Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
J Neurosci ; 44(19)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38575342

RESUMO

The histone lysine demethylase KDM5B is implicated in recessive intellectual disability disorders, and heterozygous, protein-truncating variants in KDM5B are associated with reduced cognitive function in the population. The KDM5 family of lysine demethylases has developmental and homeostatic functions in the brain, some of which appear to be independent of lysine demethylase activity. To determine the functions of KDM5B in hippocampus-dependent learning and memory, we first studied male and female mice homozygous for a Kdm5b Δ ARID allele that lacks demethylase activity. Kdm5b Δ ARID/ Δ ARID mice exhibited hyperactivity and long-term memory deficits in hippocampus-dependent learning tasks. The expression of immediate early, activity-dependent genes was downregulated in these mice and hyperactivated upon a learning stimulus compared with wild-type (WT) mice. A number of other learning-associated genes were also significantly dysregulated in the Kdm5b Δ ARID/ Δ ARID hippocampus. Next, we knocked down Kdm5b specifically in the adult, WT mouse hippocampus with shRNA. Kdm5b knockdown resulted in spontaneous seizures, hyperactivity, and hippocampus-dependent long-term memory and long-term potentiation deficits. These findings identify KDM5B as a critical regulator of gene expression and synaptic plasticity in the adult hippocampus and suggest that at least some of the cognitive phenotypes associated with KDM5B gene variants are caused by direct effects on memory consolidation mechanisms.


Assuntos
Hipocampo , Deficiência Intelectual , Histona Desmetilases com o Domínio Jumonji , Consolidação da Memória , Memória de Longo Prazo , Animais , Hipocampo/metabolismo , Camundongos , Masculino , Feminino , Deficiência Intelectual/genética , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Consolidação da Memória/fisiologia , Memória de Longo Prazo/fisiologia , Potenciação de Longa Duração/genética , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Proteínas de Ligação a DNA
2.
Biochem Soc Trans ; 52(1): 15-27, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38288845

RESUMO

Heterozygous, de novo, loss-of-function variants of the CHD8 gene are associated with a high penetrance of autism and other neurodevelopmental phenotypes. Identifying the neurodevelopmental functions of high-confidence autism risk genes like CHD8 may improve our understanding of the neurodevelopmental mechanisms that underlie autism spectrum disorders. Over the last decade, a complex picture of pleiotropic CHD8 functions and mechanisms of action has emerged. Multiple brain and non-brain cell types and progenitors appear to be affected by CHD8 haploinsufficiency. Behavioural, cellular and synaptic phenotypes are dependent on the nature of the gene mutation and are modified by sex and genetic background. Here, I review some of the CHD8-interacting proteins and molecular mechanisms identified to date, as well as the impacts of CHD8 deficiency on cellular processes relevant to neurodevelopment. I endeavour to highlight some of the critical questions that still require careful and concerted attention over the next decade to bring us closer to the goal of understanding the salient mechanisms whereby CHD8 deficiency causes neurodevelopmental disorders.


Assuntos
Transtorno do Espectro Autista , Transtornos do Neurodesenvolvimento , Humanos , Fatores de Transcrição/genética , Proteínas de Ligação a DNA/genética , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/complicações , Mutação , Transtornos do Neurodesenvolvimento/genética
3.
Nucleic Acids Res ; 50(22): 12809-12828, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36537238

RESUMO

Disruptive mutations in the chromodomain helicase DNA-binding protein 8 gene (CHD8) have been recurrently associated with autism spectrum disorders (ASDs). Here we investigated how chromatin reacts to CHD8 suppression by analyzing a panel of histone modifications in induced pluripotent stem cell-derived neural progenitors. CHD8 suppression led to significant reduction (47.82%) in histone H3K36me3 peaks at gene bodies, particularly impacting on transcriptional elongation chromatin states. H3K36me3 reduction specifically affects highly expressed, CHD8-bound genes and correlates with altered alternative splicing patterns of 462 genes implicated in 'regulation of RNA splicing' and 'mRNA catabolic process'. Mass spectrometry analysis uncovered a novel interaction between CHD8 and the splicing regulator heterogeneous nuclear ribonucleoprotein L (hnRNPL), providing the first mechanistic insights to explain the CHD8 suppression-derived splicing phenotype, partly implicating SETD2, a H3K36me3 methyltransferase. In summary, our results point toward broad molecular consequences of CHD8 suppression, entailing altered histone deposition/maintenance and RNA processing regulation as important regulatory processes in ASD.


Assuntos
Processamento Alternativo , Caderinas , Histonas , Cromatina , Histonas/metabolismo , Lisina/metabolismo , RNA/metabolismo , Caderinas/genética , Humanos , Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Transtorno do Espectro Autista/genética
4.
J Anat ; 243(1): 51-65, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36914558

RESUMO

CHARGE (Coloboma of the eye, Heart defects, Atresia of the choanae, Retardation of growth, Genital anomalies and Ear abnormalities) syndrome is a disorder caused by mutations in the gene encoding CHD7, an ATP dependent chromatin remodelling factor, and is characterised by a diverse array of congenital anomalies. These include a range of neuroanatomical comorbidities which likely underlie the varied neurodevelopmental disorders associated with CHARGE syndrome, which include intellectual disability, motor coordination deficits, executive dysfunction, and autism spectrum disorder. Cranial imaging studies are challenging in CHARGE syndrome patients, but high-throughput magnetic resonance imaging (MRI) techniques in mouse models allow for the unbiased identification of neuroanatomical defects. Here, we present a comprehensive neuroanatomical survey of a Chd7 haploinsufficient mouse model of CHARGE syndrome. Our study uncovered widespread brain hypoplasia and reductions in white matter volume across the brain. The severity of hypoplasia appeared more pronounced in posterior areas of the neocortex compared to anterior regions. We also perform the first assessment of white matter tract integrity in this model through diffusion tensor imaging (DTI) to assess the potential functional consequences of widespread reductions in myelin, which suggested the presence of white matter integrity defects. To determine if white matter alterations correspond to cellular changes, we quantified oligodendrocyte lineage cells in the postnatal corpus callosum, uncovering reduced numbers of mature oligodendrocytes. Together, these results present a range of promising avenues of focus for future cranial imaging studies in CHARGE syndrome patients.


Assuntos
Transtorno do Espectro Autista , Síndrome CHARGE , Coloboma , Substância Branca , Camundongos , Animais , Síndrome CHARGE/genética , Substância Branca/diagnóstico por imagem , Imagem de Tensor de Difusão , Transtorno do Espectro Autista/diagnóstico por imagem , Coloboma/genética
5.
Mol Psychiatry ; 26(7): 3614-3624, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33837267

RESUMO

Heterozygous mutation of chromodomain helicase DNA binding protein 8 (CHD8) is strongly associated with autism spectrum disorder (ASD) and results in dysregulated expression of neurodevelopmental and synaptic genes during brain development. To reveal how these changes affect ASD-associated cortical circuits, we studied synaptic transmission in the prefrontal cortex of a haploinsufficient Chd8 mouse model. We report profound alterations to both excitatory and inhibitory synaptic transmission onto deep layer projection neurons, resulting in a reduced excitatory:inhibitory balance, which were found to vary dynamically across neurodevelopment and result from distinct effects of reduced Chd8 expression within individual neuronal subtypes. These changes were associated with disrupted regulation of homeostatic plasticity mechanisms operating via spontaneous neurotransmission. These findings therefore directly implicate CHD8 mutation in the disruption of ASD-relevant circuits in the cortex.


Assuntos
Transtorno do Espectro Autista , Animais , Transtorno do Espectro Autista/genética , Haploinsuficiência , Heterozigoto , Camundongos , Mutação , Neurônios
6.
Clin Genet ; 100(4): 412-429, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34216016

RESUMO

ZMYND11 is the critical gene in chromosome 10p15.3 microdeletion syndrome, a syndromic cause of intellectual disability. The phenotype of ZMYND11 variants has recently been extended to autism and seizures. We expand on the epilepsy phenotype of 20 individuals with pathogenic variants in ZMYND11. We obtained clinical descriptions of 16 new and nine published individuals, plus detailed case history of two children. New individuals were identified through GeneMatcher, ClinVar and the European Network for Therapies in Rare Epilepsy (NETRE). Genetic evaluation was performed using gene panels or exome sequencing; variants were classified using American College of Medical Genetics (ACMG) criteria. Individuals with ZMYND11 associated epilepsy fell into three groups: (i) atypical benign partial epilepsy or idiopathic focal epilepsy (n = 8); (ii) generalised epilepsies/infantile epileptic encephalopathy (n = 4); (iii) unclassified (n = 8). Seizure prognosis ranged from spontaneous remission to drug resistant. Neurodevelopmental deficits were invariable. Dysmorphic features were variable. Variants were distributed across the gene and mostly de novo with no precise genotype-phenotype correlation. ZMYND11 is one of a small group of chromatin reader genes associated in the pathogenesis of epilepsy, and specifically ABPE. More detailed epilepsy descriptions of larger cohorts and functional studies might reveal genotype-phenotype correlation. The epileptogenic mechanism may be linked to interaction with histone H3.3.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Correpressoras/genética , Proteínas de Ligação a DNA/genética , Epilepsia/diagnóstico , Epilepsia/genética , Variação Genética , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Fenótipo , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Criança , Pré-Escolar , Bases de Dados Factuais , Eletroencefalografia , Epilepsia/terapia , Epilepsia Generalizada/diagnóstico , Epilepsia Generalizada/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Testes Genéticos , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Adulto Jovem
7.
J Am Soc Nephrol ; 30(8): 1398-1411, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31300484

RESUMO

BACKGROUND: Studies in mice suggest that perturbations of the GDNF-Ret signaling pathway are a major genetic cause of congenital anomalies of the kidney and urinary tract (CAKUT). Mutations in Sprouty1, an intracellular Ret inhibitor, results in supernumerary kidneys, megaureters, and hydronephrosis in mice. But the underlying molecular mechanisms involved and which structural domains are essential for Sprouty1 function are a matter of controversy, partly because studies have so far relied on ectopic overexpression of the gene in cell lines. A conserved N-terminal tyrosine has been frequently, but not always, identified as critical for the function of Sprouty1 in vitro. METHODS: We generated Sprouty1 knockin mice bearing a tyrosine-to-alanine substitution in position 53, corresponding to the conserved N-terminal tyrosine of Sprouty1. We characterized the development of the genitourinary systems in these mice via different methods, including the use of reporter mice expressing EGFP from the Ret locus, and whole-mount cytokeratin staining. RESULTS: Mice lacking this tyrosine grow ectopic ureteric buds that will ultimately form supernumerary kidneys, a phenotype indistinguishable to that of Sprouty1 knockout mice. Sprouty1 knockin mice also present megaureters and vesicoureteral reflux, caused by failure of ureters to separate from Wolffian ducts and migrate to their definitive position. CONCLUSIONS: Tyrosine 53 is absolutely necessary for Sprouty1 function during genitourinary development in mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Tirosina/genética , Sistema Urinário/embriologia , Alanina/genética , Animais , Feminino , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Proteínas de Fluorescência Verde/metabolismo , Queratinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Fenótipo , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas c-ret/genética , Ureter/anormalidades , Sistema Urinário/crescimento & desenvolvimento , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Ductos Mesonéfricos/metabolismo
8.
Cereb Cortex ; 28(6): 2192-2206, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29668850

RESUMO

Truncating CHD8 mutations are amongst the highest confidence risk factors for autism spectrum disorder (ASD) identified to date. Here, we report that Chd8 heterozygous mice display increased brain size, motor delay, hypertelorism, pronounced hypoactivity, and anomalous responses to social stimuli. Whereas gene expression in the neocortex is only mildly affected at midgestation, over 600 genes are differentially expressed in the early postnatal neocortex. Genes involved in cell adhesion and axon guidance are particularly prominent amongst the downregulated transcripts. Resting-state functional MRI identified increased synchronized activity in cortico-hippocampal and auditory-parietal networks in Chd8 heterozygous mutant mice, implicating altered connectivity as a potential mechanism underlying the behavioral phenotypes. Together, these data suggest that altered brain growth and diminished expression of important neurodevelopmental genes that regulate long-range brain wiring are followed by distinctive anomalies in functional brain connectivity in Chd8+/- mice. Human imaging studies have reported altered functional connectivity in ASD patients, with long-range under-connectivity seemingly more frequent. Our data suggest that CHD8 haploinsufficiency represents a specific subtype of ASD where neuropsychiatric symptoms are underpinned by long-range over-connectivity.


Assuntos
Encéfalo/fisiopatologia , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Vias Neurais/fisiopatologia , Animais , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Haploinsuficiência , Camundongos , Camundongos Knockout , Neocórtex/metabolismo , Transcriptoma
9.
Dev Biol ; 430(1): 90-104, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28807781

RESUMO

Chordates are characterised by contractile muscle on either side of the body that promotes movement by side-to-side undulation. In the lineage leading to modern jawed vertebrates (crown group gnathostomes), this system was refined: body muscle became segregated into distinct dorsal (epaxial) and ventral (hypaxial) components that are separately innervated by the medial and hypaxial motors column, respectively, via the dorsal and ventral ramus of the spinal nerves. This allows full three-dimensional mobility, which in turn was a key factor in their evolutionary success. How the new gnathostome system is established during embryogenesis and how it may have evolved in the ancestors of modern vertebrates is not known. Vertebrate Engrailed genes have a peculiar expression pattern as they temporarily demarcate a central domain of the developing musculature at the epaxial-hypaxial boundary. Moreover, they are the only genes known with this particular expression pattern. The aim of this study was to investigate whether Engrailed genes control epaxial-hypaxial muscle development and innervation. Investigating chick, mouse and zebrafish as major gnathostome model organisms, we found that the Engrailed expression domain was associated with the establishment of the epaxial-hypaxial boundary of muscle in all three species. Moreover, the outgrowing epaxial and hypaxial nerves orientated themselves with respect to this Engrailed domain. In the chicken, loss and gain of Engrailed function changed epaxial-hypaxial somite patterning. Importantly, in all animals studied, loss and gain of Engrailed function severely disrupted the pathfinding of the spinal motor axons, suggesting that Engrailed plays an evolutionarily conserved role in the separate innervation of vertebrate epaxial-hypaxial muscle.


Assuntos
Galinhas/metabolismo , Proteínas de Homeodomínio/metabolismo , Movimento , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Animais , Animais Recém-Nascidos , Axônios/metabolismo , Biomarcadores/metabolismo , Padronização Corporal/genética , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Fenótipo , Somitos/metabolismo
10.
Trends Genet ; 31(10): 600-611, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26411921

RESUMO

CHARGE syndrome is a rare genetic syndrome characterised by a unique combination of multiple organ anomalies. Dominant loss-of-function mutations in the gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is an ATP-dependent chromatin remodeller, have been identified as the cause of CHARGE syndrome. Here, we review recent work aimed at understanding the mechanism of CHD7 function in normal and pathological states, highlighting results from biochemical and in vivo studies. The emerging picture from this work suggests that the mechanisms by which CHD7 fine-tunes gene expression are context specific, consistent with the pleiotropic nature of CHARGE syndrome.


Assuntos
Síndrome CHARGE/genética , Montagem e Desmontagem da Cromatina/genética , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Síndrome CHARGE/patologia , Cromatina/genética , DNA Helicases/biossíntese , Proteínas de Ligação a DNA/biossíntese , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mutação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA