Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Neurosci ; 41(3): 489-501, 2021 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-33234608

RESUMO

Recent work has shown that most cells in the rostral, gustatory portion of the nucleus tractus solitarius (rNTS) in awake, freely licking rats show lick-related firing. However, the relationship between taste-related and lick-related activity in rNTS remains unclear. Here, we tested whether GABA-derived inhibitory activity regulates the balance of lick- and taste-driven neuronal activity. Combinatorial viral tools were used to restrict the expression of channelrhodopsin 2-enhanced yellow fluorescent protein to GAD1+ GABAergic neurons. Viral infusions were bilateral in rNTS. A fiber-optic fiber attached to a bundle of drivable microwires was later implanted into the rNTS. After recovery, water-deprived rats were presented with taste stimuli in an experimental chamber. Trials were five consecutive taste licks [NaCl, KCl, NH4Cl, sucrose, monosodium glutamate/inosine-5'-monophosphate, citric acid, quinine, or artificial saliva (AS)] separated by five AS rinse licks on a variable ratio 5 schedule. Each taste lick triggered a 1 s train of laser light (25 Hz; 473 nm; 8-10 mW) in a random half of the trials. In all, 113 cells were recorded in the rNTS, 50 cells responded to one or more taste stimuli without GABA enhancement. Selective changes in response magnitude (spike count) within cells shifted across-unit patterns but preserved interstimulus relationships. Cells where enhanced GABAergic tone increased lick coherence conveyed more information distinguishing basic taste qualities and different salts than other cells. In addition, GABA activation significantly amplified the amount of information that discriminated palatable versus unpalatable tastants. By dynamically regulating lick coherence and remodeling the across-unit response patterns to taste, enhancing GABAergic tone in rNTS reconfigures the neural activity reflecting sensation and movement.


Assuntos
Atividade Motora/fisiologia , Sensação/fisiologia , Núcleo Solitário/fisiologia , Ácido gama-Aminobutírico/fisiologia , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos , Feminino , Corantes Fluorescentes , Glutamato Descarboxilase/fisiologia , Masculino , Estimulação Luminosa , Ratos , Ratos Sprague-Dawley , Paladar/fisiologia , Percepção Gustatória/fisiologia
2.
J Neurochem ; 161(1): 53-68, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35061915

RESUMO

The olfactory tubercle (OT), an important component of the ventral striatum and limbic system, is involved in multi-sensory integration of reward-related information in the brain. However, its functional roles are often overshadowed by the neighboring nucleus accumbens. Increasing evidence has highlighted that dense dopamine (DA) innervation of the OT from the ventral tegmental area (VTA) is implicated in encoding reward, natural reinforcers, and motivated behaviors. Recent studies have further suggested that OT subregions may have distinct roles in these processes due to their heterogeneous DA transmission. Currently, very little is known about regulation (release and clearance) of extracellular DA across OT subregions due to its limited anatomical accessibility and proximity to other DA-rich brain regions, making it difficult to isolate VTA-DA signaling in the OT with conventional methods. Herein, we characterized heterogeneous VTA-DA regulation in the medial (m) and lateral (l) OT in "wild-type," urethane-anesthetized rats by integrating in vivo fast-scan cyclic voltammetry with cell-type specific optogenetics to stimulate VTA-DA neurons. Channelrhodopsin-2 was selectively expressed in the VTA-DA neurons of wild-type rats and optical stimulating parameters were optimized to determine VTA-DA transmission across the OT. Our anatomical, neurochemical, and pharmacological results show that VTA-DA regulation in the mOT is less dependent on DA transporters and has greater DA transmission than the lOT. These findings establish the OT as a unique, compartmentalized structure and will aid in future behavioral characterization of the roles of VTA-DA signaling in the OT subregions in reward, drug addiction, and encoding behavioral outputs necessary for survival.


Assuntos
Dopamina , Optogenética , Animais , Núcleo Accumbens/fisiologia , Tubérculo Olfatório , Ratos , Área Tegmentar Ventral
3.
J Neurochem ; 158(4): 865-879, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34265079

RESUMO

Methamphetamine (METH) is a potent psychostimulant that exerts many of its physiological and psychomotor effects by increasing extracellular dopamine (DA) concentrations in limbic brain regions. While several studies have focused on how potent, neurotoxic doses of METH augment or attenuate DA transmission, the acute effects of lower and behaviorally activating doses of METH on modulating DA regulation (release and clearance) through DA D2 autoreceptors and transporters remain to be elucidated. In this study, we investigated how systemic administration of escalating, subneurotoxic doses of METH (0.5-5 mg/kg, IP) alter extracellular DA regulation in the nucleus accumbens (NAc), in both anesthetized and awake-behaving rats through the use of in vivo fast-scan cyclic voltammetry. Pharmacological, electrochemical, and behavioral evidence show that lower doses (≤2.0 mg/kg, IP) of METH enhance extracellular phasic DA concentrations and locomotion as well as stereotypies. In contrast, higher doses (≥5.0 mg/kg) further increase both phasic and baseline DA concentrations and stereotypies but decrease horizontal locomotion. Importantly, our results suggest that acute METH-induced enhancement of extracellular DA concentrations dose dependently activates D2 autoreceptors. Therefore, these different METH dose-dependent effects on mesolimbic DA transmission may distinctly impact METH-induced behavioral changes. This study provides valuable insights regarding how low METH doses alter DA transmission and paves the way for future clinical studies on the reinforcing effects of METH.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Dopamina/fisiologia , Metanfetamina/farmacologia , Núcleo Accumbens/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Relação Dose-Resposta a Droga , Masculino , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/psicologia , Núcleo Accumbens/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/efeitos dos fármacos , Comportamento Estereotipado/efeitos dos fármacos
4.
J Neurosci ; 39(21): 4162-4178, 2019 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-30862664

RESUMO

Pain is a multidimensional experience and negative affect, or how much the pain is "bothersome", significantly impacts the sufferers' quality of life. It is well established that the κ opioid system contributes to depressive and dysphoric states, but whether this system contributes to the negative affect precipitated by the occurrence of chronic pain remains tenuous. Using a model of persistent pain, we show by quantitative real-time-PCR, florescence in situ hybridization, Western blotting and GTPgS autoradiography an upregulation of expression and the function of κ opioid receptors (KORs) and its endogenous ligand dynorphin in the mesolimbic circuitry in animals with chronic pain compared with surgical controls. Using in vivo microdialysis and microinjection of drugs into the mesolimbic dopamine system, we demonstrate that inhibiting KORs reinstates evoked dopamine release and reward-related behaviors in chronic pain animals. Chronic pain enhanced KOR agonist-induced place aversion in a sex-dependent manner. Using various place preference paradigms, we show that activation of KORs drives pain aversive states in male but not female mice. However, KOR antagonist treatment was effective in alleviating anxiogenic and depressive affective-like behaviors in both sexes. Finally, ablation of KORs from dopamine neurons using AAV-TH-cre in KORloxP mice prevented pain-induced aversive states as measured by place aversion assays. Our results strongly support the use of KOR antagonists as therapeutic adjuvants to alleviate the emotional, tonic-aversive component of chronic pain, which is argued to be the most significant component of the pain experience that impacts patients' quality of life.SIGNIFICANCE STATEMENT We show that KORs are sufficient to drive the tonic-aversive component of chronic pain; the emotional component of pain that is argued to significantly impact a patient's quality of life. The impact of our study is broadly relevant to affective disorders associated with disruption of reward circuitry and thus likely contributes to many of the devastating sequelae of chronic pain, including the poor response to treatment of many patients, debilitating affective disorders (other disorders including anxiety and depression that demonstrate high comorbidity with chronic pain) and substance abuse. Indeed, coexisting psychopathology increases pain intensity, pain-related disability and effectiveness of treatments (Jamison and Edwards, 2013).


Assuntos
Dor Crônica/metabolismo , Dor Crônica/psicologia , Emoções/fisiologia , Percepção da Dor/fisiologia , Receptores Opioides kappa/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Long-Evans
5.
Proc Natl Acad Sci U S A ; 113(25): 6985-90, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27298371

RESUMO

Dopamine signaling occurs on a subsecond timescale, and its dysregulation is implicated in pathologies ranging from drug addiction to Parkinson's disease. Anatomic evidence suggests that some dopamine neurons have cross-hemispheric projections, but the significance of these projections is unknown. Here we report unprecedented interhemispheric communication in the midbrain dopamine system of awake and anesthetized rats. In the anesthetized rats, optogenetic and electrical stimulation of dopamine cells elicited physiologically relevant dopamine release in the contralateral striatum. Contralateral release differed between the dorsal and ventral striatum owing to differential regulation by D2-like receptors. In the freely moving animals, simultaneous bilateral measurements revealed that dopamine release synchronizes between hemispheres and intact, contralateral projections can release dopamine in the midbrain of 6-hydroxydopamine-lesioned rats. These experiments are the first, to our knowledge, to show cross-hemispheric synchronicity in dopamine signaling and support a functional role for contralateral projections. In addition, our data reveal that psychostimulants, such as amphetamine, promote the coupling of dopamine transients between hemispheres.


Assuntos
Cérebro/metabolismo , Dopamina/metabolismo , Núcleo Accumbens/metabolismo , Animais , Masculino , Ratos , Ratos Sprague-Dawley
6.
Addict Biol ; 23(5): 1032-1045, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-28971565

RESUMO

The hypocretin receptor 1 (HCRTr1) is a critical participant in the regulation of motivated behavior. Previous observations demonstrate that acute pharmacological blockade of HCRTr1 disrupts dopamine (DA) signaling and the motivation for cocaine when delivered systemically or directly into the ventral tegmental area (VTA). To further examine the involvement of HCRTr1 in regulating reward and reinforcement processing, we employed an adeno-associated virus to express a short hairpin RNA designed to knock down HCRTr1. We injected virus into the VTA and examined the effects of HCRTr1 knockdown on cocaine self-administration and DA signaling in the nucleus accumbens (NAc) core. We determined that the viral approach was effective at reducing HCRTr1 expression without affecting the expression of hypocretin receptor 2 or DA-related mRNAs. We next examined the effects of HCRTr1 knockdown on cocaine self-administration, observing delayed acquisition under a fixed-ratio schedule and reduced motivation for cocaine under a progressive ratio schedule. These effects did not appear to be associated with alterations in sleep/wake activity. Using fast-scan cyclic voltammetry, we then examined whether HCRTr1 knockdown alters DA signaling dynamics in the NAc core. We observed reduced DA release and slower uptake rate as well as attenuated cocaine-induced DA uptake inhibition in rats with knockdown of HCRTr1. These observations indicate that HCRTr1 within the VTA influence the motivation for cocaine, likely via alterations in DA signaling in the NAc.


Assuntos
Transtornos Relacionados ao Uso de Cocaína/genética , Cocaína/administração & dosagem , Dopamina/metabolismo , Motivação/genética , Receptores de Orexina/genética , Transdução de Sinais/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo , Animais , Cocaína/genética , Transtornos Relacionados ao Uso de Cocaína/metabolismo , Modelos Animais de Doenças , Lobo Límbico/efeitos dos fármacos , Lobo Límbico/metabolismo , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Motivação/efeitos dos fármacos , Motivação/fisiologia , Ratos , Ratos Sprague-Dawley , Reforço Psicológico , Recompensa , Autoadministração , Transdução de Sinais/fisiologia , Área Tegmentar Ventral/efeitos dos fármacos
7.
Proc Natl Acad Sci U S A ; 112(22): 7097-102, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25964346

RESUMO

The neuromodulator dopamine signals through the dopamine D2 receptor (D2R) to modulate central nervous system functions through diverse signal transduction pathways. D2R is a prominent target for drug treatments in disorders where dopamine function is aberrant, such as schizophrenia. D2R signals through distinct G-protein and ß-arrestin pathways, and drugs that are functionally selective for these pathways could have improved therapeutic potential. How D2R signals through the two pathways is still not well defined, and efforts to elucidate these pathways have been hampered by the lack of adequate tools for assessing the contribution of each pathway independently. To address this, Evolutionary Trace was used to produce D2R mutants with strongly biased signal transduction for either the G-protein or ß-arrestin interactions. These mutants were used to resolve the role of G proteins and ß-arrestins in D2R signaling assays. The results show that D2R interactions with the two downstream effectors are dissociable and that G-protein signaling accounts for D2R canonical MAP kinase signaling cascade activation, whereas ß-arrestin only activates elements of this cascade under certain conditions. Nevertheless, when expressed in mice in GABAergic medium spiny neurons of the striatum, the ß-arrestin-biased D2R caused a significant potentiation of amphetamine-induced locomotion, whereas the G protein-biased D2R had minimal effects. The mutant receptors generated here provide a molecular tool set that should enable a better definition of the individual roles of G-protein and ß-arrestin signaling pathways in D2R pharmacology, neurobiology, and associated pathologies.


Assuntos
Arrestinas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Modelos Moleculares , Receptores de Dopamina D2/metabolismo , Animais , Arrestinas/química , Corpo Estriado/citologia , Cristalografia , Proteínas de Ligação ao GTP/química , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Mutagênese , Neurônios/metabolismo , Conformação Proteica , Receptores de Dopamina D2/química , Receptores de Dopamina D2/genética , Análise de Regressão , beta-Arrestinas
8.
Proc Natl Acad Sci U S A ; 112(19): E2517-26, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25918399

RESUMO

Parkinson's disease (PD) is characterized by severe locomotor deficits and is commonly treated with the dopamine (DA) precursor l-3,4-dihydroxyphenylalanine (L-DOPA), but its prolonged use causes dyskinesias referred to as L-DOPA-induced dyskinesias (LIDs). Recent studies in animal models of PD have suggested that dyskinesias are associated with the overactivation of G protein-mediated signaling through DA receptors. ß-Arrestins desensitize G protein signaling at DA receptors (D1R and D2R) in addition to activating their own G protein-independent signaling events, which have been shown to mediate locomotion. Therefore, targeting ß-arrestins in PD L-DOPA therapy might prove to be a desirable approach. Here we show in a bilateral DA-depletion mouse model of Parkinson's symptoms that genetic deletion of ß-arrestin2 significantly limits the beneficial locomotor effects while markedly enhancing the dyskinesia-like effects of acute or chronic L-DOPA treatment. Viral rescue or overexpression of ß-arrestin2 in knockout or control mice either reverses or protects against LIDs and its key biochemical markers. In other more conventional animal models of DA neuron loss and PD, such as 6-hydroxydopamine-treated mice or rats and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated nonhuman primates, ß-arrestin2 overexpression significantly reduced dyskinesias while maintaining the therapeutic effect of L-DOPA. Considerable efforts are being spent in the pharmaceutical industry to identify therapeutic approaches to block LIDs in patients with PD. Our results point to a potential therapeutic approach, whereby development of either a genetic or pharmacological intervention to enhance ß-arrestin2- or limit G protein-dependent D1/D2R signaling could represent a more mechanistically informed strategy.


Assuntos
Arrestinas/metabolismo , Discinesias/metabolismo , Levodopa/química , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/química , Animais , Arrestinas/genética , Comportamento Animal , Modelos Animais de Doenças , Dopamina/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Deleção de Genes , Macaca , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Oxidopamina/química , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima , beta-Arrestinas
9.
Mol Pharmacol ; 91(2): 75-86, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27895162

RESUMO

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1R) distal C-terminal-associated protein that alters CB1R interactions with G-proteins. We tested the hypothesis that CRIP1a is capable of also altering CB1R interactions with ß-arrestin proteins that interact with the CB1R at the C-terminus. Coimmunoprecipitation studies indicated that CB1R associates in complexes with either CRIP1a or ß-arrestin, but CRIP1a and ß-arrestin fail to coimmunoprecipitate with each other. This suggests a competition for CRIP1a and ß-arrestin binding to the CB1R, which we hypothesized could attenuate the action of ß-arrestin to mediate CB1R internalization. We determined that agonist-mediated reduction of the density of cell surface endogenously expressed CB1Rs was clathrin and dynamin dependent and could be modeled as agonist-induced aggregation of transiently expressed GFP-CB1R. CRIP1a overexpression attenuated CP55940-mediated GFP-CB1R as well as endogenous ß-arrestin redistribution to punctae, and conversely, CRIP1a knockdown augmented ß-arrestin redistribution to punctae. Peptides mimicking the CB1R C-terminus could bind to both CRIP1a in cell extracts as well as purified recombinant CRIP1a. Affinity pull-down studies revealed that phosphorylation at threonine-468 of a CB1R distal C-terminus 14-mer peptide reduced CB1R-CRIP1a association. Coimmunoprecipitation of CB1R protein complexes demonstrated that central or distal C-terminal peptides competed for the CB1R association with CRIP1a, but that a phosphorylated central C-terminal peptide competed for association with ß-arrestin 1, and phosphorylated central or distal C-terminal peptides competed for association with ß-arrestin 2. Thus, CRIP1a can compete with ß-arrestins for interaction with C-terminal CB1R domains that could affect agonist-driven, ß-arrestin-mediated internalization of the CB1R.


Assuntos
Proteínas de Transporte/metabolismo , Receptor CB1 de Canabinoide/metabolismo , beta-Arrestinas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas de Membrana , Peptídeos/química , Fosforilação , Ligação Proteica , Ratos
10.
Nat Methods ; 11(7): 763-72, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24908100

RESUMO

Precisely defining the roles of specific cell types is an intriguing frontier in the study of intact biological systems and has stimulated the rapid development of genetically encoded tools for observation and control. However, targeting these tools with adequate specificity remains challenging: most cell types are best defined by the intersection of two or more features such as active promoter elements, location and connectivity. Here we have combined engineered introns with specific recombinases to achieve expression of genetically encoded tools that is conditional upon multiple cell-type features, using Boolean logical operations all governed by a single versatile vector. We used this approach to target intersectionally specified populations of inhibitory interneurons in mammalian hippocampus and neurons of the ventral tegmental area defined by both genetic and wiring properties. This flexible and modular approach may expand the application of genetically encoded interventional and observational tools for intact-systems biology.


Assuntos
Marcação de Genes/métodos , Vetores Genéticos , Interneurônios/fisiologia , Animais , Proteínas de Bactérias/genética , Dependovirus/genética , Feminino , Células HEK293 , Hipocampo/metabolismo , Humanos , Integrases/metabolismo , Íntrons , Lógica , Proteínas Luminescentes/genética , Masculino , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transgenes
11.
J Neurochem ; 139(3): 396-407, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27513693

RESUMO

Cannabinoid receptor interacting protein 1a (CRIP1a) is a CB1 receptor (CB1 R) distal C-terminus-associated protein that modulates CB1 R signaling via G proteins, and CB1 R down-regulation but not desensitization (Blume et al. [2015] Cell Signal., 27, 716-726; Smith et al. [2015] Mol. Pharmacol., 87, 747-765). In this study, we determined the involvement of CRIP1a in CB1 R plasma membrane trafficking. To follow the effects of agonists and antagonists on cell surface CB1 Rs, we utilized the genetically homogeneous cloned neuronal cell line N18TG2, which endogenously expresses both CB1 R and CRIP1a, and exhibits a well-characterized endocannabinoid signaling system. We developed stable CRIP1a-over-expressing and CRIP1a-siRNA-silenced knockdown clones to investigate gene dose effects of CRIP1a on CB1 R plasma membrane expression. Results indicate that CP55940 or WIN55212-2 (10 nM, 5 min) reduced cell surface CB1 R by a dynamin- and clathrin-dependent process, and this was attenuated by CRIP1a over-expression. CP55940-mediated cell surface CB1 R loss was followed by a cycloheximide-sensitive recovery of surface receptors (30-120 min), suggesting the requirement for new protein synthesis. In contrast, WIN55212-2-mediated cell surface CB1 Rs recovered only in CRIP1a knockdown cells. Changes in CRIP1a expression levels did not affect a transient rimonabant (10 nM)-mediated increase in cell surface CB1 Rs, which is postulated to be as a result of rimonabant effects on 'non-agonist-driven' internalization. These studies demonstrate a novel role for CRIP1a in agonist-driven CB1 R cell surface regulation postulated to occur by two mechanisms: 1) attenuating internalization that is agonist-mediated, but not that in the absence of exogenous agonists, and 2) biased agonist-dependent trafficking of de novo synthesized receptor to the cell surface.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/metabolismo , Animais , Benzoxazinas/farmacologia , Linhagem Celular , Membrana Celular/metabolismo , Cicloexanóis/farmacologia , Endocanabinoides/fisiologia , Dosagem de Genes , Técnicas de Silenciamento de Genes , Camundongos , Morfolinas/farmacologia , Naftalenos/farmacologia , Piperidinas/farmacologia , Transporte Proteico , Pirazóis/farmacologia , RNA Interferente Pequeno , Receptor CB1 de Canabinoide/genética , Receptores de Superfície Celular/efeitos dos fármacos , Rimonabanto , Transdução de Sinais/genética
12.
Analyst ; 141(12): 3746-55, 2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27063845

RESUMO

The olfactory tubercle (OT), as a component of the ventral striatum, serves as an important multisensory integration center for reward-related processes in the brain. Recent studies show that dense dopaminergic innervation from the ventral tegmental area (VTA) into the OT may play an outsized role in disorders such as psychostimulant addiction and disorders of motivation, increasing recent scientific interest in this brain region. However, due to its anatomical inaccessibility, relative small size, and proximity to other dopamine-rich structures, neurochemical assessments using conventional methods cannot be readily employed. Here, we investigated dopamine (DA) regulation in the OT of urethane-anesthetized rats using in vivo fast-scan voltammetry (FSCV) coupled with carbon-fiber microelectrodes, following optogenetic stimulation of the VTA. The results were compared with DA regulation in the nucleus accumbens (NAc), a structure located adjacent to the OT and which also receives dense DA innervation from the VTA. FSCV coupled with optically evoked release allowed us to investigate the spatial distribution of DA in the OT and characterize OT DA dynamics (release and clearance) with subsecond temporal and micrometer spatial resolution for the first time. In this study, we demonstrated that DA transporters play an important role in regulating DA in the OT. However, the control of extracellular DA by uptake in the OT was less than in the NAc. The difference in DA transmission in the terminal fields of the OT and NAc may be involved in region-specific responses to drugs of abuse and contrasting roles in mediating reward-related behavior.


Assuntos
Dopamina/fisiologia , Estimulação Elétrica , Núcleo Accumbens/fisiologia , Tubérculo Olfatório/fisiologia , Animais , Encéfalo , Masculino , Microeletrodos , Ratos , Ratos Sprague-Dawley
13.
Front Behav Neurosci ; 18: 1363497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549620

RESUMO

Synthetic exendin-4 (EX4, exenatide), is a GLP-1 receptor agonist used clinically to treat glycemia in Type-2 diabetes mellitus. EX4 also promotes weight loss and alters food reward-seeking behaviors in part due to activation of GLP-1 receptors in the mesolimbic dopamine system. Evidence suggests that GLP-1 receptor activity can directly attenuate cue-induced reward seeking. Here, we tested the effects of EX4 (0.6, 1.2, and 2.4 µg/kg, i.p.) on incentive cue (IC) responding, using a task where rats emit a nosepoke response during an intermittent reward-predictive IC to obtain a sucrose reward. EX4 dose-dependently attenuated responding to ICs and increased the latencies to respond to the IC and enter the sucrose reward cup. Moreover, EX4 dose-dependently decreased the total number of active port nosepokes for every cue presented. There was no effect of EX4 on the number of reward cup entries per reward earned, a related reward-seeking metric with similar locomotor demand. There was a dose-dependent interaction between the EX4 dose and session time on the responding to ICs and nosepoke response latency. The interaction indicated that effects of EX4 at the beginning and end of the session differed by the dose of EX4, suggesting dose-dependent pharmacokinetic effects. EX4 had no effect on free sucrose consumption behavior (i.e., total volume consumed, bout size, number of bouts) within the range of total sucrose volumes obtainable during the IC task (~3.5 ml). However, when rats were given unrestricted access for 1 h, where rats obtained much larger total volumes of sucrose (~30 ml), we observed some dose-dependent EX4 effects on drinking behavior, including decreases in total volume consumed. Together, these findings suggest that activation of the GLP-1 receptor modulates the incentive properties of cues attributed with motivational significance.

14.
J Neurochem ; 124(6): 808-20, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23286559

RESUMO

Although biochemical and physiological evidence suggests a strong interaction between striatal CB1 cannabinoid (CB1 R) and D2 dopamine (D2 R) receptors, the mechanisms are poorly understood. We targeted medium spiny neurons of the indirect pathway using shRNA to knockdown either CB1 R or D2 R. Chronic reduction in either receptor resulted in deficits in gene and protein expression for the alternative receptor and concomitantly increased expression of the cannabinoid receptor interacting protein 1a (CRIP1a), suggesting a novel role for CRIP1a in dopaminergic systems. Both CB1 R and D2 R knockdown reduced striatal dopaminergic-stimulated [(35) S]GTPγS binding, and D2 R knockdown reduced pallidal WIN55212-2-stimulated [(35) S]GTPγS binding. Decreased D2 R and CB1 R activity was associated with decreased striatal phosphoERK. A decrease in mRNA for opioid peptide precursors pDYN and pENK accompanied knockdown of CB1 Rs or D2 Rs, and over-expression of CRIP1a. Down-regulation in opioid peptide mRNAs was followed in time by increased DOR1 but not MOR1 expression, leading to increased [D-Pen2, D-Pen5]-enkephalin-stimulated [(35) S]GTPγS binding in the striatum. We conclude that mechanisms intrinsic to striatal medium spiny neurons or extrinsic via the indirect pathway adjust for changes in CB1 R or D2 R levels by modifying the expression and signaling capabilities of the alternative receptor as well as CRIP1a and the DELTA opioid system.


Assuntos
Proteínas de Transporte/biossíntese , Corpo Estriado/metabolismo , Receptor CB1 de Canabinoide/fisiologia , Receptores de Dopamina D2/fisiologia , Receptores Opioides delta/biossíntese , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Antagonistas dos Receptores de Dopamina D2 , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes/métodos , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptores Opioides delta/genética
15.
Horm Behav ; 63(3): 518-26, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23370363

RESUMO

Polymorphisms in noncoding regions of the vasopressin 1a receptor gene (Avpr1a) are associated with a variety of socioemotional characteristics in humans, chimpanzees, and voles, and may impact behavior through a site-specific variation in gene expression. The socially monogamous prairie vole offers a unique opportunity to study such neurobiological control of individual differences in complex behavior. Vasopressin 1a receptor (V1aR) signaling is necessary for the formation of the pair bond in males, and prairie voles exhibit greater V1aR binding in the reward-processing ventral pallidum than do asocial voles of the same genus. Diversity in social behavior within prairie voles has been correlated to natural variation in neuropeptide receptor expression in specific brain regions. Here we use RNA interference to examine the causal relationship between intraspecific variation in V1aR and behavioral outcomes, by approximating the degree of naturalistic variation in V1aR expression. Juvenile male prairie voles were injected with viral vectors expressing shRNA sequences targeting Avpr1a mRNA into the ventral pallidum. Down-regulation of pallidal V1aR density resulted in a significant impairment in the preference for a mated female partner and a reduction in anxiety-like behavior in adulthood. No effect on alloparenting was detected. These data demonstrate that within-species naturalistic-like variation in V1aR expression has a profound effect on individual differences in social attachment and emotionality. RNA interference may prove to be a useful technique to unite the fields of behavioral ecology and neurogenetics to perform ethologically relevant studies of the control of individual variation and offer insight into the evolutionary mechanisms leading to behavioral diversity.


Assuntos
Ansiedade/metabolismo , Arvicolinae/fisiologia , Gânglios da Base/metabolismo , Ligação do Par , Receptores de Vasopressinas/metabolismo , Comportamento Sexual Animal/fisiologia , Vasopressinas/fisiologia , Animais , Regulação para Baixo/fisiologia , Feminino , Vetores Genéticos/administração & dosagem , Individualidade , Masculino , RNA Mensageiro/genética , RNA Interferente Pequeno/administração & dosagem
16.
MethodsX ; 11: 102433, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920868

RESUMO

Rat intravenous self-administration is a widely-used animal model in the study of substance use disorders. Rats are tethered to a drug delivery system usually through a port or button that interfaces the drug delivery system with a chronic indwelling jugular vein catheter. These buttons can be purchased commercially but are costly, presenting a significant economic barrier for many researchers. Many researchers manufacture buttons in-house from a combination of individual custom made and commercially available components, resulting in large variation in terms of how the animals are handled and the longevity of catheter patency. We have developed a jugular catheter button that uses a split septum port to provide snap-on entry of a blunt cannula allowing for quick and easy attachment of the i.v. tubing. The port is constructed from commercially available split septum ports, surgical mesh and small metal cannula. The system is "needleless" which decreases the risk of infection and improves safety. The split-septum buttons are easily sterilized in-house adding to the reliability and decreases in the risk of infection. We have used this easily constructed, and inexpensive button for i.v. self-administration experiments in which 80 % of the rats maintained patency for a minimum of 35 days.•Inexpensive method to construct a self-administration backport button.•Utilizes inexpensive components already found in a research laboratory or commercially available.•Can be sterilized in-house without degrading glue or components.

17.
Addict Neurosci ; 72023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37854172

RESUMO

The hypocretins/orexins (HCRT) have been demonstrated to influence motivation for cocaine through actions on dopamine (DA) transmission. Pharmacological or genetic disruption of the hypocretin receptor 1 (Hcrtr1) reduces cocaine self-administration, blocks reinstatement of cocaine seeking, and decreases conditioned place preference for cocaine. These effects are likely mediated through actions in the ventral tegmental area (VTA) and resulting alterations in DA transmission. For example, HCRT drives VTA DA neuron activity and enhances the effects of cocaine on DA transmission, while disrupting Hcrtr1 attenuates DA responses to cocaine. These findings have led to the perspective that HCRT exerts its effects through Hcrtr1 actions in VTA DA neurons. However, this assumption is complicated by the observation that Hcrtr1 are present on both DA and GABA neurons in the VTA and HCRT drives the activity of both neuronal populations. To address this issue, we selectively knocked down Hcrtr1 on either DA or GABA neurons in the VTA and examined alterations in DA transmission and cocaine self-administration in female and male rats. We found that Hcrtr1 knockdown in DA neurons decreased DA responses to cocaine, increased days to acquire cocaine self-administration, and reduced motivation for cocaine. Although, Hcrtr1 knockdown in GABA neurons enhanced DA responses to cocaine, this manipulation did not affect cocaine self-administration. These observations indicate that while Hcrtr1 on DA versus GABA neurons exert opposing effects on DA transmission, only Hcrtr1 on DA neurons affected acquisition or motivation for cocaine - suggesting a complex interplay between DA transmission and behavior.

18.
Nat Commun ; 14(1): 7545, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985770

RESUMO

Brain levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) shape motivated behavior and nucleus accumbens (NAc) dopamine release. However, it is not clear whether mobilization of 2-AG specifically from midbrain dopamine neurons is necessary for dopaminergic responses to external stimuli predicting forthcoming reward. Here, we use a viral-genetic strategy to prevent the expression of the 2-AG-synthesizing enzyme diacylglycerol lipase α (DGLα) from ventral tegmental area (VTA) dopamine cells in adult mice. We find that DGLα deletion from VTA dopamine neurons prevents depolarization-induced suppression of excitation (DSE), a form of 2-AG-mediated synaptic plasticity, in dopamine neurons. DGLα deletion also decreases effortful, cue-driven reward-seeking but has no effect on non-cued or low-effort operant tasks and other behaviors. Moreover, dopamine recording in the NAc reveals that deletion of DGLα impairs the transfer of accumbal dopamine signaling from a reward to its earliest predictors. These results demonstrate that 2-AG mobilization from VTA dopamine neurons is a necessary step for the generation of dopamine-based predictive associations that are required to direct and energize reward-oriented behavior.


Assuntos
Dopamina , Neurônios Dopaminérgicos , Camundongos , Animais , Neurônios Dopaminérgicos/metabolismo , Dopamina/metabolismo , Endocanabinoides/metabolismo , Área Tegmentar Ventral/fisiologia , Recompensa
19.
J Neurosci ; 31(27): 10067-75, 2011 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-21734299

RESUMO

Caffeine, the most widely used psychoactive compound, is an adenosine receptor antagonist. It promotes wakefulness by blocking adenosine A(2A) receptors (A(2A)Rs) in the brain, but the specific neurons on which caffeine acts to produce arousal have not been identified. Using selective gene deletion strategies based on the Cre/loxP technology in mice and focal RNA interference to silence the expression of A(2A)Rs in rats by local infection with adeno-associated virus carrying short-hairpin RNA, we report that the A(2A)Rs in the shell region of the nucleus accumbens (NAc) are responsible for the effect of caffeine on wakefulness. Caffeine-induced arousal was not affected in rats when A(2A)Rs were focally removed from the NAc core or other A(2A)R-positive areas of the basal ganglia. Our observations suggest that caffeine promotes arousal by activating pathways that traditionally have been associated with motivational and motor responses in the brain.


Assuntos
Nível de Alerta/efeitos dos fármacos , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Receptor A2A de Adenosina/metabolismo , Análise de Variância , Animais , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Linhagem Celular Transformada , Colina O-Acetiltransferase/metabolismo , Relação Dose-Resposta a Droga , Eletroencefalografia/métodos , Eletromiografia/métodos , Proteínas de Fluorescência Verde/genética , Humanos , Locomoção/efeitos dos fármacos , Locomoção/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutagênese , Mutação/genética , Fosfopiruvato Hidratase/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor A2A de Adenosina/deficiência , Receptor A2A de Adenosina/genética , Receptores de Dopamina D2/metabolismo , Transfecção/métodos
20.
J Neurosci ; 31(45): 16447-57, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-22072694

RESUMO

Chronic exposure to addictive drugs enhances cAMP response element binding protein (CREB)-regulated gene expression in nucleus accumbens (NAc), and these effects are thought to reduce the positive hedonic effects of passive cocaine administration. Here, we used viral-mediated gene transfer to produce short- and long-term regulation of CREB activity in NAc shell of rats engaging in volitional cocaine self-administration. Increasing CREB expression in NAc shell markedly enhanced cocaine reinforcement of self-administration behavior, as indicated by leftward (long-term) and upward (short-term) shifts in fixed ratio dose-response curves. CREB also increased the effort exerted by rats to obtain cocaine on more demanding progressive ratio schedules, an effect highly correlated with viral-induced modulation of BDNF protein in the NAc shell. CREB enhanced cocaine reinforcement when expressed either throughout acquisition of self-administration or when expression was limited to postacquisition tests, indicating a direct effect of CREB independent of reinforcement-related learning. Downregulating endogenous CREB in NAc shell by expressing a short hairpin RNA reduced cocaine reinforcement in similar tests, while overexpression of a dominant-negative CREB(S133A) mutant had no significant effect on cocaine self-administration. Finally, increasing CREB expression after withdrawal from self-administration enhanced cocaine-primed relapse, while reducing CREB levels facilitated extinction of cocaine seeking, but neither altered relapse induced by cocaine cues or footshock stress. Together, these findings indicate that CREB activity in NAc shell increases the motivation for cocaine during active self-administration or after withdrawal from cocaine. Our results also highlight that volitional and passive drug administration can lead to substantially different behavioral outcomes.


Assuntos
Anestésicos Locais/administração & dosagem , Proteína de Ligação a CREB/metabolismo , Cocaína/administração & dosagem , Regulação da Expressão Gênica/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Reforço Psicológico , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação a CREB/genética , Cocaína/efeitos adversos , Condicionamento Operante/efeitos dos fármacos , Vias de Administração de Medicamentos , Extinção Psicológica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Mutação/genética , Núcleo Accumbens/metabolismo , Interferência de RNA/fisiologia , Ratos , Ratos Sprague-Dawley , Esquema de Reforço , Autoadministração , Estatística como Assunto , Síndrome de Abstinência a Substâncias/fisiopatologia , Transfecção/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA