Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Brain ; 147(6): 2023-2037, 2024 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-38242634

RESUMO

DNAJC6 encodes auxilin, a co-chaperone protein involved in clathrin-mediated endocytosis (CME) at the presynaptic terminal. Biallelic mutations in DNAJC6 cause a complex, early-onset neurodegenerative disorder characterized by rapidly progressive parkinsonism-dystonia in childhood. The disease is commonly associated with additional neurodevelopmental, neurological and neuropsychiatric features. Currently, there are no disease-modifying treatments for this condition, resulting in significant morbidity and risk of premature mortality. To investigate the underlying disease mechanisms in childhood-onset DNAJC6 parkinsonism, we generated induced pluripotent stem cells (iPSC) from three patients harbouring pathogenic loss-of-function DNAJC6 mutations and subsequently developed a midbrain dopaminergic neuronal model of disease. When compared to age-matched and CRISPR-corrected isogenic controls, the neuronal cell model revealed disease-specific auxilin deficiency as well as disturbance of synaptic vesicle recycling and homeostasis. We also observed neurodevelopmental dysregulation affecting ventral midbrain patterning and neuronal maturation. To explore the feasibility of a viral vector-mediated gene therapy approach, iPSC-derived neuronal cultures were treated with lentiviral DNAJC6 gene transfer, which restored auxilin expression and rescued CME. Our patient-derived neuronal model provides deeper insights into the molecular mechanisms of auxilin deficiency as well as a robust platform for the development of targeted precision therapy approaches.


Assuntos
Auxilinas , Terapia Genética , Proteínas de Choque Térmico HSP40 , Células-Tronco Pluripotentes Induzidas , Transtornos Parkinsonianos , Humanos , Terapia Genética/métodos , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/metabolismo , Auxilinas/genética , Auxilinas/metabolismo , Masculino , Feminino , Neurônios Dopaminérgicos/metabolismo , Mutação , Sinapses/genética , Sinapses/metabolismo , Endocitose/fisiologia , Endocitose/genética , Criança
2.
Am J Hum Genet ; 108(9): 1669-1691, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34314705

RESUMO

Transportin-2 (TNPO2) mediates multiple pathways including non-classical nucleocytoplasmic shuttling of >60 cargoes, such as developmental and neuronal proteins. We identified 15 individuals carrying de novo coding variants in TNPO2 who presented with global developmental delay (GDD), dysmorphic features, ophthalmologic abnormalities, and neurological features. To assess the nature of these variants, functional studies were performed in Drosophila. We found that fly dTnpo (orthologous to TNPO2) is expressed in a subset of neurons. dTnpo is critical for neuronal maintenance and function as downregulating dTnpo in mature neurons using RNAi disrupts neuronal activity and survival. Altering the activity and expression of dTnpo using mutant alleles or RNAi causes developmental defects, including eye and wing deformities and lethality. These effects are dosage dependent as more severe phenotypes are associated with stronger dTnpo loss. Interestingly, similar phenotypes are observed with dTnpo upregulation and ectopic expression of TNPO2, showing that loss and gain of Transportin activity causes developmental defects. Further, proband-associated variants can cause more or less severe developmental abnormalities compared to wild-type TNPO2 when ectopically expressed. The impact of the variants tested seems to correlate with their position within the protein. Specifically, those that fall within the RAN binding domain cause more severe toxicity and those in the acidic loop are less toxic. Variants within the cargo binding domain show tissue-dependent effects. In summary, dTnpo is an essential gene in flies during development and in neurons. Further, proband-associated de novo variants within TNPO2 disrupt the function of the encoded protein. Hence, TNPO2 variants are causative for neurodevelopmental abnormalities.


Assuntos
Deficiências do Desenvolvimento/genética , Proteínas de Drosophila/genética , Oftalmopatias Hereditárias/genética , Deficiência Intelectual/genética , Carioferinas/genética , Anormalidades Musculoesqueléticas/genética , beta Carioferinas/genética , Proteína ran de Ligação ao GTP/genética , Alelos , Sequência de Aminoácidos , Animais , Deficiências do Desenvolvimento/metabolismo , Deficiências do Desenvolvimento/patologia , Proteínas de Drosophila/antagonistas & inibidores , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Oftalmopatias Hereditárias/metabolismo , Oftalmopatias Hereditárias/patologia , Feminino , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Genoma Humano , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/metabolismo , Deficiência Intelectual/patologia , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Masculino , Anormalidades Musculoesqueléticas/metabolismo , Anormalidades Musculoesqueléticas/patologia , Mutação , Neurônios/metabolismo , Neurônios/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sequenciamento Completo do Genoma , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo
3.
Mov Disord ; 37(11): 2197-2209, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36054588

RESUMO

BACKGROUND AND OBJECTIVE: The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. METHODS: Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. RESULTS: One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. CONCLUSIONS: This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Coreia , Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Criança , Humanos , Hipercinese , Transtornos dos Movimentos/genética , Transtornos dos Movimentos/diagnóstico , Distúrbios Distônicos/genética , Coreia/diagnóstico , Coreia/genética , Proteínas do Tecido Nervoso , Fatores de Transcrição Forkhead , Diester Fosfórico Hidrolases , ATPase Trocadora de Sódio-Potássio , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética
4.
Mov Disord ; 37(10): 2139-2146, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35876425

RESUMO

BACKGROUND: Despite advances in next generation sequencing technologies, the identification of variants of uncertain significance (VUS) can often hinder definitive diagnosis in patients with complex neurodevelopmental disorders. OBJECTIVE: The objective of this study was to identify and characterize the underlying cause of disease in a family with two children with severe developmental delay associated with generalized dystonia and episodic status dystonicus, chorea, epilepsy, and cataracts. METHODS: Candidate genes identified by autozygosity mapping and whole-exome sequencing were characterized using cellular and vertebrate model systems. RESULTS: Homozygous variants were found in three candidate genes: MED27, SLC6A7, and MPPE1. Although the patients had features of MED27-related disorder, the SLC6A7 and MPPE1 variants were functionally investigated. SLC6A7 variant in vitro overexpression caused decreased proline transport as a result of reduced cell-surface expression, and zebrafish knockdown of slc6a7 exhibited developmental delay and fragile motor neuron morphology that could not be rescued by L-proline transporter-G396S RNA. Lastly, patient fibroblasts displayed reduced cell-surface expression of glycophosphatidylinositol-anchored proteins linked to MPPE1 dysfunction. CONCLUSIONS: We report a family harboring a homozygous MED27 variant with additional loss-of-function SLC6A7 and MPPE1 gene variants, which potentially contribute to a blended phenotype caused by multilocus pathogenic variants. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Distonia , Distúrbios Distônicos , Transtornos dos Movimentos , Transtornos do Neurodesenvolvimento , Animais , Distonia/diagnóstico , Distonia/genética , Distúrbios Distônicos/genética , Transtornos dos Movimentos/genética , Transtornos do Neurodesenvolvimento/genética , Prolina , RNA , Peixe-Zebra/genética
5.
Brain ; 144(8): 2443-2456, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-33734312

RESUMO

Aromatic l-amino acid decarboxylase (AADC) deficiency is a complex inherited neurological disorder of monoamine synthesis which results in dopamine and serotonin deficiency. The majority of affected individuals have variable, though often severe cognitive and motor delay, with a complex movement disorder and high risk of premature mortality. For most, standard pharmacological treatment provides only limited clinical benefit. Promising gene therapy approaches are emerging, though may not be either suitable or easily accessible for all patients. To characterize the underlying disease pathophysiology and guide precision therapies, we generated a patient-derived midbrain dopaminergic neuronal model of AADC deficiency from induced pluripotent stem cells. The neuronal model recapitulates key disease features, including absent AADC enzyme activity and dysregulated dopamine metabolism. We observed developmental defects affecting synaptic maturation and neuronal electrical properties, which were improved by lentiviral gene therapy. Bioinformatic and biochemical analyses on recombinant AADC predicted that the activity of one variant could be improved by l-3,4-dihydroxyphenylalanine (l-DOPA) administration; this hypothesis was corroborated in the patient-derived neuronal model, where l-DOPA treatment leads to amelioration of dopamine metabolites. Our study has shown that patient-derived disease modelling provides further insight into the neurodevelopmental sequelae of AADC deficiency, as well as a robust platform to investigate and develop personalized therapeutic approaches.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/deficiência , Dopaminérgicos/farmacologia , Células-Tronco Pluripotentes Induzidas , Levodopa/farmacologia , Neurogênese , Neurônios/efeitos dos fármacos , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Humanos
6.
Genet Med ; 23(4): 653-660, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33299146

RESUMO

PURPOSE: This study aims to provide a comprehensive description of the phenotypic and genotypic spectrum of SNAP25 developmental and epileptic encephalopathy (SNAP25-DEE) by reviewing newly identified and previously reported individuals. METHODS: Individuals harboring heterozygous missense or loss-of-function variants in SNAP25 were assembled through collaboration with international colleagues, matchmaking platforms, and literature review. For each individual, detailed phenotyping, classification, and structural modeling of the identified variant were performed. RESULTS: The cohort comprises 23 individuals with pathogenic or likely pathogenic de novo variants in SNAP25. Intellectual disability and early-onset epilepsy were identified as the core symptoms of SNAP25-DEE, with recurrent findings of movement disorders, cerebral visual impairment, and brain atrophy. Structural modeling for all variants predicted possible functional defects concerning SNAP25 or impaired interaction with other components of the SNARE complex. CONCLUSION: We provide a comprehensive description of SNAP25-DEE with intellectual disability and early-onset epilepsy mostly occurring before the age of two years. These core symptoms and additional recurrent phenotypes show an overlap to genes encoding other components or associated proteins of the SNARE complex such as STX1B, STXBP1, or VAMP2. Thus, these findings advance the concept of a group of neurodevelopmental disorders that may be termed "SNAREopathies."


Assuntos
Encefalopatias , Epilepsia , Deficiência Intelectual , Transtornos do Neurodesenvolvimento , Proteína 25 Associada a Sinaptossoma/genética , Pré-Escolar , Epilepsia/genética , Humanos , Transtornos do Neurodesenvolvimento/genética , Fenótipo
7.
Ann Neurol ; 88(5): 867-877, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32808683

RESUMO

OBJECTIVES: The majority of people with suspected genetic dystonia remain undiagnosed after maximal investigation, implying that a number of causative genes have not yet been recognized. We aimed to investigate this paucity of diagnoses. METHODS: We undertook weighted burden analysis of whole-exome sequencing (WES) data from 138 individuals with unresolved generalized dystonia of suspected genetic etiology, followed by additional case-finding from international databases, first for the gene implicated by the burden analysis (VPS16), and then for other functionally related genes. Electron microscopy was performed on patient-derived cells. RESULTS: Analysis revealed a significant burden for VPS16 (Fisher's exact test p value, 6.9 × 109 ). VPS16 encodes a subunit of the homotypic fusion and vacuole protein sorting (HOPS) complex, which plays a key role in autophagosome-lysosome fusion. A total of 18 individuals harboring heterozygous loss-of-function VPS16 variants, and one with a microdeletion, were identified. These individuals experienced early onset progressive dystonia with predominant cervical, bulbar, orofacial, and upper limb involvement. Some patients had a more complex phenotype with additional neuropsychiatric and/or developmental comorbidities. We also identified biallelic loss-of-function variants in VPS41, another HOPS-complex encoding gene, in an individual with infantile-onset generalized dystonia. Electron microscopy of patient-derived lymphocytes and fibroblasts from both patients with VPS16 and VPS41 showed vacuolar abnormalities suggestive of impaired lysosomal function. INTERPRETATION: Our study strongly supports a role for HOPS complex dysfunction in the pathogenesis of dystonia, although variants in different subunits display different phenotypic and inheritance characteristics. ANN NEUROL 2020;88:867-877.


Assuntos
Distonia/genética , Doenças por Armazenamento dos Lisossomos/genética , Proteínas de Transporte Vesicular/genética , Adulto , Efeitos Psicossociais da Doença , Distonia/patologia , Exoma/genética , Feminino , Fibroblastos/patologia , Predisposição Genética para Doença/genética , Variação Genética , Humanos , Doenças por Armazenamento dos Lisossomos/patologia , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem
8.
Mov Disord ; 36(5): 1104-1114, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33934385

RESUMO

Adenylyl cyclase 5 (ADCY5)-related phenotypes comprise an expanding disease continuum, but much remains to be understood about the underlying pathogenic mechanisms of the disease. ADCY5-related disease comprises a spectrum of hyperkinetic disorders involving chorea, myoclonus, and/or dystonia, often with paroxysmal exacerbations. Hypotonia, developmental delay, and intellectual disability may be present. The causative gene encodes adenylyl cyclase, the enzyme responsible for the conversion of adenosine triphosphate (ATP) to cyclic adenosine-3',5'-monophosphate (cAMP). cAMP is a second messenger that exerts a wide variety of effects via several intracellular signaling pathways. ADCY5 is the most commonly expressed isoform of adenylyl cyclase in medium spiny neurons (MSNs) of the striatum, and it integrates and controls dopaminergic signaling. Through cAMP pathway, ADCY5 is a key regulator of the cortical and thalamic signaling that control initiation of voluntary movements and prevention of involuntary movements. Gain-of-function mutations in ADCY5 have been recently linked to a rare genetic disorder called ADCY5-related dyskinesia, where dysregulation of the cAMP pathway leads to reduced inhibitory activity and involuntary hyperkinetic movements. Here, we present an update on the neurobiology of ADCY5, together with a detailed overview of the reported clinical phenotypes and genotypes. Although a range of therapeutic approaches has been trialed, there are currently no disease-modifying treatments. Improved in vitro and in vivo laboratory models will no doubt increase our understanding of the pathogenesis of this rare genetic movement disorder, which will improve diagnosis, and also facilitate the development of precision medicine approaches for this, and other forms of hyperkinesia. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Discinesias , Distúrbios Distônicos , Transtornos dos Movimentos , Adenilil Ciclases/genética , Distúrbios Distônicos/genética , Genótipo , Humanos , Fenótipo
9.
Brain ; 143(11): 3242-3261, 2020 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-33150406

RESUMO

Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.


Assuntos
Distúrbios Distônicos/genética , Histona-Lisina N-Metiltransferase/genética , Adolescente , Adulto , Criança , Pré-Escolar , Deleção Cromossômica , Estudos de Coortes , Simulação por Computador , Estimulação Encefálica Profunda , Progressão da Doença , Distúrbios Distônicos/terapia , Doenças do Sistema Endócrino/complicações , Doenças do Sistema Endócrino/genética , Feminino , Retardo do Crescimento Fetal/genética , Transtornos Neurológicos da Marcha/etiologia , Transtornos Neurológicos da Marcha/terapia , Humanos , Doenças da Laringe/etiologia , Doenças da Laringe/terapia , Masculino , Mutação , Mutação de Sentido Incorreto , Fenótipo , Qualidade de Vida , Resultado do Tratamento , Adulto Jovem
11.
Brain ; 140(11): 2838-2850, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29088354

RESUMO

The presynaptic, high-affinity choline transporter is a critical determinant of signalling by the neurotransmitter acetylcholine at both central and peripheral cholinergic synapses, including the neuromuscular junction. Here we describe an autosomal recessive presynaptic congenital myasthenic syndrome presenting with a broad clinical phenotype due to homozygous choline transporter missense mutations. The clinical phenotype ranges from the classical presentation of a congenital myasthenic syndrome in one patient (p.Pro210Leu), to severe neurodevelopmental delay with brain atrophy (p.Ser94Arg) and extend the clinical outcomes to a more severe spectrum with infantile lethality (p.Val112Glu). Cells transfected with mutant transporter construct revealed a virtually complete loss of transport activity that was paralleled by a reduction in transporter cell surface expression. Consistent with these findings, studies to determine the impact of gene mutations on the trafficking of the Caenorhabditis elegans choline transporter orthologue revealed deficits in transporter export to axons and nerve terminals. These findings contrast with our previous findings in autosomal dominant distal hereditary motor neuropathy of a dominant-negative frameshift mutation at the C-terminus of choline transporter that was associated with significantly reduced, but not completely abrogated choline transporter function. Together our findings define divergent neuropathological outcomes arising from different classes of choline transporter mutation with distinct disease processes and modes of inheritance. These findings underscore the essential role played by the choline transporter in sustaining acetylcholine neurotransmission at both central and neuromuscular synapses, with important implications for treatment and drug selection.


Assuntos
Encéfalo/patologia , Mutação de Sentido Incorreto , Síndromes Miastênicas Congênitas/genética , Transtornos do Neurodesenvolvimento/genética , Simportadores/genética , Animais , Animais Geneticamente Modificados , Atrofia , Axônios/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Pré-Escolar , Feminino , Células HEK293 , Homozigoto , Humanos , Lactente , Masculino , Proteínas de Membrana Transportadoras/genética , Linhagem , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico , Simportadores/metabolismo
12.
Am J Hum Genet ; 94(1): 87-94, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24239382

RESUMO

The proper development of neuronal circuits during neuromorphogenesis and neuronal-network formation is critically dependent on a coordinated and intricate series of molecular and cellular cues and responses. Although the cortical actin cytoskeleton is known to play a key role in neuromorphogenesis, relatively little is known about the specific molecules important for this process. Using linkage analysis and whole-exome sequencing on samples from families from the Amish community of Ohio, we have demonstrated that mutations in KPTN, encoding kaptin, cause a syndrome typified by macrocephaly, neurodevelopmental delay, and seizures. Our immunofluorescence analyses in primary neuronal cell cultures showed that endogenous and GFP-tagged kaptin associates with dynamic actin cytoskeletal structures and that this association is lost upon introduction of the identified mutations. Taken together, our studies have identified kaptin alterations responsible for macrocephaly and neurodevelopmental delay and define kaptin as a molecule crucial for normal human neuromorphogenesis.


Assuntos
Deficiências do Desenvolvimento/genética , Megalencefalia/genética , Proteínas dos Microfilamentos/genética , Mutação , Convulsões/genética , Citoesqueleto de Actina/metabolismo , Sequência de Aminoácidos , Feminino , Imunofluorescência , Ligação Genética , Humanos , Masculino , Proteínas dos Microfilamentos/metabolismo , Dados de Sequência Molecular , Linhagem
14.
BMC Med Genet ; 17(1): 82, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27852232

RESUMO

BACKGROUND: CMT-2 is a clinically and genetically heterogeneous group of peripheral axonal neuropathies characterized by slowly progressive weakness and atrophy of distal limb muscles resulting from length-dependent motor and sensory neurodegeneration. Classical giant axonal neuropathy (GAN) is an autosomal recessively inherited progressive neurodegenerative disorder of the peripheral and central nervous systems, typically diagnosed in early childhood and resulting in death by the end of the third decade. Distinctive phenotypic features are the presence of "kinky" hair and long eyelashes. The genetic basis of the disease has been well established, with over 40 associated mutations identified in the gene GAN, encoding the BTB-KELCH protein gigaxonin, involved in intermediate filament regulation. METHODS: An Illumina Human CytoSNP-12 array followed by whole exome sequence analysis was used to identify the disease associated gene mutation in a large consanguineous family diagnosed with Charcot-Marie-Tooth disease type 2 (CMT-2) from which all but one affected member had straight hair. RESULTS: Here we report the identification of a novel GAN missense mutation underlying the CMT-2 phenotype observed in this family. Although milder forms of GAN, with and without the presence of kinky hair have been reported previously, a phenotype distinct from that was investigated in this study. All family members lacked common features of GAN, including ataxia, nystagmus, intellectual disability, seizures, and central nervous system involvement. CONCLUSIONS: Our findings broaden the spectrum of phenotypes associated with GAN mutations and emphasize a need to proceed with caution when providing families with diagnostic or prognostic information based on either clinical or genetic findings alone.


Assuntos
Doença de Charcot-Marie-Tooth/genética , Consanguinidade , Proteínas do Citoesqueleto/genética , Mutação de Sentido Incorreto/genética , Adulto , Alelos , Animais , Encéfalo/diagnóstico por imagem , Doença de Charcot-Marie-Tooth/patologia , Criança , Pré-Escolar , Fenômenos Eletrofisiológicos , Genótipo , Humanos , Israel , Masculino , Dados de Sequência Molecular , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Gêmeos Dizigóticos
15.
Pract Neurol ; 16(3): 247-51, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26786006

RESUMO

Patients presenting with distal weakness can be a diagnostic challenge; the eventual diagnosis often depends upon accurate clinical phenotyping. We present a mother and daughter with a rare form of distal hereditary motor neuropathy type 7 in whom the diagnosis became apparent by initial difficulty in singing, from early vocal cord dysfunction. This rare neuropathy has now been identified in two apparently unrelated families in Wales. This family's clinical presentation is typical of distal hereditary motor neuropathy type 7, and they have the common truncating mutation in the SLC5A7 gene. Advances in genetic analysis of these rare conditions broaden our understanding of their potential molecular mechanisms and may allow more directed therapy.


Assuntos
Simportadores/genética , Paralisia das Pregas Vocais/genética , Adulto , Feminino , Testes Genéticos , Humanos , Pessoa de Meia-Idade , Mutação , Canto , Paralisia das Pregas Vocais/diagnóstico , Adulto Jovem
16.
Am J Hum Genet ; 91(6): 1103-7, 2012 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-23141292

RESUMO

The neuromuscular junction (NMJ) is a specialized synapse with a complex molecular architecture that provides for reliable transmission between the nerve terminal and muscle fiber. Using linkage analysis and whole-exome sequencing of DNA samples from subjects with distal hereditary motor neuropathy type VII, we identified a mutation in SLC5A7, which encodes the presynaptic choline transporter (CHT), a critical determinant of synaptic acetylcholine synthesis and release at the NMJ. This dominantly segregating SLC5A7 mutation truncates the encoded product just beyond the final transmembrane domain, eliminating cytosolic-C-terminus sequences known to regulate surface transporter trafficking. Choline-transport assays in both transfected cells and monocytes from affected individuals revealed significant reductions in hemicholinium-3-sensitive choline uptake, a finding consistent with a dominant-negative mode of action. The discovery of CHT dysfunction underlying motor neuropathy identifies a biological basis for this group of conditions and widens the spectrum of disorders that derive from impaired NMJ transmission. Our findings compel consideration of mutations in SLC5A7 or its functional partners in relation to unexplained motor neuronopathies.


Assuntos
Doença dos Neurônios Motores/genética , Doença dos Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Simportadores/genética , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo , Simportadores/metabolismo
18.
Eur J Hum Genet ; 32(8): 928-937, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38678163

RESUMO

Bryant-Li-Bhoj syndrome (BLBS), which became OMIM-classified in 2022 (OMIM: 619720, 619721), is caused by germline variants in the two genes that encode histone H3.3 (H3-3A/H3F3A and H3-3B/H3F3B) [1-4]. This syndrome is characterized by developmental delay/intellectual disability, craniofacial anomalies, hyper/hypotonia, and abnormal neuroimaging [1, 5]. BLBS was initially categorized as a progressive neurodegenerative syndrome caused by de novo heterozygous variants in either H3-3A or H3-3B [1-4]. Here, we analyze the data of the 58 previously published individuals along 38 unpublished, unrelated individuals. In this larger cohort of 96 people, we identify causative missense, synonymous, and stop-loss variants. We also expand upon the phenotypic characterization by elaborating on the neurodevelopmental component of BLBS. Notably, phenotypic heterogeneity was present even amongst individuals harboring the same variant. To explore the complex phenotypic variation in this expanded cohort, the relationships between syndromic phenotypes with three variables of interest were interrogated: sex, gene containing the causative variant, and variant location in the H3.3 protein. While specific genotype-phenotype correlations have not been conclusively delineated, the results presented here suggest that the location of the variants within the H3.3 protein and the affected gene (H3-3A or H3-3B) contribute more to the severity of distinct phenotypes than sex. Since these variables do not account for all BLBS phenotypic variability, these findings suggest that additional factors may play a role in modifying the phenotypes of affected individuals. Histones are poised at the interface of genetics and epigenetics, highlighting the potential role for gene-environment interactions and the importance of future research.


Assuntos
Histonas , Fenótipo , Humanos , Masculino , Feminino , Histonas/genética , Criança , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Pré-Escolar , Adolescente , Adulto , Deficiência Intelectual/genética , Deficiência Intelectual/patologia
19.
Cells ; 12(7)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37048120

RESUMO

The human dopaminergic system is vital for a broad range of neurological processes, including the control of voluntary movement. Here we report a proband presenting with clinical features of dopamine deficiency: severe infantile parkinsonism-dystonia, characterised by frequent oculogyric crises, dysautonomia and global neurodevelopmental impairment. CSF neurotransmitter analysis was unexpectedly normal. Triome whole-genome sequencing revealed a homozygous variant (c.110C>A, (p.T37K)) in DRD1, encoding the most abundant dopamine receptor (D1) in the central nervous system, most highly expressed in the striatum. This variant was absent from gnomAD, with a CADD score of 27.5. Using an in vitro heterologous expression system, we determined that DRD1-T37K results in loss of protein function. Structure-function modelling studies predicted reduced substrate binding, which was confirmed in vitro. Exposure of mutant protein to the selective D1 agonist Chloro APB resulted in significantly reduced cyclic AMP levels. Numerous D1 agonists failed to rescue the cellular defect, reflected clinically in the patient, who had no benefit from dopaminergic therapy. Our study identifies DRD1 as a new disease-associated gene, suggesting a crucial role for the D1 receptor in motor control.


Assuntos
Distonia , Distúrbios Distônicos , Doença de Parkinson , Humanos , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo , Distúrbios Distônicos/genética
20.
bioRxiv ; 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37745522

RESUMO

Beta-Propeller Protein-Associated Neurodegeneration (BPAN) is one of the commonest forms of Neurodegeneration with Brain Iron Accumulation, caused by mutations in the gene encoding the autophagy-related protein, WDR45. The mechanisms linking autophagy, iron overload and neurodegeneration in BPAN are poorly understood and, as a result, there are currently no disease-modifying treatments for this progressive disorder. We have developed a patient-derived, induced pluripotent stem cell (iPSC)-based midbrain dopaminergic neuronal cell model of BPAN (3 patient, 2 age-matched controls and 2 isogenic control lines) which shows defective autophagy and aberrant gene expression in key neurodegenerative, neurodevelopmental and collagen pathways. A high content imaging-based medium-throughput blinded drug screen using the FDA-approved Prestwick library identified 5 cardiac glycosides that both corrected disease-related defective autophagosome formation and restored BPAN-specific gene expression profiles. Our findings have clear translational potential and emphasise the utility of iPSC-based modelling in elucidating disease pathophysiology and identifying targeted therapeutics for early-onset monogenic disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA