Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Antimicrob Chemother ; 79(6): 1450-1455, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38708644

RESUMO

BACKGROUND: The increase in antibiotic resistance is a major public health issue. The development of rapid antimicrobial susceptibility testing (AST) methods is becoming a priority to ensure early and appropriate antibiotic therapy. OBJECTIVES: To evaluate sedimentation field-flow fractionation (SdFFF) as a method for performing AST in less than 3 h. METHODS: SdFFF is based on the detection of early biophysical changes in bacteria, using a chromatographic-type technology. One hundred clinical Escherichia coli strains were studied. A calibrated bacterial suspension was incubated for 2 h at 37°C in the absence (untreated) or presence (treated) of five antibiotics used at EUCAST breakpoint concentrations. Bacterial suspensions were then injected into the SdFFF machine. For each E. coli isolate, retention times and elution profiles of antibiotic-treated bacteria were compared with retention times and elution profiles of untreated bacteria. Algorithms comparing retention times and elution profiles were used to determine if the strain was susceptible or resistant. Performance evaluation was done according to CLSI and the ISO standard 20776-2:2021 with broth microdilution used as the reference method. RESULTS: AST results from SdFFF were obtained in less than 3 h. SdFFF showed high categorical agreement (99.8%), sensitivity (99.5%) and specificity (100.0%) with broth microdilution. Results for each antimicrobial were also in agreement with the ISO 20776-2 recommendations, with sensitivity and specificity of ≥95.0%. CONCLUSIONS: This study showed that SdFFF can be used as a rapid, accurate and reliable phenotypic AST method with a turnaround time of less than 3 h.


Assuntos
Antibacterianos , Escherichia coli , Fracionamento por Campo e Fluxo , Testes de Sensibilidade Microbiana , Testes de Sensibilidade Microbiana/métodos , Testes de Sensibilidade Microbiana/normas , Projetos Piloto , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Humanos , Fracionamento por Campo e Fluxo/métodos , Infecções por Escherichia coli/microbiologia , Fatores de Tempo
2.
Anal Chem ; 95(46): 16950-16957, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37939234

RESUMO

Conventional antimicrobial susceptibility testing (AST) methods require 24-48 h to provide results, creating the need for a probabilistic antibiotic therapy that increases the risk of antibiotic resistance emergence. Consequently, the development of rapid AST methods has become a priority. Over the past decades, sedimentation field-flow fractionation (SdFFF) has demonstrated high sensitivity in early monitoring of induced biological events in eukaryotic cell populations. This proof-of-concept study aimed at investigating SdFFF for the rapid assessment of bacterial susceptibility to antibiotics. Three bacterial species were included (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa) with two panels of antibiotics tailored to each bacterial species. The results demonstrate that SdFFF, when used in "Hyperlayer" elution mode, enables monitoring of antibiotic-induced morphological changes. The percentage variation of the retention factor (PΔR) was used to quantify the biological effect of antibiotics on bacteria with the establishment of a threshold value of 16.8% to differentiate susceptible and resistant strains. The results obtained with SdFFF were compared to that of the AST reference method, and a categorical agreement of 100% was observed. Overall, this study demonstrates the potential of SdFFF as a rapid method for the determination of antibiotic susceptibility or resistance since it is able to provide results within a shorter time frame than that needed for conventional methods (3-4 h vs 16-24 h, respectively), enabling earlier targeted antibiotic therapy. Further research and validation are necessary to establish the effectiveness and reliability of SdFFF in clinical settings.


Assuntos
Fracionamento por Campo e Fluxo , Fracionamento por Campo e Fluxo/métodos , Reprodutibilidade dos Testes , Antibacterianos/farmacologia , Bactérias , Klebsiella pneumoniae , Escherichia coli , Testes de Sensibilidade Microbiana
3.
J Cell Mol Med ; 25(1): 47-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33325631

RESUMO

Colorectal cancer (CRC) is the third most common cancer worldwide. Even if 5-fluorouracil (5-FU) is used as the first-line chemotherapeutic drug, responsiveness is only 20-30%. Acquired resistance to 5-FU contributes to both poor patient prognosis and relapse, emphasizing the need to identify biomarkers. Sortilin, a vacuolar protein sorting 10 protein (Vps10p), implicated in protein trafficking, is over expressed in CRC cell lines cultured 72 hours in presence of 5-FU. This overexpression was also observed in 5-FU-resistant cells derived from these cell lines as well as in CRC primary cultures (or patients derived cell lines). A significantly higher expression of sortilin was observed in vivo, in 5-FU-treated tumours engrafted in Nude mice, as compared with non-treated tumour. A study of transcriptional regulation allowed identifying a decrease in ATF3 expression, as an explanation of sortilin overexpression following 5-FU treatment. In silico analysis revealed SORT1 expression correlation with poor prognosis. Moreover, sortilin expression was found to be positively correlated with CRC tumour grades. Collectively, our findings identify sortilin as a potential biomarker of 5-FU resistance associated with poor clinical outcomes and aggressiveness in CRC. As a new prognostic factor, sortilin expression could be used to fight against CRC.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/uso terapêutico , Proteínas Adaptadoras de Transporte Vesicular/genética , Idoso , Idoso de 80 Anos ou mais , Animais , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Intervalo Livre de Doença , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos Nus , Gradação de Tumores , Prognóstico , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Anal Chem ; 93(37): 12664-12671, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34491042

RESUMO

Cancer stem cells (CSCs) appear to be an essential target for cancer therapies, in particular, in brain tumors such as Glioblastoma. Nevertheless, their isolation is made difficult by their low content in culture or tumors (<5% of the tumor mass) and is essentially based on the use of fluorescent or magnetic labeling techniques, increasing the risk of differentiation induction. The use of label-free separation methods such as sedimentation field-flow fractionation (SdFFF) is promising, but it becomes necessary to consider a coupling with a detection and characterization method for future identification and purification of CSCs from patient-derived tumors. In this study, we demonstrate for the first time the capability of using an ultrahigh-frequency range dielectrophoresis fluidic biosensor as a detector. This implies an important methodological adaptation of SdFFF cell sorting by the use of a new compatible carrier liquid DEP buffer (DEP-B). After SdFFF sorting, subpopulations derived from U87-MG and LN18 cell lines undergo biological characterization, demonstrating that using DEP-B as a carrier liquid, we sorted by SdFFF subpopulations with specific differentiation characteristics: F1 = differentiated cells/F2 = CSCs. These subpopulations presented high-frequency crossover (HFC) values similar to those measured for standard differentiated (around 110 MHz) and CSC (around 80 MHz) populations. This coupling appeared as a promising solution for the development of an online integration of these two complementary label-free separation/detection technologies.


Assuntos
Técnicas Biossensoriais , Fracionamento por Campo e Fluxo , Glioblastoma , Movimento Celular , Separação Celular , Humanos , Células-Tronco Neoplásicas
5.
Langmuir ; 37(1): 297-310, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33350837

RESUMO

Biocompatible materials are of paramount importance in numerous fields. Unlike chemically bridge polymer-based hydrogels, low-molecular-weight gelators can form a reversible hydrogel as their structures rely on noncovalent interaction. Although many applications with this type of hydrogel can be envisioned, we still lack their understanding due to the complexity of their self-assembly process and the difficulty in predicting their behaviors (transition temperature, gelation kinetics, the impact of solvent, etc.). In this study, we extend the investigations of a series of nucleoside-derived gelators, which only differ by subtle chemical modifications. Using a multitechnique approach, we determined their thermodynamic and kinetic features on various scale (molecular to macro) in different conditions. Monitored at the supramolecular level by circular dichroism as well as macroscopic scales by rheology and turbidimetry, we found out that the sol-gel and gel-sol transitions are greatly dependent on the concentration and on the mechanisms that are probed. Self-assembly kinetics depends on hydrogel molecules and is modulated by temperature and solvent. This fundamental study provides insight on the impact of some parameters on the gelation process, such as concentration, cooling rate, and the nature of the solvent.

6.
Anal Chem ; 91(14): 8948-8957, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31179686

RESUMO

Cancer stem cells (CSCs) play critical roles in cancer, making them important targets for new diagnostic and therapeutic approaches. Since CSCs are heterogeneous and not abundant in tumors, and few specific markers for these cells currently exist, new methods to isolate and characterize them are required. To address this issue, we developed a new label-free methodology to isolate, enrich, and identify CSCs from an heterogeneous tumor cell subpopulation using a cell sorting method (sedimentation field flow fractionation, SdFFF) and a biosensor as a detector. Enrichment was optimized using an original protocol and U87-MG glioblastoma cells cultured in a normal (N) or defined (D) medium (± fetal bovine serum, FBS) under normoxic (N, pO2 = 20%) or hypoxic (H, pO2 < 2%) conditions to obtain four cell populations: NN, NH, DN, and DH. After elution of CSCs via SdFFF using the hyperlayer mode (inertial elution mode for micrometer-sized species), we isolated eight subpopulations with distinct CSC contents based on phenotypical and functional properties, ranging from NN F1 with a lower CSC content to DH F3 with a higher CSC content. Reflecting biological differences, the intrinsic intracellular dielectric permittivity increased from NN to DH conditions. The largest difference in electromagnetic signature was observed between NN F1 and DH F3, in which the CSC content was lowest and highest, respectively. The results demonstrate that microwave dielectric spectroscopy can be used to reliably and efficiently distinguish stem cell characteristics. This new instrumental and methodological approach is an important innovation that allows both enrichment and detection of CSCs, opening the door to novel diagnostic and therapeutic approaches.


Assuntos
Separação Celular/métodos , Fracionamento por Campo e Fluxo/métodos , Glioblastoma/patologia , Células-Tronco Neoplásicas/patologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Linhagem Celular Tumoral , Movimento Celular , Separação Celular/instrumentação , Desenho de Equipamento , Fracionamento por Campo e Fluxo/instrumentação , Humanos
7.
J Cell Mol Med ; 21(2): 244-253, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27641066

RESUMO

Glioblastoma is the most lethal brain tumour with a poor prognosis. Cancer stem cells (CSC) were proposed to be the most aggressive cells allowing brain tumour recurrence and aggressiveness. Current challenge is to determine CSC signature to characterize these cells and to develop new therapeutics. In a previous work, we achieved a screening of glycosylation-related genes to characterize specific genes involved in CSC maintenance. Three genes named CHI3L1, KLRC3 and PRUNE2 were found overexpressed in glioblastoma undifferentiated cells (related to CSC) compared to the differentiated ones. The comparison of their roles suggest that KLRC3 gene coding for NKG2E, a protein initially identified in NK cells, is more important than both two other genes in glioblastomas aggressiveness. Indeed, KLRC3 silencing decreased self-renewal capacity, invasion, proliferation, radioresistance and tumourigenicity of U87-MG glioblastoma cell line. For the first time we report that KLRC3 gene expression is linked to glioblastoma aggressiveness and could be a new potential therapeutic target to attenuate glioblastoma.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Carcinogênese/patologia , Glioblastoma/genética , Glioblastoma/patologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Clonais , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Proteínas de Membrana/metabolismo , Camundongos Nus , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Invasividade Neoplásica , RNA Interferente Pequeno/metabolismo , Tolerância a Radiação , Transdução de Sinais/genética
8.
Neurochem Res ; 42(8): 2427-2434, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28434162

RESUMO

A wide heterogeneity of lesions can affect the central nervous system (CNS). In all situations where neurons are damaged, including multiple sclerosis (MS), a common reactive astrocytosis is present. Sedimentation field-flow fractionation (SdFFF) was used to sort astrocyte subpopulations. After SdFFF elution, cells, prepared from rat newborn cortex, were cultured and analyzed by immunocytofluorescence for glial fibrillary acidic protein (GFAP) and α-smooth muscle (SM) actin (a specific marker for myofibroblasts) expression. Cell contractile capacity was studied. Samples from patients with MS were also analyzed. Three main fractions (F1, F2, and F3) were isolated and compared with the total eluted population (TP). TP, F1, F2, and F3, contained respectively 74, 96, 12, and 98% of GFAP expressing astrocytes. In F3, astrocytes only expressed GFAP while in F1, astrocytes expressed both GFAP and α-SM actin. In F2 and TP, α-SM actin expression was barely detected. F3-derived cells showed higher contractile capacities compared with F1-derived cells. In one specific case of MS known as Baló's concentric MS, astrocytes expressing both GFAP and α-SM actin were detected. Using SdFFF, a population of astrocytes presenting myofibroblast properties was isolated. This subpopulation of astrocytes was also observed in a MS sample suggesting that it could be involved in lesion formation and remodeling during CNS pathologies.


Assuntos
Astrócitos/patologia , Astrócitos/fisiologia , Fracionamento por Campo e Fluxo/métodos , Esclerose Múltipla/patologia , Miofibroblastos/patologia , Miofibroblastos/fisiologia , Animais , Animais Recém-Nascidos , Humanos , Ratos , Ratos Sprague-Dawley
9.
Anal Chem ; 88(13): 6696-702, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27263863

RESUMO

Human induced pluripotent stem cells (hiPSc) are a very useful solution to create and observe the behavior of specific and usually inaccessible cells, such as human motor neurons. Obtained from a patient biopsy by reprograming dermal fibroblasts (DF), hiPSc present the same properties as embryonic stem cells and can generate any cell type after several weeks of differentiation. Today, there are numerus protocols which aim to control hiPSC differentiation. The principal challenge is to obtain a sufficiently enriched specific cell population to study disease pathophysiology and to provide a good model for further investigation and drug screening. The differentiation process is very costly and time-consuming, because many specific factors and different culture media must be used. In this study, we used Sedimentation Field Flow Fractionation (SdFFF) to prepare enriched populations derived from hiPSc after only 10 days of culture in a classical medium. Based on phenotypic and proteomic characterization, "hyperlayer" elution resulted in a fraction expressing markers of endothelial progenitors while another fraction expressed markers of neural progenitors. The isolation of subpopulations representing various differentiation lineages is of major interest for the production of specialized, cell-enriched fractions and in the preparation of increasingly complex models for the development of new therapeutic tools.


Assuntos
Células Endoteliais/citologia , Fracionamento por Campo e Fluxo/métodos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Neurais/citologia , Diferenciação Celular , Células Cultivadas , Derme/citologia , Células Endoteliais/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neurais/metabolismo , Neuropeptídeos/metabolismo , Proteínas Nucleares/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
10.
Anal Bioanal Chem ; 407(15): 4301-4, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25486922

RESUMO

Proteins are separated in field flow fractionation (FFF) according to a well-established mechanism described as the "Normal or Brownian" mode. In the case of the sub-technique using a hollow fiber, the focalization/relaxation position can be observed visually only with a transparent holder and using dyes as samples. Whatever the choice of instrumentation, a dye-free method is proposed to determine the center of the zone from experimental fractograms by means of only two sample elutions. It is also possible to determine and model the kinematics of the sample toward the equilibrium focalization/relaxation position as well as the real dimensions of the fiber during the separation process.


Assuntos
Fracionamento por Campo e Fluxo/métodos , Proteínas/isolamento & purificação , Algoritmos , Corantes/isolamento & purificação , Cinética
11.
Anal Bioanal Chem ; 407(28): 8433-43, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26427501

RESUMO

Despite effective treatments, relapse of colorectal cancer (CRC) is frequent, in part caused by the existence of tumor-initiating cells (TICs). Different subtypes of TICs, quiescent and activated, coexist in tumors, defining the tumor aggressiveness and therapeutic response. These subtypes have been sorted by hyperlayer sedimentation field-flow fractionation (SdFFF) from WiDr and HCT116 cell lines. On the basis of a new strategy, including TIC SdFFF sorting, 3D Matrigel amplification, and grafting of corresponding TIC colonies on the chick chorioallantoic membrane (CAM), specific tumor matrices could be obtained. If tumors had similar architectural structure with vascularization by the host system, they had different proliferative indices in agreement with their initial quiescent or activated state. Protein analysis also revealed that tumors obtained from a population enriched for "activated" TICs lost "stemness" properties and became invasive. In contrast, tumors obtained from a population enriched for "quiescent" TICs kept their stemness properties and seemed to be less proliferative and invasive. Then, it was possible to produce different kinds of tumor which could be used as selective supports to study carcinogenesis and therapy sensitivity.


Assuntos
Biomarcadores Tumorais/genética , Separação Celular/métodos , Neoplasias Colorretais/diagnóstico , Modelos Biológicos , Células-Tronco Neoplásicas/classificação , Animais , Biomarcadores Tumorais/metabolismo , Caspase 3/genética , Caspase 3/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Separação Celular/instrumentação , Embrião de Galinha , Membrana Corioalantoide/irrigação sanguínea , Membrana Corioalantoide/patologia , Colágeno/química , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Combinação de Medicamentos , Fracionamento por Campo e Fluxo/instrumentação , Fracionamento por Campo e Fluxo/métodos , Expressão Gênica , Células HCT116 , Humanos , Queratina-20/genética , Queratina-20/metabolismo , Antígeno Ki-67/genética , Antígeno Ki-67/metabolismo , Laminina/química , Invasividade Neoplásica , Células-Tronco Neoplásicas/patologia , Neovascularização Patológica/patologia , Proteoglicanas/química
12.
Anal Chem ; 84(3): 1549-56, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22236375

RESUMO

Recently, cancer stem cells (CSCs) have been identified in many types of cancers, such as colorectal cancer (CRC). CSCs seem to be involved in initiation, growth, and tumor metastasis, as well as in radio- and chemotherapy failures. CSCs appears as new biological targets for cancer therapy, requiring the development of noninvasive cell sorting methods. In this study, we used sedimentation field flow fractionation (SdFFF) to prepare enriched populations of CSCs from eight cell lines corresponding to different CRC grades. On the basis of phenotypic and functional characterizations, "hyperlayer" elution resulted in a fraction overexpressing CSC markers (CD44, CD166, EpCAM) for all cell lines. CSCs were eluted in the last fraction for seven out of eight cell lines, but in the first for HCT116. These results suggest, according to the literature, that two different pools of CSCs exist, quiescent and activated, which can both be sorted by SdFFF. Moreover, according to CSC properties, enriched fractions are able to form colonies.


Assuntos
Fracionamento por Campo e Fluxo , Células-Tronco Neoplásicas/citologia , Antígenos CD/metabolismo , Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Linhagem Celular Tumoral , Molécula de Adesão da Célula Epitelial , Proteínas Fetais/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo
13.
Anal Chem ; 84(20): 8748-55, 2012 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-23003675

RESUMO

The development of hypoxic areas often takes place in solid tumors and leads cells to undergo adaptive signalization like autophagy. This process is responsible for misfolded or aggregated proteins and nonfunctional organelle recycling, allowing cells to maintain their energetic status. However, it could constitute a double-edged pathway leading to both survival and cell death. So, in response to stress such as hypoxia, autophagic and apoptotic cells are often mixed. To specifically study and characterize autophagic cells and the process, we needed to develop a method able to (1) isolate autophagic subpopulation and (2) respect apoptotic and autophagic status. Sedimentation field-flow fractionation (SdFFF) was first used to monitor physical parameter changes due to the hypoxia mimetic CoCl(2) in the p53 mutated SKNBE2(c) human neuroblastoma cell line. Second, we showed that "hyperlayer" elution is able to prepare autophagic enriched populations, fraction (F3), overexpressing autophagic markers (i.e., LC3-II accumulation and punctiform organization of autophagosomes as well as cathepsin B overactivity). Conversely, the first eluted fraction exhibited apoptotic markers (caspase-3 activity and Bax increased expression). For the first time, SdFFF was employed as an analytical tool in order to discriminate apoptotic and autophagic cells, thus providing an enriched autophagic fraction consecutively to a hypoxic stress.


Assuntos
Autofagia , Separação Celular/métodos , Fracionamento por Campo e Fluxo/métodos , Caspase 3/metabolismo , Catepsina B/metabolismo , Hipóxia Celular , Linhagem Celular Tumoral , Cobalto/metabolismo , Humanos , Mutação , Neuroblastoma/genética , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Proteína Supressora de Tumor p53/genética
14.
Cells ; 11(15)2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35892561

RESUMO

Cancer stem cells play a crucial role in tumor initiation, metastasis, and resistance to treatment. Cellular heterogeneity and plasticity complicate the isolation of cancer stem cells. The impact of intra-tumor cellular heterogeneity using a label-free approach remains understudied in the context of treatment resistance. Here, we use the sedimentation field-flow fractionation technique to separate, without labeling, cell subpopulations of colorectal cancer cell lines and primary cultures according to their biophysical properties. One of the three sorted cell subpopulations exhibits characteristics of cancer stem cells, including high tumorigenicity in vivo and a higher frequency of tumor-initiating cells compared to the other subpopulations. Due to its chemoresistance, two- and three-dimensional in vitro chemosensitivity assays highlight the therapeutic relevance of this cancer stem cell subpopulation. Thus, our results reveal the major implication of intra-tumor cellular heterogeneity, including cancer stem cells in treatment resistance, thanks to our label-free cell sorting approach. This approach enables-by breaking down the tumor-the study the individualized response of each sorted tumor cell subpopulation and to identify chemoresistance, thus offering new perspectives for personalized therapy.


Assuntos
Transformação Celular Neoplásica , Células-Tronco Neoplásicas , Linhagem Celular Tumoral , Movimento Celular , Separação Celular , Transformação Celular Neoplásica/metabolismo , Humanos , Células-Tronco Neoplásicas/patologia
15.
ACS Biomater Sci Eng ; 8(8): 3387-3398, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35772731

RESUMO

For the last few decades, many efforts have been made in developing cell culture methods in order to overcome the biological limitations of the conventional two-dimensional culture. This paradigm shift is driven by a large amount of new hydrogel-based systems for three-dimensional culture, among other systems, since they are known to mimic some living tissue properties. One class of hydrogel precursors has received interest in the field of biomaterials, low-molecular-weight gelators (LMWGs). In comparison to polymer gels, LMWG gels are formed by weak interactions upon an external trigger between the molecular subunits, giving them the ability to reverse the gelation, thus showing potential for many applications of practical interest. This study presents the use of the nucleoside derivative subclass of LMWGs, which are glyco-nucleo-bola-amphiphiles, as a proof of concept of a 3D cell culture scaffold. Physicochemical characterization was performed in order to reach the optimal features to fulfill the requirements of the cell culture microenvironment, in terms of the mechanical properties, architecture, molecular diffusion, porosity, and experimental practicality. The retained conditions were tested by culturing glioblastoma cells for over a month. The cell viability, proliferation, and spatial organization showed during the experiments demonstrate the proof of concept of nucleoside-derived LMWGs as a soft 3D cell culture scaffold. One of the hydrogels tested permits cell proliferation and spheroidal organization over the entire culture time. These systems offer many advantages as they consume very few matters within the optimal range of viscoelasticity for cell culture, and the thermoreversibility of these hydrogels permits their use with few instruments. The LMWG-based scaffold for the 3D cell culture presented in this study unlocked the ability to grow spheroids from patient cells to reach personalized therapies by dramatically reducing the variability of the lattice used.


Assuntos
Técnicas de Cultura de Células em Três Dimensões , Nucleosídeos , Materiais Biocompatíveis , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Peso Molecular , Nucleosídeos/farmacologia
16.
Front Oncol ; 12: 918702, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936672

RESUMO

Nowadays, colon cancer prognosis still difficult to predict, especially in the early stages. Recurrences remain elevated, even in the early stages after curative surgery. Carcidiag Biotechnologies has developed an immunohistochemistry (IHC) kit called ColoSTEM Dx, based on a MIX of biotinylated plant lectins that specifically detects colon cancer stem cells (CSCs) through glycan patterns that they specifically (over)express. A retrospective clinical study was carried out on tumor tissues from 208 non-chemotherapeutic-treated and 21 chemotherapeutic-treated patients with colon cancer, which were stained by IHC with the MIX. Clinical performances of the kit were determined, and prognostic and predictive values were evaluated. With 78.3% and 70.6% of diagnostic sensitivity and specificity respectively, our kit shows great clinical performances. Moreover, patient prognosis is significantly poorer when the MIX staining is "High" compared to "Low", especially at 5-years of overall survival and for early stages. The ColoSTEM Dx kit allows an earlier and a more precise determination of patients' outcome. Thus, it affords an innovating clinical tool for predicting tumor aggressiveness earlier and determining prognosis value regarding therapeutic response in colon cancer patients.

17.
Cancers (Basel) ; 13(5)2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806312

RESUMO

The treatment options available for colorectal cancer (CRC) have increased over the years and have significantly improved the overall survival of CRC patients. However, the response rate for CRC patients with metastatic disease remains low and decreases with subsequent lines of therapy. The clinical management of patients with metastatic CRC (mCRC) presents a unique challenge in balancing the benefits and harms while considering disease progression, treatment-related toxicities, drug resistance and the patient's overall quality of life. Despite the initial success of therapy, the development of drug resistance can lead to therapy failure and relapse in cancer patients, which can be attributed to the cancer stem cells (CSCs). Thus, colorectal CSCs (CCSCs) contribute to therapy resistance but also to tumor initiation and metastasis development, making them attractive potential targets for the treatment of CRC. This review presents the available CCSC isolation methods, the clinical relevance of these CCSCs, the mechanisms of drug resistance associated with CCSCs and the ongoing clinical trials targeting these CCSCs. Novel therapeutic strategies are needed to effectively eradicate both tumor growth and metastasis, while taking into account the tumor microenvironment (TME) which plays a key role in tumor cell plasticity.

18.
Nanomaterials (Basel) ; 11(2)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668665

RESUMO

Three-dimensional cell culture has revolutionized cellular biology research and opened the door to novel discoveries in terms of cellular behavior and response to microenvironment stimuli. Different types of 3D culture exist today, including hydrogel scaffold-based models, which possess a complex structure mimicking the extracellular matrix. These hydrogels can be made of polymers (natural or synthetic) or low-molecular weight gelators that, via the supramolecular assembly of molecules, allow the production of a reproducible hydrogel with tunable mechanical properties. When cancer cells are grown in this type of hydrogel, they develop into multicellular tumor spheroids (MCTS). Three-dimensional (3D) cancer culture combined with a complex microenvironment that consists of a platform to study tumor development and also to assess the toxicity of physico-chemical entities such as ions, molecules or particles. With the emergence of nanoparticles of different origins and natures, implementing a reproducible in vitro model that consists of a bio-indicator for nano-toxicity assays is inevitable. However, the maneuver process of such a bio-indicator requires the implementation of a repeatable system that undergoes an exhaustive follow-up. Hence, the biggest challenge in this matter is the reproducibility of the MCTS and the associated full-scale characterization of this system's components.

19.
Cells ; 10(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34072080

RESUMO

Even though cancers have been widely studied and real advances in therapeutic care have been made in the last few decades, relapses are still frequently observed, often due to therapeutic resistance. Cancer Stem Cells (CSCs) are, in part, responsible for this resistance. They are able to survive harsh conditions such as hypoxia or nutrient deprivation. Autophagy and Extracellular Vesicles (EVs) secretion are cellular processes that help CSC survival. Autophagy is a recycling process and EVs secretion is essential for cell-to-cell communication. Their roles in stemness maintenance have been well described. A common pathway involved in these processes is vesicular trafficking, and subsequently, regulation by Rab GTPases. In this review, we analyze the role played by Rab GTPases in stemness status, either directly or through their regulation of autophagy and EVs secretion.


Assuntos
Autofagia/fisiologia , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , Comunicação Celular/fisiologia , Vesículas Extracelulares/metabolismo , Humanos
20.
Biology (Basel) ; 10(3)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804167

RESUMO

(1) Background: Tumors of the peritoneal serosa are called peritoneal carcinosis. Their origin may be primary by primitive involvement of the peritoneum (peritoneal pseudomyxoma, peritoneal mesothelioma, etc.). This damage to the peritoneum can also be a consequence of the dissipation of cancers-in particular, digestive (stomach, pancreas, colorectal, appendix) and gynecological (ovaries) ones in the form of metastases. The aim of the treatment is a maximal reduction of the macroscopic disease called "cytoreduction" in combination with hyperthermic intra-abdominal chemotherapy to treat residual microscopic lesions. (2) Methods: In this narrative review, we fundamentally synthetize the evolution of this process over time and its impact on clinical applications. (3) Results: Over the last past decade, different evolutions concerning both delivery modes and conditions concerning hyperthermic intra-abdominal chemotherapy have been realized. (4) Conclusion: The final objective of these evolutions is the improvement of the global and recurrence-free survival of primary and secondary malignant peritoneal pathologies. However, more large randomized controlled trials are needed to demonstrate the efficacy of such treatments with the help of molecular biology and genetics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA