RESUMO
Plasticity related gene-1 (PRG-1) is a brain-specific membrane protein related to lipid phosphate phosphatases, which acts in the hippocampus specifically at the excitatory synapse terminating on glutamatergic neurons. Deletion of prg-1 in mice leads to epileptic seizures and augmentation of EPSCs, but not IPSCs. In utero electroporation of PRG-1 into deficient animals revealed that PRG-1 modulates excitation at the synaptic junction. Mutation of the extracellular domain of PRG-1 crucial for its interaction with lysophosphatidic acid (LPA) abolished the ability to prevent hyperexcitability. As LPA application in vitro induced hyperexcitability in wild-type but not in LPA(2) receptor-deficient animals, and uptake of phospholipids is reduced in PRG-1-deficient neurons, we assessed PRG-1/LPA(2) receptor-deficient animals, and found that the pathophysiology observed in the PRG-1-deficient mice was fully reverted. Thus, we propose PRG-1 as an important player in the modulatory control of hippocampal excitability dependent on presynaptic LPA(2) receptor signaling.
Assuntos
Proteoglicanas/metabolismo , Sinapses/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Eletroencefalografia , Hipocampo/química , Hipocampo/citologia , Hipocampo/metabolismo , Lisofosfolipídeos/metabolismo , Camundongos , Camundongos Knockout , Proteoglicanas/análise , Proteoglicanas/genética , Receptores de AMPA/metabolismo , Receptores de Ácidos Lisofosfatídicos/metabolismo , Transdução de Sinais , Proteínas de Transporte Vesicular/análise , Proteínas de Transporte Vesicular/genéticaRESUMO
Rapid energy-efficient signaling along vertebrate axons is achieved through intricate subcellular arrangements of voltage-gated ion channels and myelination. One recently appreciated example is the tight colocalization of K(v)7 potassium channels and voltage-gated sodium (Na(v)) channels in the axonal initial segment and nodes of Ranvier. The local biophysical properties of these K(v)7 channels and the functional impact of colocalization with Na(v) channels remain poorly understood. Here, we quantitatively examined K(v)7 channels in myelinated axons of rat neocortical pyramidal neurons using high-resolution confocal imaging and patch-clamp recording. K(v)7.2 and 7.3 immunoreactivity steeply increased within the distal two-thirds of the axon initial segment and was mirrored by the conductance density estimates, which increased from ~12 (proximal) to 150 pS µm(-2) (distal). The axonal initial segment and nodal M-currents were similar in voltage dependence and kinetics, carried by K(v)7.2/7.3 heterotetramers, 4% activated at the resting membrane potential and rapidly activated with single-exponential time constants (~15 ms at 28 mV). Experiments and computational modeling showed that while somatodendritic K(v)7 channels are strongly activated by the backpropagating action potential to attenuate the afterdepolarization and repetitive firing, axonal K(v)7 channels are minimally recruited by the forward-propagating action potential. Instead, in nodal domains K(v)7.2/7.3 channels were found to increase Na(v) channel availability and action potential amplitude by stabilizing the resting membrane potential. Thus, K(v)7 clustering near axonal Na(v) channels serves specific and context-dependent roles, both restraining initiation and enhancing conduction of the action potential.
Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/fisiologia , Neocórtex/fisiologia , Condução Nervosa/fisiologia , Animais , Masculino , Fibras Nervosas Mielinizadas/fisiologia , Técnicas de Cultura de Órgãos , Ratos , Ratos WistarRESUMO
Central nervous system (CNS) inflammation involves the generation of inducible cytokines such as interferons (IFNs) and alterations in brain activity, yet the interplay of both is not well understood. Here, we show that in vivo elevation of IFNs by viral brain infection reduced hyperpolarization-activated currents (Ih) in cortical pyramidal neurons. In rodent brain slices directly exposed to type I IFNs, the hyperpolarization-activated cyclic nucleotide (HCN)-gated channel subunit HCN1 was specifically affected. The effect required an intact type I receptor (IFNAR) signaling cascade. Consistent with Ih inhibition, IFNs hyperpolarized the resting membrane potential, shifted the resonance frequency, and increased the membrane impedance. In vivo application of IFN-ß to the rat and to the mouse cerebral cortex reduced the power of higher frequencies in the cortical electroencephalographic activity only in the presence of HCN1. In summary, these findings identify HCN1 channels as a novel neural target for type I IFNs providing the possibility to tune neural responses during the complex event of a CNS inflammation.
Assuntos
Córtex Cerebral/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Interferon Tipo I/fisiologia , Neurônios/fisiologia , Canais de Potássio/fisiologia , Animais , Western Blotting , Córtex Cerebral/citologia , Simulação por Computador , Citocinas/fisiologia , Eletroencefalografia , Fenômenos Eletrofisiológicos/fisiologia , Células HEK293 , Humanos , Imuno-Histoquímica , Interferon Tipo I/biossíntese , Interferon beta/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Neocórtex/citologia , Neocórtex/metabolismo , Neocórtex/fisiologia , Rede Nervosa/citologia , Rede Nervosa/fisiologia , Técnicas de Patch-Clamp , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interferon/fisiologia , Transdução de Sinais/fisiologia , TransfecçãoRESUMO
The dentate gyrus (DG) of the hippocampus is a mosaic of dentate granule neurons (DGNs) accumulated throughout life. While many studies focused on the morpho-functional properties of adult-born DGNs, much less is known about DGNs generated during development, and in particular those born during embryogenesis. One of the main reasons for this gap is the lack of methods available to specifically label and manipulate embryonically-born DGNs. Here, we have assessed the relevance of the PenkCre mouse line as a genetic model to target this embryonically-born population. In young animals, PenkCre expression allows to tag neurons in the DG with positional, morphological and electrophysiological properties characteristic of DGNs born during the embryonic period. In addition, PenkCre+ cells in the DG are distributed in both blades along the entire septo-temporal axis. This model thus offers new possibilities to explore the functions of this underexplored population of embryonically-born DGNs.
Assuntos
Giro Denteado , Neurônios , Animais , Camundongos , Giro Denteado/fisiologia , Neurônios/fisiologia , Hipocampo , Neurogênese/fisiologiaRESUMO
BACKGROUND: Recently, we and others proposed plasticity-related gene 3 (PRG3) as a novel molecule in neuritogenesis based on PRG3 overexpression experiments in neuronal and non-neuronal cell lines. However, direct information on PRG3 effects in neuronal development and, in particular, its putative spatio-temporal distribution and conditions of action, is sparse. RESULTS: We demonstrate here that PRG3 induces filopodia formation in HEK293 cells depending on its N-glycosylation status. The PRG3 protein was strongly expressed during mouse brain development in vivo from embryonic day 16 to postnatal day 5 (E16 - P5). From P5 on, expression declined. Furthermore, in early, not yet polarized hippocampal cultured neurons, PRG3 was expressed along the neurite shaft. Knock-down of PRG3 in these neurons led to a decreased number of neurites. This phenotype is rescued by expression of an shRNA-resistant PRG3 construct in PRG3 knock-down neurons. After polarization, endogenous PRG3 expression shifted mainly to axons, specifically to the plasma membrane along the neurite shaft. These PRG3 pattern changes appeared temporally and spatially related to ongoing synaptogenesis. Therefore we tested (i) whether dendritic PRG3 re-enhancement influences synaptic currents and (ii) whether synaptic inputs contribute to the PRG3 shift. Our results rendered both scenarios unlikely: (i) PRG3 over-expression had no influence on miniature excitatory postsynaptic currents (mEPSC) and (ii) blocking of incoming signals did not alter PRG3 distribution dynamics. In addition, PRG3 levels did not interfere with intrinsic neuronal properties. CONCLUSION: Taken together, our data indicate that endogenous PRG3 promotes neurite shaft protrusion and therefore contributes to regulating filopodia formation in immature neurons. PRG3 expression in more mature neurons, however, is predominantly localized in the axon. Changes in PRG3 levels did not influence intrinsic or synaptic neuronal properties.
Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , Neuritos/metabolismo , Neurônios/citologia , Análise de Variância , Animais , Animais Recém-Nascidos , Asparagina/genética , Asparagina/metabolismo , Células Cultivadas , Proteína Básica Maior de Eosinófilos/genética , Potenciais Pós-Sinápticos Excitadores/genética , Feminino , Glicosilação , Proteínas de Fluorescência Verde/genética , Células HEK293 , Hipocampo/citologia , Humanos , Masculino , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/citologia , Técnicas de Patch-Clamp , Mutação Puntual/genética , Gravidez , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Pseudópodes/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , TransfecçãoRESUMO
BACKGROUND: Oligodendrocyte lineage cells interact with the vasculature in the gray matter. Physical and functional interactions between blood vessels and oligodendrocyte precursor cells play an essential role in both the developing and adult brain. Oligodendrocyte precursor cells have been shown to migrate along the vasculature and subsequently detach from it during their differentiation to oligodendrocytes. However, the association of mature oligodendrocytes with blood vessels has been noted since the discovery of this glial cell type almost a century ago, but this interaction remains poorly explored. RESULTS: Here, we systematically investigated the extent of mature oligodendrocyte interaction with the vasculature in mouse brain. We found that ~ 17% of oligodendrocytes were in contact with blood vessels in the neocortex, the hippocampal CA1 region and the cerebellar cortex. Contacts were made mainly with capillaries and sparsely with larger arterioles or venules. By combining light and serial electron microscopy, we demonstrated that oligodendrocytes are in direct contact with the vascular basement membrane, raising the possibility of direct signaling pathways and metabolite exchange with endothelial cells. During experimental remyelination in the adult, oligodendrocytes were regenerated and associated with blood vessels in the same proportion compared to control cortex, suggesting a homeostatic regulation of the vasculature-associated oligodendrocyte population. CONCLUSIONS: Based on their frequent and close association with blood vessels, we propose that vasculature-associated oligodendrocytes should be considered as an integral part of the brain vasculature microenvironment. This particular location could underlie specific functions of vasculature-associated oligodendrocytes, while contributing to the vulnerability of mature oligodendrocytes in neurological diseases.
Assuntos
Neocórtex , Camundongos , Animais , Células Endoteliais , Oligodendroglia/metabolismo , Diferenciação Celular/fisiologia , Bainha de MielinaRESUMO
Core planar cell polarity (PCP) genes, which are involved in various neurodevelopmental disorders such as neural tube closure, epilepsy, and autism spectrum disorder, have poorly defined molecular signatures in neurons, mostly synapse-centric. Here, we show that the core PCP protein Prickle-like protein 2 (Prickle2) controls neuronal polarity and is a previously unidentified member of the axonal initial segment (AIS) proteome. We found that Prickle2 is present and colocalizes with AnkG480, the AIS master organizer, in the earliest stages of axonal specification and AIS formation. Furthermore, by binding to and regulating AnkG480, Prickle2 modulates its ability to bundle microtubules, a crucial mechanism for establishing neuronal polarity and AIS formation. Prickle2 depletion alters cytoskeleton organization, and Prickle2 levels determine both axon number and AIS maturation. Last, early Prickle2 depletion produces impaired action potential firing.
RESUMO
Hyperpolarization-activated cyclic nucleotide-gated ion channels (HCN) are key determinants of CNS functions. Here we describe an increase in hyperpolarization-activated current (I(h)) at the beginning of whole-cell recordings in rat layer 5 cortical neurons. For a closer investigation of this I(h) increase, we overexpressed the predominant layer 5 rat subunit HCN1 in HEK293 cells. We characterized the resulting I(h) in the cell-attached and whole-cell configurations. Breaking into whole-cell configuration led to about a 30% enhancement of rat HCN1-mediated I(h) accompanied by a depolarizing shift in voltage dependence and an accelerated time course of activation. This current enhancement is not species specific; for human HCN1, the current similarly increases in amount and kinetics. Although the changes were bound to cytosolic solution exchange, they were independent of cAMP, ATP, GTP, and the phosphate group donor phosphocreatine. Together, these data provide a characterization of heterologous expression of rat HCN1 and suggest that cytosolic contents suppress I(h). Such a mechanism might constitute a reserve in h-channel function in vivo.
Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Potenciais da Membrana/fisiologia , Neocórtex/metabolismo , Neurônios/metabolismo , Canais de Potássio/fisiologia , Animais , Polaridade Celular/fisiologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Citosol/metabolismo , Citosol/fisiologia , Feminino , Células HEK293 , Humanos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico/fisiologia , Neocórtex/citologia , Neurônios/citologia , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Fosforilação/fisiologia , Canais de Potássio/metabolismo , Ratos , Ratos Wistar , Fatores de TempoRESUMO
Myelinating oligodendrocytes enable fast propagation of action potentials along the ensheathed axons. In addition, oligodendrocytes play diverse non-canonical roles including axonal metabolic support and activity-dependent myelination. An open question remains whether myelination also contributes to information processing in addition to speeding up conduction velocity. Here, we analyze the role of myelin in auditory information processing using paradigms that are also good predictors of speech understanding in humans. We compare mice with different degrees of dysmyelination using acute multiunit recordings in the auditory cortex, in combination with behavioral readouts. We find complex alterations of neuronal responses that reflect fatigue and temporal acuity deficits. We observe partially discriminable but similar deficits in well myelinated mice in which glial cells cannot fully support axons metabolically. We suggest a model in which myelination contributes to sustained stimulus perception in temporally complex paradigms, with a role of metabolically active oligodendrocytes in cortical information processing.
Assuntos
Axônios/metabolismo , Bainha de Mielina/metabolismo , Oligodendroglia/fisiologia , Potenciais de Ação/fisiologia , Animais , Córtex Auditivo/patologia , Comportamento Animal , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Neuroglia , Neurônios/metabolismoRESUMO
Ensheathment of axons by myelin is a highly complex and multi-cellular process. Cytosolic calcium (Ca2+) changes in the myelin sheath have been implicated in myelin synthesis, but the source of this Ca2+ and the role of neuronal activity is not well understood. Using one-photon Ca2+ imaging, we investigated myelin sheath formation in the mouse somatosensory cortex and found a high rate of spontaneous microdomain Ca2+ transients and large-amplitude Ca2+ waves propagating along the internode. The frequency of Ca2+ transients and waves rapidly declines with maturation and reactivates during remyelination. Unexpectedly, myelin microdomain Ca2+ transients occur independent of neuronal action potential generation or network activity but are nearly completely abolished when the mitochondrial permeability transition pores are blocked. These findings are supported by the discovery of mitochondria organelles in non-compacted myelin. Together, the results suggest that myelin microdomain Ca2+ signals are cell-autonomously driven by high activity of mitochondria during myelin remodeling.
Assuntos
Cálcio/metabolismo , Bainha de Mielina/metabolismo , Animais , CamundongosRESUMO
This study investigates the impact of intrinsic currents on early neural development. A rat striatal ST14A cell line immortalized by SV40 large T antigen was employed as a model system because these cells act as multipotent neural progenitors when maintained at a permissive temperature of 33 degrees C. The whole-cell patch-clamp, molecular and immunocytochemical experiments point to a unique role of sodium currents in the multipotential stage of neural development. In initial experiments, action potential-like responses were only present when multipotential ST14A cells were substantially hyperpolarized. This led us to presume that sodium channels were only recruited during deep hyperpolarization. Subsequent voltage-clamp studies confirmed a remarkably hyperpolarized steady-state inactivation of the sodium currents and also showed that the underlying channels were tetrodotoxin resistant. Direct comparison with cells whose neuronal fate was already determined, i.e. short-term cultured striatal cells isolated at embryonic day 14 and after birth (post-natal day 0), showed that both traits are unique to ST14A cells. However, sodium currents in all three groups had a fast time- and voltage-dependent activation, as well as full inactivation with roughly similar kinetics. The peculiarity in ST14A might be explained by a relative excess of heart-type Na(V)1.5 and particularly its splice variant Na(V)1.5a, as suggested by reverse transcription-polymerase chain reaction results. We conclude that multipotent neural progenitor cells express Na(+) channels in their membrane irrespective of their fate but these channels have little effect due to their subunit composition, which is regulated by alternative splicing.
Assuntos
Células-Tronco Multipotentes/metabolismo , Neurônios/metabolismo , Sódio/metabolismo , Processamento Alternativo , Animais , Linhagem Celular , Ativação do Canal Iônico/fisiologia , Células-Tronco Multipotentes/citologia , Miocárdio/metabolismo , Neurônios/citologia , Técnicas de Patch-Clamp , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Ratos , Bloqueadores dos Canais de Sódio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo , Tetrodotoxina/metabolismoRESUMO
Combining fluorescence and transmitted light sources for microscopy is an invaluable method in cellular neuroscience to probe the molecular and cellular mechanisms of cells. This approach enables the targeted recording from fluorescent reporter protein expressing neurons or glial cells in brain slices and fluorescence-assisted electrophysiological recordings from subcellular structures. However, the existing tools to mix multiple light sources in one-photon microscopy are limited. Here, we present the development of several microcontroller devices that provide temporal and intensity control of light emitting diodes (LEDs) for computer controlled microscopy illumination. We interfaced one microcontroller with µManager for rapid and dynamic overlay of transmitted and fluorescent images. Moreover, on the basis of this illumination system we implemented an electronic circuit to combine two pulsed LED light sources for fast (up to 1 kHz) ratiometric calcium (Ca2+) imaging. This microcontroller enabled the calibration of intracellular Ca2+ concentration and furthermore the combination of Ca2+ imaging with optogenetic activation. The devices are based on affordable components and open-source hardware and software. Integration into existing bright-field microscope systems will take â¼1 day. The microcontroller based LED imaging substantially advances conventional illumination methods by limiting light exposure and adding versatility and speed.
RESUMO
Satellite oligodendrocytes (s-OLs) are closely apposed to the soma of neocortical layer 5 pyramidal neurons but their properties and functional roles remain unresolved. Here we show that s-OLs form compact myelin and action potentials of the host neuron evoke precisely timed Ba(2+)-sensitive K(+) inward rectifying (Kir) currents in the s-OL. Unexpectedly, the glial K(+) inward current does not require oligodendrocytic Kir4.1. Action potential-evoked Kir currents are in part mediated by gap-junction coupling with neighbouring OLs and astrocytes that form a syncytium around the pyramidal cell body. Computational modelling predicts that glial Kir constrains the perisomatic [K(+)]o increase most importantly during high-frequency action potentials. Consistent with these predictions neurons with s-OLs showed a reduced probability for action potential burst firing during [K(+)]o elevations. These data suggest that s-OLs are integrated into a glial syncytium for the millisecond rapid K(+) uptake limiting activity-dependent [K(+)]o increase in the perisomatic neuron domain.
Assuntos
Células Gigantes/metabolismo , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Potenciais de Ação/genética , Potenciais de Ação/fisiologia , Algoritmos , Animais , Células Gigantes/citologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica , Modelos Neurológicos , Neurônios/citologia , Neurônios/fisiologia , Oligodendroglia/citologia , Oligodendroglia/ultraestrutura , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/fisiologiaRESUMO
The distribution of ion channels in neurons regulates neuronal activity and proper formation of neuronal networks during neuronal development. One of the channels is the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel constituting the molecular substrate of hyperpolarization-activated current (I(h)). Our previous study implied a role for the fastest activating subunit HCN1 in the generation of Ih in rat neonatal cortical plate neurons. To better understand the impact of HCN1 in early neocortical development, we here performed biochemical analysis and whole-cell recordings in neonatal cortical plate and juvenile layer 5 somatosensory neurons of HCN1(-/-) and control HCN1(+/+) mice. Western Blot analysis revealed that HCN1 protein expression in neonatal cortical plate tissue of HCN(+/+) mice amounted to only 3% of the HCN1 in young adult cortex and suggested that in HCN1(-/-) mice other isoforms (particularly HCN4) might be compensatory up-regulated. At the first day after birth, functional ablation of the HCN1 subunit did not affect the proportion of Ih expressing pyramidal cortical plate neurons. Although the contribution of individual subunit proteins remains open, the lack of HCN1 markedly slowed the current activation and deactivation in individual I(h) expressing neurons. However, it did not impair maximal amplitude/density, voltage dependence of activation, and cAMP sensitivity. In conclusion, our data imply that, although expression is relatively low, HCN1 contributes substantially to I(h) properties in individual cortical plate neurons. These properties are significantly changed in HCN1(-/-), either due to the lack of HCN1 itself or due to compensatory mechanisms.
Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Potenciais da Membrana/fisiologia , Neurônios/metabolismo , Canais de Potássio/metabolismo , Animais , Animais Recém-Nascidos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Feminino , Técnicas de Inativação de Genes , Hipocampo/citologia , Hipocampo/fisiologia , Cinética , Camundongos , Camundongos da Linhagem 129 , Células Piramidais/citologia , Ratos , Ratos WistarRESUMO
BACKGROUND: During neocortical development, multiple voltage- and ligand-gated ion channels are differentially expressed in neurons thereby shaping their intrinsic electrical properties. One of these voltage-gated ion channels, the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel and its current I(h), is an important regulator of neuronal excitability. Thus far, studies on an early I(h) appearance in rodent neocortex are missing or conflicting. Therefore, we focused our study on perinatal neocortical I(h) and its properties. RESULTS: In the perinatal rat neocortex we observed a rapid increase in the number of neurons exhibiting I(h). Perinatal I(h) had unique properties: first, a pronounced cAMP sensitivity resulting in a marked shift of the voltage sufficient for half-maximum activation of the current towards depolarized voltages and second, an up to 10 times slower deactivation at physiological membrane potentials when compared to the one at postnatal day 30. The combination of these features was sufficient to suppress membrane resonance in our in silico and in vitro experiments. Although all four HCN subunits were present on the mRNA level we only detected HCN4, HCN3 and HCN1 on the protein level at P0. HCN1 protein at P0, however, appeared incompletely processed. At P30 glycosilated HCN1 and HCN2 dominated. By in silico simulations and heterologous co-expression experiments of a 'slow' and a 'fast' I(h) conducting HCN channel subunit in HEK293 cells, we mimicked most characteristics of the native current, pointing to a functional combination of subunit homo- or heteromeres. CONCLUSION: Taken together, these data indicate a HCN subunit shift initiated in the first 24 hours after birth and implicate a prominent perinatal role of the phylogenetically older HCN3 and/or HCN4 subunits in the developing neocortex.
Assuntos
Córtex Cerebral/citologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Biofísica , Cálcio/metabolismo , Linhagem Celular Transformada , Simulação por Computador , AMP Cíclico/farmacologia , Canais de Cátion Regulados por Nucleotídeos Cíclicos/antagonistas & inibidores , Canais de Cátion Regulados por Nucleotídeos Cíclicos/classificação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Estimulação Elétrica , Embrião de Mamíferos , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Humanos , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Modelos Neurológicos , Mutação/genética , Neurônios/efeitos dos fármacos , Técnicas de Patch-Clamp , Gravidez , Pirimidinas/farmacologia , Pirrolidinonas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , TransfecçãoRESUMO
Abnormal neuronal activity in the subthalamic nucleus (STN) plays a crucial role in the pathophysiology of Parkinson's disease (PD). Although altered extracellular potassium concentration ([K+]o) and sensitivity to [K+]o modulates neuronal activity, little is known about the potassium balance in the healthy and diseased STN. In vivo measurements of [K+]o using ion-selective electrodes demonstrated a twofold increase in the decay time constant of lesion-induced [K+]o transients in the STN of adult Wistar rats with a unilateral 6-hydroxydopamine (6-OHDA) median forebrain bundle lesion, employed as a model of PD, compared with nonlesioned rats. Various [K+]o concentrations (1.5-12.5 mM) were applied to in vitro slice preparations of three experimental groups of STN slices from nonlesioned control rats, ipsilateral hemispheres, and contralateral hemispheres of lesioned rats. The majority of STN neurons of nonlesioned rats and in slices contralateral to the lesion fired spontaneously, predominantly in a regular pattern, whereas those in slices ipsilateral to the lesion fired more irregularly or even in bursts. Experimentally increased [K+]o led to an increase in the number of spontaneously firing neurons and action potential firing rates in all groups. This was accompanied by a decrease in the amplitude of post spike afterhyperpolarization (AHP) and the amplitude and duration of the posttrain AHP. Lesion effects in ipsilateral neurons at physiological [K+]o resembled the effects of elevated [K+]o in nonlesioned rats. Our data suggest that changed potassium sensitivity due to conductivity alterations and delayed clearance may be critical for shaping STN activity in parkinsonian states.
Assuntos
Neurônios/fisiologia , Oxidopamina , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/patologia , Potássio/metabolismo , Núcleo Subtalâmico/patologia , Potenciais de Ação/fisiologia , Análise de Variância , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Estimulação Elétrica/métodos , Líquido Extracelular/efeitos dos fármacos , Lateralidade Funcional/fisiologia , Técnicas In Vitro , Masculino , Neurônios/efeitos dos fármacos , Potássio/farmacologia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/metabolismoRESUMO
PURPOSE: The transient and the persistent Na(+) current play a distinct role in neuronal excitability. Several antiepileptic drugs (AEDs) modulate the transient Na(+) current and block the persistent Na(+) current; both effects contribute to their antiepileptic properties. The interactions of the AEDs carbamazepine (CBZ) and topiramate (TPM) with the persistent and transient Na(+) current were investigated. METHODS: HEK293 cells stably expressing the alpha-subunit of the Na(+) channel Na(V)1.3 were used to record Na(+) currents under voltage-clamp by using the patch-clamp technique in whole-cell configuration and to investigate the effects of CBZ and TPM. RESULTS: The persistent Na(+) current was present in all cells and constituted 10.3 +/- 3.8% of the total current. CBZ partially blocked the persistent Na(+) current in a concentration-dependent manner [median effective concentration (EC(50)), 16 +/- 4 microM]. CBZ also shifted the steady-state inactivation of the transient Na(+) current to negative potentials (EC(50), 14 +/- 11 microM). TPM partially blocked the persistent Na(+) current with a much higher affinity (EC(50), 61 +/- 37 nM) than it affected the steady-state inactivation of the transient Na(+) current (EC(50), 3.2 +/- 1.8 microM). For the latter effect, TPM was at most half as effective as CBZ. CONCLUSIONS: The persistent Na(+) current flowing through the alpha-subunit of the Na(V)1.3 channel is partially blocked by CBZ at about the same therapeutic concentrations at which it modulates the transient Na(+) current, adding a distinct aspect to its anticonvulsant profile. The TPM-induced partial block of the persistent Na(+) current, already effective at low concentrations, could be the dominant action of this drug on the Na(+) current.