veterinária , Animais , Animais Domésticos/parasitologia , Côte d'Ivoire/epidemiologia , Humanos , Reação em Cadeia da Polimerase , Suínos , Doenças dos Suínos/epidemiologia , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/fisiologia , Trypanosoma congolense/genética , Trypanosoma congolense/fisiologia , Tripanossomíase Africana/epidemiologiaRESUMO
For clinical epidemiology specialists, connecting the genetic diversity of Echinococcus multilocularis to sources of infection or particular sites has become somewhat of a holy grail. It is very difficult to trace the infection history of alveolar echinococcosis (AE) patients as there may be an incubation period of five to 15 years before reliable diagnosis. Moreover, the variability of parasitic manifestations in human patients raises the possibility of genetically different isolates of E. multilocularis having different levels of pathogenicity. Thus, the exposure of human patients to different strains or genotypes circulating in geographically different environments may lead to different disease outcomes. Molecular tools, such as the microsatellite marker EmsB, were required to investigate these aspects. This genetic marker was previously tested on a collection of 1211 European field samples predominantly of animal origin, referenced on a publicly available database. In this study, we investigated a panel of 66 metacestode samples (between 1981 and 2019) recovered surgically from 63 patients diagnosed with alveolar echinococcosis originating from four European countries (France, Switzerland, Germany, Belgium). In this study, we identified nine EmsB profiles, five of which were found in patients located in the same areas of France and Switzerland. One profile was detected on both sides of the French-Swiss border, whereas most patients from non-endemic regions clustered together in another profile. EmsB profiles appeared to remain stable over time because similar profiles were detected in patients who underwent surgery recently and patients who underwent surgery some time ago. This study sheds light on possible pathways of contamination in humans, including proximity contamination in some cases, and the dominant contamination profiles in Europe, particularly for extrahepatic lesions.
RESUMO
Persistent pathogens have evolved to avoid elimination by the mammalian immune system including mechanisms to evade complement. Infections with African trypanosomes can persist for years and cause human and animal disease throughout sub-Saharan Africa. It is not known how trypanosomes limit the action of the alternative complement pathway. Here we identify an African trypanosome receptor for mammalian factor H, a negative regulator of the alternative pathway. Structural studies show how the receptor binds ligand, leaving inhibitory domains of factor H free to inactivate complement C3b deposited on the trypanosome surface. Receptor expression is highest in developmental stages transmitted to the tsetse fly vector and those exposed to blood meals in the tsetse gut. Receptor gene deletion reduced tsetse infection, identifying this receptor as a virulence factor for transmission. This demonstrates how a pathogen evolved a molecular mechanism to increase transmission to an insect vector by exploitation of a mammalian complement regulator.
Assuntos
Fator H do Complemento/metabolismo , Trypanosoma/fisiologia , Moscas Tsé-Tsé/parasitologia , Animais , Anticorpos Monoclonais/metabolismo , Células CHO , Bovinos , Membrana Celular/metabolismo , Complemento C3b/metabolismo , Fator H do Complemento/química , Cricetinae , Cricetulus , Camundongos Endogâmicos BALB C , Parasitemia/sangue , Ligação Proteica , Domínios Proteicos , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/metabolismo , Regulação para CimaRESUMO
Echinococcus vogeli infection in a hunter from the rain forest of French Guiana was confirmed by imaging and mitochondrial DNA sequence analysis. Serologic examination showed typical patterns for both alveolar and cystic echinococcosis. Polycystic echinococcis caused by E. vogeli may be an emerging parasitic disease in Central and South America.