Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biotechnol Bioeng ; 117(8): 2588-2609, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32333387

RESUMO

Endotoxins are the major contributors to the pyrogenic response caused by contaminated pharmaceutical products, formulation ingredients, and medical devices. Recombinant biopharmaceutical products are manufactured using living organisms, including Gram-negative bacteria. Upon the death of a Gram-negative bacterium, endotoxins (also known as lipopolysaccharides) in the outer cell membrane are released into the lysate where they can interact with and form bonds with biomolecules, including target therapeutic compounds. Endotoxin contamination of biologic products may also occur through water, raw materials such as excipients, media, additives, sera, equipment, containers closure systems, and expression systems used in manufacturing. The manufacturing process is, therefore, in critical need of methods to reduce and remove endotoxins by monitoring raw materials and in-process intermediates at critical steps, in addition to final drug product release testing. This review paper highlights a discussion on three major topics about endotoxin detection techniques, upstream processes for the production of therapeutic molecules, and downstream processes to eliminate endotoxins during product purification. Finally, we have evaluated the effectiveness of endotoxin removal processes from a perspective of high purity and low cost.


Assuntos
Produtos Biológicos , Contaminação de Medicamentos/prevenção & controle , Endotoxinas , Animais , Produtos Biológicos/química , Produtos Biológicos/normas , Técnicas Biossensoriais , Biotecnologia , Bovinos , Cromatografia , Endotoxinas/análise , Endotoxinas/isolamento & purificação , Teste do Limulus , Coelhos
2.
Biophys J ; 116(2): 347-359, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30580920

RESUMO

The size of a cell is central to many functions, including cellular communication and exchange of materials with the environment. This modeling and experimental study focused on understanding how the size of a cell determines its ability to uptake nanometer-scale extracellular materials from the environment. Several mechanisms in the cell plasma membrane mediate cellular uptake of nutrients, biomolecules, and particles. These mechanisms involve recognition and internalization of the extracellular molecules via endocytic components, such as clathrin-coated pits, vacuoles, and micropinocytic vesicles. Because the demand for an external resource could be different for cells of different sizes, the collective actions of these various endocytic routes should also vary based on the cell size. Here, using a reaction-diffusion model, we analyze single-cell data to interrogate the one/one mapping between the size of the MDA-MB 231 breast cancer cells and their ability to uptake nanoparticles. Our analysis indicates that under both reaction- and diffusion-controlled regimes, cellular uptake follows a linear relationship with the cell radius. Furthermore, this linear dependency is insensitive to particle size variation within 20-200 nm range. This result is counterintuitive because the general perception is that cellular uptake is proportional to the cell volume (mass) or surface area and hence follow a cubic or square relationship with the cell radius. A further analysis using our model reveals a potential mechanism underlying this linear relationship.


Assuntos
Tamanho Celular , Endocitose , Nanopartículas/metabolismo , Linhagem Celular Tumoral , Vesículas Citoplasmáticas/metabolismo , Humanos , Dinâmica não Linear
3.
J Nanobiotechnology ; 16(1): 80, 2018 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-30316298

RESUMO

BACKGROUND: Engineered inorganic nanoparticles (NPs) are essential components in the development of nanotechnologies. For applications in nanomedicine, particles need to be functionalized to ensure a good dispersibility in biological fluids. In many cases however, functionalization is not sufficient: the particles become either coated by a corona of serum proteins or precipitate out of the solvent. We show that by changing the coating of magnetic iron oxide NPs using poly-L-lysine (PLL) polymer the colloidal stability of the dispersion is improved in aqueous solutions including water, phosphate buffered saline (PBS), PBS with 10% fetal bovine serum (FBS) and cell culture medium, and the internalization of the NPs toward living mammalian cells is profoundly affected. METHODS: A multifunctional magnetic NP is designed to perform a near-infrared (NIR)-responsive remote control photothermal ablation for the treatment of breast cancer. In contrast to the previously reported studies of gold (Au) magnetic (Fe3O4) core-shell NPs, a Janus-like nanostructure is synthesized with Fe3O4 NPs decorated with Au resulting in an approximate size of 60 nm mean diameter. The surface of trisoctahedral Au-Fe3O4 NPs was coated with a positively charged polymer, PLL to deliver the NPs inside cells. The PLL-Au-Fe3O4 NPs were characterized by transmission electron microscopy (TEM), XRD, FT-IR and dynamic light scattering (DLS). The unique properties of both Au surface plasmon resonance and superparamagnetic moment result in a multimodal platform for use as a nanothermal ablator and also as a magnetic resonance imaging (MRI) contrast agent, respectively. Taking advantage of the photothermal therapy, PLL-Au-Fe3O4 NPs were incubated with BT-474 and MDA-MB-231 breast cancer cells, investigated for the cytotoxicity and intracellular uptake, and remotely triggered by a NIR laser of ~ 808 nm (1 W/cm2 for 10 min). RESULTS: The PLL coating increased the colloidal stability and robustness of Au-Fe3O4 NPs (PLL-Au-Fe3O4) in biological media including cell culture medium, PBS and PBS with 10% fetal bovine serum. It is revealed that no significant (< 10%) cytotoxicity was induced by PLL-Au-Fe3O4 NPs itself in BT-474 and MDA-MB-231 cells at concentrations up to 100 µg/ml. Brightfield microscopy, fluorescence microscopy and TEM showed significant uptake of PLL-Au-Fe3O4 NPs by BT-474 and MDA-MB-231 cells. The cells exhibited 40 and 60% inhibition in BT-474 and MDA-MB-231 cell growth, respectively following the internalized NPs were triggered by a photothermal laser using 100 µg/ml PLL-Au-Fe3O4 NPs. The control cells treated with NPs but without laser showed < 10% cell death compared to no laser treatment control CONCLUSION: Combined together, the results demonstrate a new polymer gold superparamagnetic nanostructure that integrates both diagnostics function and photothermal ablation of tumors into a single multimodal nanoplatform exhibiting a significant cancer cell death.


Assuntos
Compostos Férricos/química , Ouro/química , Nanopartículas de Magnetita/química , Polímeros/química , Nanomedicina Teranóstica/métodos , Morte Celular , Linhagem Celular Tumoral , Fluorescência , Humanos , Hipertermia Induzida , Nanopartículas de Magnetita/ultraestrutura , Fototerapia , Polilisina/síntese química , Polilisina/química , Eletricidade Estática , Temperatura , Difração de Raios X
4.
Nanotechnology ; 28(4): 045601, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27977417

RESUMO

Ineffective drug release at the target site is among the top challenges for cancer treatment. This reflects the facts that interaction with the physiological condition can denature active ingredients of drugs, and low delivery to the disease microenvironment leads to poor therapeutic outcomes. We hypothesize that depositing a thin layer of bioresponsive polymer on the surface of drug nanoparticles would not only protect drugs from degradation but also allow the release of drugs at the target site. Here, we report a one-step process to prepare bioresponsive polymer coated drug nanorods (NRs) from liquid precursors using the solvent diffusion method. A thin layer (10.3 ± 1.4 nm) of poly(ε-caprolactone) (PCL) polymer coating was deposited on the surface of camptothecin (CPT) anti-cancer drug NRs. The mean size of PCL-coated CPT NRs was 500.9 ± 91.3 nm length × 122.7 ± 10.1 nm width. The PCL polymer coating was biodegradable at acidic pH 6 as determined by Fourier transform infrared spectroscopy. CPT drugs were released up to 51.5% when PCL coating dissolved into non-toxic carboxyl and hydroxyl groups. Trastuzumab (TTZ), a humanized IgG monoclonal antibody, was conjugated to the NR surface for breast cancer cell targeting. Combination treatments using CPT and TTZ decreased the HER-2 positive BT-474 breast cancer cell growth by 66.9 ± 5.3% in vitro. These results suggest effective combination treatments of breast cancer cells using bioresponsive polymer coated drug delivery.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Materiais Revestidos Biocompatíveis/química , Nanotubos/química , Polímeros/química , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Liberação Controlada de Fármacos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Nanotubos/ultraestrutura , Poliésteres/química , Espectroscopia de Infravermelho com Transformada de Fourier , Trastuzumab/farmacologia , Trastuzumab/uso terapêutico
5.
Biotechnol Bioeng ; 113(6): 1345-1356, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26614912

RESUMO

Eukaryotic cells maintain an immense amount of genetic information by tightly wrapping their DNA around positively charged histones. While this strategy allows human cells to maintain more than 25,000 genes, histone binding can also block gene expression. Consequently, cells express histone acetyl transferases (HATs) to acetylate histone lysines and release DNA for transcription. Conversely, histone deacetylases (HDACs) are employed for restoring the positive charge on the histones, thereby silencing gene expression by increasing histone-DNA binding. It has previously been shown that histones bind and silence viral DNA, while hyperacetylation of histones via HDAC inhibition restores viral gene expression. In this study, we demonstrate that treatment with Entinostat, an HDAC inhibitor, enhances transgene (luciferase) expression by up to 25-fold in human prostate and murine bladder cancer cell lines when used with cationic polymers for plasmid DNA delivery. Entinostat treatment altered cell cycle progression, resulting in a significant increase in the fraction of cells present in the G0/G1 phase at low micromolar concentrations. While this moderate G0/G1 arrest disappeared at higher concentrations, a modest increase in the fraction of apoptotic cells and a decrease in cell proliferation were observed, consistent with the known anticancer effects of the drug. DNase accessibility studies revealed no significant change in plasmid transcriptional availability with Entinostat treatment. However, quantitative PCR studies indicated that Entinostat treatment, at the optimal dose for enhancing transgene expression, led to an increase in the amount of plasmid present in the nucleus in two cancer cell lines. Taken together, our results show that Entinostat enhances polymer- mediated transgene expression and can be useful in applications related to transient protein expression in mammalian cells. Biotechnol. Bioeng. 2016;113: 1345-1356. © 2015 Wiley Periodicals, Inc.


Assuntos
Benzamidas/administração & dosagem , DNA de Neoplasias/genética , Histona Desacetilases/genética , Neoplasias Experimentais/genética , Neoplasias Experimentais/metabolismo , Piridinas/administração & dosagem , Transgenes/genética , Linhagem Celular Tumoral , DNA de Neoplasias/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/genética , Inibidores de Histona Desacetilases/administração & dosagem , Histona Desacetilases/metabolismo , Humanos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
6.
Nanotechnology ; 27(28): 285601, 2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-27254407

RESUMO

The control of microbial infections is critical for the preparation of biological media including water to prevent lethal septic shock. Sepsis is one of the leading causes of death in the United States. More than half a million patients suffer from sepsis every year. Both gram-positive and gram-negative bacteria are responsible for septic infection by the most common organisms i.e., Escherichia coli and Pseuodomonas aeruginosa. The bacterial cell membrane releases negatively charged endotoxins upon death and enzymatic destruction, which stimulate antigenic response in humans to gram-negative infections. Several methods including distillation, ethylene oxide treatment, filtration and irradiation have been employed to remove endotoxins from contaminated samples, however, the reduction efficiency remains low, and presents a challenge. Polymer nanoparticles can be used to overcome the current inability to effectively sequester endotoxins from water. This process is termed endotoxin hitchhiking. The binding of endotoxin on polymer nanoparticles via electrostatic and hydrophobic interactions offers efficient removal from water. However, the effect of polymer nanoparticles and its surface areas has not been investigated for removal of endotoxins. Poly(ε-caprolactone) (PCL) polymer was tested for its ability to effectively bind and remove endotoxins from water. By employing a simple one-step phase separation technique, we were able to synthesize PCL nanoparticles of 398.3 ± 95.13 nm size and a polydispersity index of 0.2. PCL nanoparticles showed ∼78.8% endotoxin removal efficiency, the equivalent of 3.9 × 10(5) endotoxin units (EU) per ml. This is 8.34-fold more effective than that reported for commercially available membranes. Transmission electron microscopic images confirmed binding of multiple endotoxins to the nanoparticle surface. The concept of using nanoparticles may be applicable not only to eliminate gram-negative bacteria, but also for any gram-positive bacteria, fungi and parasites.

7.
Proc Natl Acad Sci U S A ; 110(9): 3270-5, 2013 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-23401509

RESUMO

Monoclonal antibodies are used in numerous therapeutic and diagnostic applications; however, their efficacy is contingent on specificity and avidity. Here, we show that presentation of antibodies on the surface of nonspherical particles enhances antibody specificity as well as avidity toward their targets. Using spherical, rod-, and disk-shaped polystyrene nano- and microparticles and trastuzumab as the targeting antibody, we studied specific and nonspecific uptake in three breast cancer cell lines: BT-474, SK-BR-3, and MDA-MB-231. Rods exhibited higher specific uptake and lower nonspecific uptake in all cells compared with spheres. This surprising interplay between particle shape and antibodies originates from the unique role of shape in determining binding and unbinding of particles to cell surface. In addition to exhibiting higher binding and internalization, trastuzumab-coated rods also exhibited greater inhibition of BT-474 breast cancer cell growth in vitro to a level that could not be attained by soluble forms of the antibody. The effect of trastuzumab-coated rods on cells was enhanced further by replacing polystyrene particles with pure chemotherapeutic drug nanoparticles of comparable dimensions made from camptothecin. Trastuzumab-coated camptothecin nanoparticles inhibited cell growth at a dose 1,000-fold lower than that required for comparable inhibition of growth using soluble trastuzumab and 10-fold lower than that using BSA-coated camptothecin. These results open unique opportunities for particulate forms of antibodies in therapeutics and diagnostics.


Assuntos
Anticorpos Monoclonais/imunologia , Especificidade de Anticorpos/imunologia , Nanopartículas/química , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Especificidade de Anticorpos/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Feminino , Humanos , Nanopartículas/ultraestrutura , Temperatura , Trastuzumab
8.
Microb Ecol ; 62(1): 1-13, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21331609

RESUMO

The deposition of mine tailings generated from 125 years of sulfidic ore mining resulted in the enrichment of Coeur d'Alene River (CdAR) sediments with significant amounts of toxic heavy metals. A review of literature suggests that microbial populations play a pivotal role in the biogeochemical cycling of elements in such mining-impacted sedimentary environments. To assess the indigenous microbial communities associated with metal-enriched sediments of the CdAR, high-density 16S microarray (PhyloChip) and clone libraries specific to bacteria (16S rRNA), ammonia oxidizers (amoA), and methanogens (mcrA) were analyzed. PhyloChip analysis provided a comprehensive assessment of bacterial populations and detected the largest number of phylotypes in Proteobacteria followed by Firmicutes and Actinobacteria. Furthermore, PhyloChip and clone libraries displayed considerable metabolic diversity in indigenous microbial populations by capturing several chemolithotrophic groups such as ammonia oxidizers, iron-reducers and -oxidizers, methanogens, and sulfate-reducers in the CdAR sediments. Twenty-two phylotypes detected on PhyloChip could not be classified even at phylum level thus suggesting the presence of novel microbial populations in the CdAR sediments. Clone libraries demonstrated very limited diversity of ammonia oxidizers and methanogens in the CdAR sediments as evidenced by the fact that only Nitrosospira- and Methanosarcina-related phylotypes were retrieved in amoA and mcrA clone libraries, respectively.


Assuntos
Bactérias/classificação , Bactérias/isolamento & purificação , Sedimentos Geológicos/microbiologia , Metais Pesados/metabolismo , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Sedimentos Geológicos/química , Metais Pesados/análise , Mineração , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Rios/química , Poluentes Químicos da Água/análise , Poluição Química da Água
9.
Sci Rep ; 11(1): 1298, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446783

RESUMO

Monogalactosyldiacylglycerol (MGDG) is the most abundant type of glycoglycerolipid found in the plant cell membrane and mostly in the chloroplast thylakoid membrane. The amphiphilic nature of MGDG is attractive in pharmaceutical fields for interaction with other biological molecules and hence exerting therapeutic anti-cancer, anti-viral, and anti-inflammatory activities. In this study, we investigated the therapeutic efficacy of cyanobacteria derived MGDG to inhibit breast cancer cell growth. MGDG was extracted from a cyanobacteria Synechocystis sp. PCC 6803 followed by a subsequent fractionation by column chromatographic technique. The purity and molecular structure of MGDG were analyzed by nuclear magnetic resonance (NMR) spectroscopy analysis. The presence of MGDG in the extracted fraction was further confirmed and quantified by high-performance liquid chromatography (HPLC). The anti-proliferation activity of the extracted MGDG molecule was tested against BT-474 and MDA-MB-231 breast cancer cell lines. The in vitro study showed that MGDG extracted from Synechocystis sp. PCC 6803 induced apoptosis in (70 ± 8) % of BT-474 (p < 0.001) and (58 ± 5) % of MDA-MB-231 cells (p < 0.001) using ~ 60 and 200 ng/ml of concentrations, respectively. The half-maximal inhibitory concentration, IC50 of MGDG extracted from Synechocystis sp. PCC 6803 were (27.2 ± 7.6) and (150 ± 70) ng/ml in BT-474 and MDA-MB-231 cell lines, respectively. Quantification of caspase-3/7 activity using flow cytometry showed (3.0 ± 0.4) and (2.1 ± 0.04)-fold (p < 0.001) higher protein expressions in the MGDG treated BT-474 and MDA-MB-231 cells, respectively than untreated controls conferring to the caspase-dependent apoptosis. The MGDG did not show any significant cytotoxic side effects in human dermal fibroblasts cells. A commercially available MGDG control did not induce any apoptotic cell death in cancer cells substantiating the potential of the MGDG extracted from Synechocystis sp. PCC 6803 for the treatment of breast cancer cells through the apoptosis-mediated pathway.


Assuntos
Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Glicolipídeos , Synechocystis/química , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Glicolipídeos/farmacologia , Humanos
10.
Sci Rep ; 11(1): 7347, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795712

RESUMO

Chemotherapeutic drugs suffer from non-specific binding, undesired toxicity, and poor blood circulation which contribute to poor therapeutic efficacy. In this study, antibody-drug nanoparticles (ADNs) are engineered by synthesizing pure anti-cancer drug nanorods (NRs) in the core of nanoparticles with a therapeutic monoclonal antibody, Trastuzumab on the surface of NRs for specific targeting and synergistic treatments of human epidermal growth factor receptor 2 (HER2) positive breast cancer cells. ADNs were designed by first synthesizing ~ 95 nm diameter × ~ 500 nm long paclitaxel (PTX) NRs using the nanoprecipitation method. The surface of PTXNRs was functionalized at 2' OH nucleophilic site using carbonyldiimidazole and conjugated to TTZ through the lysine residue interaction forming PTXNR-TTZ conjugates (ADNs). The size, shape, and surface charge of ADNs were characterized using scanning electron microscopy (SEM), SEM, and zeta potential, respectively. Using fluorophore labeling and response surface analysis, the percentage conjugation efficiency was found > 95% with a PTX to TTZ mass ratio of 4 (molar ratio ≈ 682). In vitro therapeutic efficiency of PTXNR-TTZ was evaluated in two HER2 positive breast cancer cell lines: BT-474 and SK-BR-3, and a HER2 negative MDA-MB-231 breast cancer cell using MTT assay. PTXNR-TTZ inhibited > 80% of BT-474 and SK-BR-3 cells at a higher efficiency than individual PTX and TTZ treatments alone after 72 h. A combination index analysis indicated a synergistic combination of PTXNR-TTZ compared with the doses of single-drug treatment. Relatively lower cytotoxicity was observed in MCF-10A human breast epithelial cell control. The molecular mechanisms of PTXNR-TTZ were investigated using cell cycle and Western blot analyses. The cell cycle analysis showed PTXNR-TTZ arrested > 80% of BT-474 breast cancer cells in the G2/M phase, while > 70% of untreated cells were found in the G0/G1 phase indicating that G2/M arrest induced apoptosis. A similar percentage of G2/M arrested cells was found to induce caspase-dependent apoptosis in PTXNR-TTZ treated BT-474 cells as revealed using Western blot analysis. PTXNR-TTZ treated BT-474 cells showed ~ 1.3, 1.4, and 1.6-fold higher expressions of cleaved caspase-9, cytochrome C, and cleaved caspase-3, respectively than untreated cells, indicating up-regulation of caspase-dependent activation of apoptotic pathways. The PTXNR-TTZ ADN represents a novel nanoparticle design that holds promise for targeted and efficient anti-cancer therapy by selective targeting and cancer cell death via apoptosis and mitotic cell cycle arrest.


Assuntos
Anticorpos/química , Neoplasias da Mama/metabolismo , Nanopartículas/química , Paclitaxel/administração & dosagem , Receptor ErbB-2/biossíntese , Trastuzumab/administração & dosagem , Antineoplásicos/administração & dosagem , Apoptose , Materiais Biocompatíveis , Ciclo Celular , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Corantes Fluorescentes/química , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Imidazóis/química , Concentração Inibidora 50 , Lisina/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Varredura , Nanomedicina
11.
Sci Rep ; 10(1): 8335, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433503

RESUMO

The effects of elevated levels of radiation contribute to the instability of pharmaceutical formulations in space compared to those on earth. Existing technologies are ineffective at maintaining the therapeutic efficacies of drugs in space. Thus, there is an urgent need to develop novel space-hardy formulations for preserving the stability and efficacy of drug formulations. This work aims to develop a novel approach for the protection of space pharmaceutical drug molecules from the radiation-induced damage to help extend or at least preserve their structural integrity and potency. To achieve this, free radical scavenging antioxidant, Trolox was conjugated on the surface of poly-lactic-co-glycolic acid (PLGA) nanoparticles for the protection of a candidate drug, melatonin that is used as a sleep aid medication in International Space Station (ISS). Melatonin-PLGA-PLL-Trolox nanoparticle as named as PolyRad was synthesized employing single oil in water (o/w) emulsion solvent evaporation method. PolyRad is spherical in shape and has an average diameter of ~600 nm with a low polydispersity index of 0.2. PolyRad and free melatonin (control) were irradiated by UV light after being exposed to a strong oxidant, hydrogen peroxide (H2O2). Bare melatonin lost ~80% of the active structure of the drug following irradiation with UV light or treatment with H2O2. In contrast, PolyRad protected >80% of the active structure of melatonin. The ability of PolyRad to protect melatonin structure was also carried out using 0, 1, 5 and 10 Gy gamma radiation. Gamma irradiation showed >98% active structures of melatonin encapsulated in PolyRads. Drug release and effectiveness of melatonin using PolyRad were evaluated on human umbilical vein endothelial cells (HUVEC) in vitro. Non-irradiated PolyRad demonstrated maximum drug release of ~70% after 72 h, while UV-irradiated and H2O2-treated PolyRad showed a maximum drug release of ~85%. Cytotoxicity of melatonin was carried out using both live/dead and MTT assays. Melatonin, non-radiated PolyRad and irradiated PolyRad inhibited the viability of HUVEC in a dose-dependent manner. Cell viability of melatonin, PolyRad alone without melatonin (PolyRad carrier control), non-radiated PolyRad, and irradiated PolyRad were ~98, 87, 75 and 70%, respectively at a concentration [Formula: see text] 0.01 [Formula: see text] ([Formula: see text]). Taken together, PolyRad nanoparticle provides an attractive formulation platform for preventing damage to pharmaceutical drugs in potential space mission applications.

12.
Small ; 5(3): 370-6, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19089841

RESUMO

A diverse array of nanoparticles, including quantum dots (QDs), metals, polymers, liposomes, and dendrimers, are being investigated as therapeutics and imaging agents in cancer diseases. However, the role of the cancer-cell phenotype on the uptake and intracellular fate of nanoparticles in cancer cells remains poorly understood. Reported here is that differences in cancer-cell phenotypes can lead to significant differences in intracellular sorting, trafficking, and localization of nanoparticles. Unconjugated anionic QDs demonstrate dramatically different intracellular profiles in three closely related human-prostate-cancer cells used in the investigation: PC3, PC3-flu, and PC3-PSMA. QDs demonstrate punctated intracellular localization throughout the cytoplasm in PC3 cells. In contrast, the nanoparticles localize mainly at a single juxtanuclear location ("dot-of-dots") inside the perinuclear recycling compartment in PC3-PSMA cells, where they co-localize with transferrin and the prostate-specific membrane antigen. The results indicate that nanoparticle sorting and transport is influenced by changes in cancer-cell phenotype and can have significant implications in the design and engineering of nanoscale drug delivery and imaging systems for advanced tumors.


Assuntos
Neoplasias da Próstata/metabolismo , Pontos Quânticos , Transporte Biológico , Linhagem Celular Tumoral , Clatrina/metabolismo , Sistemas de Liberação de Medicamentos , Humanos , Masculino , Microscopia Confocal , Microscopia de Fluorescência , Fenótipo
13.
Environ Toxicol Chem ; 28(10): 2020-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19496634

RESUMO

Heavy metals can significantly affect the kinetics of substrate biodegradation and microbial growth, including lag times and specific growth rates. A model to describe microbial metabolic lag as a function of the history of substrate concentration has been previously described by Wood et al. (Water Resour Res 31:553-563) and Ginn (Water Resour Res 35:1395-1408). In the present study, this model is extended by including the effect of heavy metals on metabolic lag by developing an inhibitor-dependent functional to account for the metabolic state of the microorganisms. The concentration of the inhibiting metal is explicitly incorporated into the functional. The validity of the model is tested against experimental data on the effects of zinc on Pseudomonas species isolated from Lake Coeur d'Alene sediments, Idaho, U.S.A., as well as the effects of nickel or cobalt on a mixed microbial culture collected from the aeration tank of a wastewater treatment plant in Athens, Greece. The simulations demonstrate the ability to incorporate the effect of metals on metabolism through lag, yield coefficient, and specific growth rates. The model includes growth limitation due to insufficient transfer of oxygen into the growth medium.


Assuntos
Metais Pesados/toxicidade , Modelos Biológicos , Pseudomonas/efeitos dos fármacos , Pseudomonas/crescimento & desenvolvimento , Acetatos/análise , Biodegradação Ambiental/efeitos dos fármacos , Sedimentos Geológicos/química , Cinética , Metais Pesados/química , Metais Pesados/metabolismo , Oxigênio/análise , Pseudomonas/metabolismo , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Poluentes do Solo/toxicidade , Fatores de Tempo , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade
14.
Sci Rep ; 9(1): 8867, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31222053

RESUMO

The presence of endotoxin, also known as lipopolysaccharides (LPS), as a side product appears to be a major drawback for the production of certain biomolecules that are essential for research, pharmaceutical, and industrial applications. In the biotechnology industry, gram-negative bacteria (e.g., Escherichia coli) are widely used to produce recombinant products such as proteins, plasmid DNAs and vaccines. These products are contaminated with LPS, which may cause side effects when administered to animals or humans. Purification of LPS often suffers from product loss. For this reason, special attention must be paid when purifying proteins aiming a product as free as possible of LPS with high product recovery. Although there are a number of methods for removing LPS, the question about how LPS removal can be carried out in an efficient and economical way is still one of the most intriguing issues and has no satisfactory solution yet. In this work, polymeric poly-ε-caprolactone (PCL) nanoparticles (NPs) (dP = 780 ± 285 nm) were synthesized at a relatively low cost and demonstrated to possess sufficient binding sites for LPS adsorption and removal with ~100% protein recovery. The PCL NPs removed greater than 90% LPS from protein solutions suspended in water using only one milligram (mg) of NPs, which was equivalent to ~1.5 × 106 endotoxin units (EU) per mg of particle. The LPS removal efficacy increased to a higher level (~100%) when phosphate buffered saline (PBS containing 137 mM NaCl) was used as a protein suspending medium in place of water, reflecting positive effects of increasing ionic strength on LPS binding interactions and adsorption. The results further showed that the PCL NPs not only achieved 100% LPS removal but also ~100% protein recovery for a wide concentration range from 20-1000 µg/ml of protein solutions. The NPs were highly effective in different buffers and pHs. To scale up the process further, PCL NPs were incorporated into a supporting cellulose membrane which promoted LPS adsorption further up to ~100% just by running the LPS-containing water through the membrane under gravity. Its adsorption capacity was 2.8 × 106 mg of PCL NPs, approximately 2 -fold higher than that of NPs alone. This is the first demonstration of endotoxin separation with high protein recovery using polymer NPs and the NP-based portable filters, which provide strong adsorptive interactions for LPS removal from protein solutions. Additional features of these NPs and membranes are biocompatible (environment friendly) recyclable after repeated elution and adsorption with no significant changes in LPS removal efficiencies. The results indicate that PCL NPs are an effective LPS adsorbent in powder and membrane forms, which have great potential to be employed in large-scale applications.


Assuntos
Produtos Biológicos/química , Biotecnologia/métodos , Caproatos/química , Lactonas/química , Lipopolissacarídeos/isolamento & purificação , Nanopartículas/química , Adsorção , Escherichia coli/metabolismo , Humanos , Ultrafiltração
15.
ACS Appl Bio Mater ; 2(7): 2791-2801, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35030813

RESUMO

The focus of this work is to develop a technology for the synthesis of polymer microcarriers that demonstrate mammalian cell culture adhesion on the surface of the microcarriers. Most mammalian cells are adherent in nature that requires multilayer vessels, large volume, expensive cell culture media, high manufacturing time, and high costs of cell culture supplies for the commercial-scale manufacturing of cells. The development of an efficient, scalable technology for producing large volumes of cells is a need in bioprocess industries to improve product potency. We developed a method of synthesizing soft biocompatible US FDA approved polymer based microparticle carrier system of approximately 260 ± 27 µm in diameter that serves as an adherent platform for human umbilical vein endothelial cells (HUVEC) to grow in suspension. Our preliminary experimental results showed that using the polymeric microcarrier system cell adhesion to the surface of the microcarriers was 2-3-fold higher than conventional cell culture flasks while using 10-fold lower cell culture media in a bioreactor than a tissue-culture treated flask. The survival of HUVEC on microparticles was confirmed by live cell staining (green fluorescent calcein AM), dead cell staining (ethidium homodimer-1), nuclear DAPI staining, actin cytoskeleton staining, confocal microscopy, and flow cytometry analysis. This technology will provide high cell culture productivity while reducing the costs of growing adherent cells.

16.
BMC Syst Biol ; 11(1): 113, 2017 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-29178887

RESUMO

BACKGROUND: Particle size is a key parameter for drug-delivery nanoparticle design. It is believed that the size of a nanoparticle may have important effects on its ability to overcome the transport barriers in biological tissues. Nonetheless, such effects remain poorly understood. Using a multiscale model, this work investigates particle size effects on the tissue distribution and penetration efficacy of drug-delivery nanoparticles. RESULTS: We have developed a multiscale spatiotemporal model of nanoparticle transport in biological tissues. The model implements a time-adaptive Brownian Dynamics algorithm that links microscale particle-cell interactions and adhesion dynamics to tissue-scale particle dispersion and penetration. The model accounts for the advection, diffusion, and cellular uptakes of particles. Using the model, we have analyzed how particle size affects the intra-tissue dispersion and penetration of drug delivery nanoparticles. We focused on two published experimental works that investigated particle size effects in in vitro and in vivo tissue conditions. By analyzing experimental data reported in these two studies, we show that particle size effects may appear pronounced in an in vitro cell-free tissue system, such as collagen matrix. In an in vivo tissue system, the effects of particle size could be relatively modest. We provide a detailed analysis on how particle-cell interactions may determine distribution and penetration of nanoparticles in a biological tissue. CONCLUSION: Our work suggests that the size of a nanoparticle may play a less significant role in its ability to overcome the intra-tissue transport barriers. We show that experiments involving cell-free tissue systems may yield misleading observations of particle size effects due to the absence of advective transport and particle-cell interactions.


Assuntos
Portadores de Fármacos/farmacocinética , Modelos Biológicos , Nanopartículas , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Distribuição Tecidual
17.
Nanomaterials (Basel) ; 7(6)2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561759

RESUMO

Heteromer star-shaped nanoparticles have the potential to carry out therapeutic agents, improve intracellular uptake, and safely release drugs after prolonged periods of residence at the diseased site. A one-step seed mediation process was employed using polylactide-co-glycolic acid (PLGA), polyvinyl alcohol (PVA), silver nitrate, and tetrakis(hydroxymethyl)phosphonium chloride (THPC). Mixing these reagents followed by UV irradiation successfully produced heteromer nanostars containing a number of arm chains attached to a single core with a high yield. The release of THPC from heteromer nanostars was tested for its potential use for breast cancer treatment. The nanostars present a unique geometrical design exhibiting a significant intracellular uptake by breast cancer cells but low cytotoxicity that potentiates its efficacy as drug carriers.

18.
Nano Today ; 9(2): 223-243, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25132862

RESUMO

Nanoparticles (NPs) have emerged as an effective modality for the treatment of various diseases including cancer, cardiovascular and inflammatory diseases. Various forms of NPs including liposomes, polymer particles, micelles, dendrimers, quantum dots, gold NPs and carbon nanotubes have been synthesized and tested for therapeutic applications. One of the greatest challenges that limit the success of NPs is their ability to reach the therapeutic site at necessary doses while minimizing accumulation at undesired sites. The biodistribution of NPs is determined by body's biological barriers that manifest in several distinct ways. For intravascular delivery of NPs, the barrier manifests in the form of: (i) immune clearance in the liver and spleen, (ii) permeation across the endothelium into target tissues, (iii) penetration through the tissue interstitium, (iv) endocytosis in target cells, (v) diffusion through cytoplasm and (vi) eventually entry into the nucleus, if required. Certain applications of NPs also rely on delivery through alternate routes including skin and mucosal membranes of the nose, lungs, intestine and vagina. In these cases, the diffusive resistance of these tissues poses a significant barrier to delivery. This review focuses on the current understanding of penetration of NPs through biological barriers. Emphasis is placed on transport barriers and not immunological barriers. The review also discusses design strategies for overcoming the barrier properties.

19.
ACS Nano ; 7(11): 9558-70, 2013 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-24053162

RESUMO

Design of carriers for effective delivery and targeting of drugs to cellular and subcellular compartments is an unmet need in medicine. Here, we report pure drug nanoparticles comprising camptothecin (CPT), trastuzumab (TTZ), and doxorubicin (DOX) to enable cell-specific interactions, subcellular accumulation, and growth inhibition of breast cancer cells. CPT is formulated in the form of nanorods which are coated with TTZ. DOX is encapsulated in the TTZ corona around the CPT nanoparticle. Our results show that TTZ/DOX-coated CPT nanorods exhibit cell-specific internalization in BT-474 breast cancer cells, after which TTZ is recycled to the plasma membrane, leaving CPT nanorods in the perinuclear region and delivering DOX into the nucleus of the cells. The effects of CPT-TTZ-DOX nanoparticles on growth inhibition are synergistic (combination index = 0.17 ± 0.03) showing 10-10 000-fold lower inhibitory concentrations (IC50) compared to those of individual drugs. The design of antibody-targeted pure drug nanoparticles offers a promising design strategy to facilitate intracellular delivery and therapeutic efficiency of anticancer drugs.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos , Nanomedicina/métodos , Nanopartículas/química , Anticorpos Monoclonais Humanizados/administração & dosagem , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/ultraestrutura , Camptotecina/administração & dosagem , Ciclo Celular , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Núcleo Celular/efeitos dos fármacos , Citoplasma/efeitos dos fármacos , Doxorrubicina/administração & dosagem , Feminino , Humanos , Concentração Inibidora 50 , Nanopartículas/ultraestrutura , Nanotubos/química , Trastuzumab
20.
J Control Release ; 155(3): 344-57, 2011 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-21723891

RESUMO

Inorganic nanoparticles have received increased attention in the recent past as potential diagnostic and therapeutic systems in the field of oncology. Inorganic nanoparticles have demonstrated successes in imaging and treatment of tumors both ex vivo and in vivo, with some promise towards clinical trials. This review primarily discusses progress in applications of inorganic nanoparticles for cancer imaging and treatment, with an emphasis on in vivo studies. Advances in the use of semiconductor fluorescent quantum dots, carbon nanotubes, gold nanoparticles (spheres, shells, rods, cages), iron oxide magnetic nanoparticles and ceramic nanoparticles in tumor targeting, imaging, photothermal therapy and drug delivery applications are discussed. Limitations and toxicity issues associated with inorganic nanoparticles in living organisms are also discussed.


Assuntos
Antineoplásicos , Meios de Contraste , Portadores de Fármacos/química , Compostos Inorgânicos/química , Nanopartículas/química , Neoplasias , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Diagnóstico por Imagem/métodos , Humanos , Microscopia Eletrônica de Transmissão , Neoplasias/diagnóstico , Neoplasias/terapia , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA