RESUMO
Stop codon read-through (SCR) is a process of continuation of translation beyond a stop codon. This phenomenon, which occurs only in certain mRNAs under specific conditions, leads to a longer isoform with properties different from that of the canonical isoform. MTCH2, which encodes a mitochondrial protein that regulates mitochondrial metabolism, was selected as a potential read-through candidate based on evolutionary conservation observed in the proximal region of its 3' UTR. Here, we demonstrate translational read-through across two evolutionarily conserved, in-frame stop codons of MTCH2 using luminescence- and fluorescence-based assays, and by analyzing ribosome-profiling and mass spectrometry (MS) data. This phenomenon generates two isoforms, MTCH2x and MTCH2xx (single- and double-SCR products, respectively), in addition to the canonical isoform MTCH2, from the same mRNA. Our experiments revealed that a cis-acting 12-nucleotide sequence in the proximal 3' UTR of MTCH2 is the necessary signal for SCR. Functional characterization showed that MTCH2 and MTCH2x were localized to mitochondria with a long t1/2 (>36 h). However, MTCH2xx was found predominantly in the cytoplasm. This mislocalization and its unique C terminus led to increased degradation, as shown by greatly reduced t1/2 (<1 h). MTCH2 read-through-deficient cells, generated using CRISPR-Cas9, showed increased MTCH2 expression and, consistent with this, decreased mitochondrial membrane potential. Thus, double-SCR of MTCH2 regulates its own expression levels contributing toward the maintenance of normal mitochondrial membrane potential.
Assuntos
Regiões 3' não Traduzidas/genética , Códon de Terminação/genética , Potencial da Membrana Mitocondrial , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Animais , Aorta/citologia , Aorta/metabolismo , Sequência de Bases , Sistemas CRISPR-Cas/genética , Bovinos , Endotélio Vascular/citologia , Endotélio Vascular/metabolismo , Células HEK293 , Humanos , Proteínas de Transporte da Membrana Mitocondrial/antagonistas & inibidores , Proteínas de Transporte da Membrana Mitocondrial/genética , Isoformas de Proteínas , Ribossomos/metabolismoRESUMO
The incidence of aggressive and resistant breast cancers is growing at alarming rates, indicating a necessity to develop better treatment strategies. Recent epidemiological and preclinical studies detected low serum levels of vitamin D in cancer patients, suggesting that vitamin D may be effective in mitigating the cancer burden. However, the molecular mechanisms of vitamin D3 (cholecalciferol, vit-D3)-induced cancer cell death are not fully elucidated. The vit-D3 efficacy of cell death activation was assessed using breast carcinoma cell lines in vitro and a widely used Ehrlich ascites carcinoma (EAC) breast cancer model in vivo in Swiss albino mice. Both estrogen receptor-positive (ER+, MCF-7) and -negative (ER-, MDA-MB-231, and MDA-MB-468) cell lines absorbed about 50% of vit-D3 in vitro over 48 h of incubation. The absorbed vit-D3 retarded the breast cancer cell proliferation in a dose-dependent manner with IC50 values ranging from 0.10 to 0.35 mM. Prolonged treatment (up to 72 h) did not enhance vit-D3 anti-proliferative efficacy. Vit-D3-induced cell growth arrest was mediated by the upregulation of p53 and the downregulation of cyclin-D1 and Bcl2 expression levels. Vit-D3 retarded cell migration and inhibited blood vessel growth in vitro as well as in a chorioallantoic membrane (CAM) assay. The intraperitoneal administration of vit-D3 inhibited solid tumor growth and reduced body weight gain, as assessed in mice using a liquid tumor model. In summary, vit-D3 cytotoxic effects in breast cancer cell lines in vitro and an EAC model in vivo were associated with growth inhibition, the induction of apoptosis, cell cycle arrest, and the impediment of angiogenic processes. The generated data warrant further studies on vit-D3 anti-cancer therapeutic applications.
RESUMO
Aims: To explore the hepatoprotective role of quercetin and its novel molecular mechanism of action on breast cancer associated hepatic inflammation and fibrosis via Vitamin D receptor (VDR). Main methods: We used Ehrlich Ascites Carcinoma (mouse mammary carcinoma) model for our in-vivo experiments and human breast cancer cell lines for in-vitro assays. We inoculated 1.5 × 106 Ehrlich ascites carcinoma cells into female Swiss albino mice. Quercetin (50 mg/kg) was administered intraperitoneally for 15 days. Liver enzymes activity was determined using a spectrophotometric assay. The hallmarks of inflammation and fibrosis were determined using Immunohistochemistry. The effect of quercetin on tumor formation was elucidated using human breast cancer cell lines and chick chorioallantoic membrane assay. Docking study was performed to explore the binding mode of quercetin with VDR. Key findings: In EAC tumor-bearing mice, cell numbers, tumor volume, body weight and liver weight were dramatically increased, while they significantly decreased in mice treated with quercetin. Additionally, the peritoneal neo-angiogenesis was also significantly suppressed in the quercetin-treated mice, compared to the control. In addition, quercetin treated EAC tumor bearing mice had lower levels of liver enzymes, decreased hepatic inflammation and fibrosis compared with EAC tumor bearing mice. Docking study confirmed VDR-quercetin interaction. Furthermore, in-vitro assays and chick chorioallantoic membrane assay revealed the Vitamin D mimicking effect of quercetin. Significance: Dietary flavonoid, quercetin could act as a promising therapeutic drug to suppress the breast cancer induced tumor angiogenesis, hepatic inflammation, and fibrosis possibly via activation of VDR.
RESUMO
The incidence and death toll due to SARS-CoV-2 infection varied time-to-time; and depended on several factors, including severity (viral load), immune status, age, gender, vaccination status, and presence of comorbidities. The RNA genome of SARS-CoV-2 has mutated and produced several variants, which were classified by the SARS-CoV-2 Interagency Group (SIG) into four major categories. The first category; "Variant Being Monitored (VBM)", consists of Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Epsilon (B.1.427, B.1.429), Eta (B.1.525), Iota (B.1.526), Kappa (B.1.617.1), Mu (B.1.621), and Zeta (P.2); the second category; "Variants of Concern" consists of Omicron (B.1.1.529). The third and fourth categories include "Variants of Interest (VOI)", and "Variants of High Consequence (VOHC)", respectively, and contain no variants classified currently under these categories. The surge in VBM and VOC poses a significant threat to public health globally as they exhibit altered virulence, transmissibility, diagnostic or therapeutic escape, and the ability to evade the host immune response. Studies have shown that certain mutations increase the infectivity and pathogenicity of the virus as demonstrated in the case of SARS-CoV-2, the Omicron variant. It is reported that the Omicron variant has >60 mutations with at least 30 mutations in the Spike protein ("S" protein) and 15 mutations in the receptor-binding domain (RBD), resulting in rapid attachment to target cells and immune evasion. The spread of VBM and VOCs has affected the actual protective efficacy of the first-generation vaccines (ChAdOx1, Ad26.COV2.S, NVX-CoV2373, BNT162b2). Currently, the data on the effectiveness of existing vaccines against newer variants of SARS-CoV-2 are very scanty; hence additional studies are immediately warranted. To this end, recent studies have initiated investigations to elucidate the structural features of crucial proteins of SARS-CoV-2 variants and their involvement in pathogenesis. In addition, intense research is in progress to develop better preventive and therapeutic strategies to halt the spread of COVID-19 caused by variants. This review summarizes the structure and life cycle of SARS-CoV-2, provides background information on several variants of SARS-CoV-2 and mutations associated with these variants, and reviews recent studies on the safety and efficacy of major vaccines/vaccine candidates approved against SARS-CoV-2, and its variants.
RESUMO
Tumor associated macrophages (TAMs), located in the tumor microenvironment (TME), play a significant role in cancer cell survival and progression. TAMs have been involved in producing immuno-suppressive TME in the tumor by generating inflammatory mediators, growth factors, cytokines, chemokines, etc. TAMs can influence the angiogenesis, metastatic behavior of tumor cells (TCs) and cause multidrug resistance. TAMs within the TME can enhance cancer cell metastasis and are stromal and perivascular. The angiogenesis is promoted at the hypoxia, and the avascular zones of TME. Differentiation states of TAMs are considered 'plastic' as they exhibit temporal expression of one or several phenotypes depending on local cues. Emerging cancer research depicted the epigenetic regulation of macrophage polarization (both M1s, M2s) and their potential implications to develop pharmacologic modulators and microRNAs to act as molecular switches and even to serve as targeted therapies to inhibit tumor growth. In the present article, the role of TAMs in tumor progression, angiogenesis and metastasis was discussed. In addition, key signaling cascades regulated by TAMs, which have a role in chemoresistance, were also discussed. Currently, novel pleiotropic properties of various anticancer phytomedicines are gaining importance as they assist in overcoming TAMs-induced chemoresistance. Moreover, these phytomedicines are being tested as 'adjunct therapeutics' along with chemotherapeutic agents, anti-angiogenic molecules, anti-metastatic compounds, and other immune-checkpoint blockers against tumor metastasis/angiogenesis. Hence, a brief note on natural products targeting TAMs was provided. In summary, this review would benefit pharmacologists and medical professionals to develop therapies to target TAMs using multi-OMICs approaches, including genomics, epigenomics, transcriptomics, and proteomics.