Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 40, 2024 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195568

RESUMO

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves metabolic health in animals. In this study, we investigated the effect of dietary SAAR on body weight, body composition, resting metabolic rate, gene expression profiles in white adipose tissue (WAT), and an extensive blood biomarker profile in humans with overweight or obesity. METHODS: N = 59 participants with overweight or obesity (73% women) were randomized stratified by sex to an 8-week plant-based dietary intervention low (~ 2 g/day, SAAR) or high (~ 5.6 g/day, control group) in sulfur amino acids. The diets were provided in full to the participants, and both investigators and participants were blinded to the intervention. Outcome analyses were performed using linear mixed model regression adjusted for baseline values of the outcome and sex. RESULTS: SAAR led to a ~ 20% greater weight loss compared to controls (ß 95% CI - 1.14 (- 2.04, - 0.25) kg, p = 0.013). Despite greater weight loss, resting metabolic rate remained similar between groups. Furthermore, SAAR decreased serum leptin, and increased ketone bodies compared to controls. In WAT, 20 genes were upregulated whereas 24 genes were downregulated (FDR < 5%) in the SAAR group compared to controls. Generally applicable gene set enrichment analyses revealed that processes associated with ribosomes were upregulated, whereas processes related to structural components were downregulated. CONCLUSION: Our study shows that SAAR leads to greater weight loss, decreased leptin and increased ketone bodies compared to controls. Further research on SAAR is needed to investigate the therapeutic potential for metabolic conditions in humans. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT04701346, registered Jan 8th 2021, https://www. CLINICALTRIALS: gov/study/NCT04701346.


Assuntos
Aminoácidos Sulfúricos , Sobrepeso , Feminino , Humanos , Masculino , Corpos Cetônicos , Leptina , Obesidade , Redução de Peso
2.
Redox Biol ; 73: 103192, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38776754

RESUMO

BACKGROUND: In animals, dietary sulfur amino acid restriction (SAAR) improves metabolic health, possibly mediated by altering sulfur amino acid metabolism and enhanced anti-obesogenic processes in adipose tissue. AIM: To assess the effects of SAAR over time on the plasma and urine SAA-related metabolites (sulfurome) in humans with overweight and obesity, and explore whether such changes were associated with body weight, body fat and adipose tissue gene expression. METHODS: Fifty-nine subjects were randomly allocated to SAAR (∼2 g SAA, n = 31) or a control diet (∼5.6 g SAA, n = 28) consisting of plant-based whole-foods and supplemented with capsules to titrate contents of SAA. Sulfurome metabolites in plasma and urine at baseline, 4 and 8 weeks were measured using HPLC and LC-MS/MS. mRNA-sequencing of subcutaneous white adipose tissue (scWAT) was performed to assess changes in gene expression. Data were analyzed with mixed model regression. Principal component analyses (PCA) were performed on the sulfurome data to identify potential signatures characterizing the response to SAAR. RESULTS: SAAR led to marked decrease of the main urinary excretion product sulfate (p < 0.001) and plasma and/or 24-h urine concentrations of cystathionine, sulfite, thiosulfate, H2S, hypotaurine and taurine. PCA revealed a distinct metabolic signature related to decreased transsulfuration and H2S catabolism that predicted greater weight loss and android fat mass loss in SAAR vs. controls (all pinteraction < 0.05). This signature correlated positively with scWAT expression of genes in the tricarboxylic acid cycle, electron transport and ß-oxidation (FDR = 0.02). CONCLUSION: SAAR leads to distinct alterations of the plasma and urine sulfurome in humans, and predicted increased loss of weight and android fat mass, and adipose tissue lipolytic gene expression in scWAT. Our data suggest that SAA are linked to obesogenic processes and that SAAR may be useful for obesity and related disorders. TRIAL IDENTIFIER: https://clinicaltrials.gov/study/NCT04701346.


Assuntos
Tecido Adiposo , Aminoácidos Sulfúricos , Obesidade , Sobrepeso , Humanos , Obesidade/metabolismo , Obesidade/genética , Masculino , Feminino , Sobrepeso/metabolismo , Sobrepeso/genética , Adulto , Pessoa de Meia-Idade , Tecido Adiposo/metabolismo , Aminoácidos Sulfúricos/metabolismo , Aminoácidos Sulfúricos/sangue , Metaboloma , Regulação da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA