Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Biol Chem ; 290(5): 2879-87, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25492869

RESUMO

The regulation of the cell cycle by the ubiquitin-proteasome system is dependent on the activity of E3 ligases. Skp2 (S-phase kinase associated protein-2) is the substrate recognition subunit of the E3 ligase that ubiquitylates the cell cycle inhibitors p21(cip1) and p27(kip1) thus promoting cell cycle progression. Increased expression of Skp2 is frequently observed in diseases characterized by excessive cell proliferation, such as cancer and neointima hyperplasia. The stability and cellular localization of Skp2 are regulated by Akt, but the molecular mechanisms underlying these effects remain only partly understood. The scaffolding protein Ezrin-Binding Phosphoprotein of 50 kDa (EBP50) contains two PDZ domains and plays a critical role in the development of neointimal hyperplasia. Here we report that EBP50 directly binds Skp2 via its first PDZ domain. Moreover, EBP50 is phosphorylated by Akt on Thr-156 within the second PDZ domain, an event that allosterically promotes binding to Skp2. The interaction with EBP50 causes cytoplasmic localization of Skp2, increases Skp2 stability and promotes proliferation of primary vascular smooth muscle cells. Collectively, these studies define a novel regulatory mechanism contributing to aberrant cell growth and highlight the importance of scaffolding function of EBP50 in Akt-dependent cell proliferation.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Animais , Proliferação de Células , Células Cultivadas , Humanos , Camundongos , Fosfoproteínas/química , Fosforilação , Ligação Proteica , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Quinases Associadas a Fase S/química , Trocadores de Sódio-Hidrogênio/química
2.
Circ Res ; 114(10): 1596-600, 2014 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-24637196

RESUMO

RATIONALE: Recent studies demonstrate a role for toll-like receptor 4 (TLR4) in the pathogenesis of pulmonary hypertension (PH); however, the cell types involved in mediating the effects of TLR4 remain unknown. OBJECTIVES: The objective of this study was to determine the contribution of TLR4 expressed on nonparenchymal cells to the pathogenesis of PH. METHODS AND RESULTS: TLR4 bone marrow chimeric mice revealed an equal contribution of TLR4 on nonparenchymal and parenchymal cells in the pathogenesis of PH as determined by measuring right ventricular (RV) systolic pressure and RV hypertrophy. However, the deletion of TLR4 from myeloid lineage cells had no effect on the development of PH because we found no difference in RV systolic pressure or RV hypertrophy in wild-type versus LysM-TLR4(-/-) mice. To explore the potential role of platelet TLR4 in the pathogenesis of PH, platelet-specific TLR4(-/-) mice were generated (PF4-TLR4(-/-) mice). TLR4(-/-) platelets from either global TLR4(-/-) or PF4-TLR4(-/-) mice were functional but failed to respond to lipopolysaccharide, demonstrating a lack of TLR4. PF4-TLR4(-/-) mice demonstrated significant protection from hypoxia-induced PH, including attenuated increases in RV systolic pressure and RV hypertrophy, decreased platelet activation, and less pulmonary vascular remodeling. The deletion of TLR4 from platelets attenuated serotonin release after chronic hypoxia, and lipopolysaccharide-stimulated platelets released serotonin and promoted pulmonary artery smooth muscle cell proliferation in a serotonin-dependent manner. CONCLUSIONS: Our data demonstrate that TLR4 on platelets contributes to the pathogenesis of PH and further highlights the role of platelets in PH.


Assuntos
Plaquetas/patologia , Deleção de Genes , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/prevenção & controle , Receptor 4 Toll-Like/deficiência , Animais , Plaquetas/metabolismo , Técnicas de Cocultura , Humanos , Hipertensão Pulmonar/sangue , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiologia , Quimera por Radiação , Receptor 4 Toll-Like/sangue , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
3.
J Biol Chem ; 288(2): 1365-73, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23148224

RESUMO

In pulmonary hypertension the loss of precapillary arterioles results from vascular injury causing endothelial dysfunction. Endothelial cell migration and proliferation are critical for vascular regeneration. This study focused on the effect of high mobility group box 1 protein (HMGB1) on these critical processes. HMGB1 had no effect on human pulmonary artery endothelial cell (HPAEC) proliferation. In contrast, treatment of HPAECs with HMGB1 dose-dependently inhibited VEGF-stimulated HPAEC migration. The effect of HMGB1 on HPAEC migration was TLR4-dependent because it was reversed by TLR4 siRNA or TLR4-neutralizing antibody. Exposure of HPAECs to hypoxia caused translocation and release of HMGB1 and inhibition of HPAEC migration. The effect of hypoxia on HPAEC migration was mediated by HMGB1 because HMGB1-neutralizing antibody but not control IgG restored HPAEC migration. Likewise, TLR4 siRNA but not control siRNA reversed the inhibitory effect of hypoxia in HPAECs. The canonical TLR4 signaling pathway requires the adaptor protein MyD88 and leads to downstream NFκB activation. Interestingly, HMGB1 failed to stimulate NFκB translocation to the nucleus, but instead activated an alternative pathway characterized by activation of interferon response factor 3 (IRF3). This was in contrast to human umbilical vein endothelial cells in which HMGB1 stimulated nuclear translocation of NFκB but not IRF3. IRF3 siRNA, but not MyD88 siRNA, reversed the inhibitory effect of HMGB1 on HPAEC migration. These data demonstrate that HMGB1 inhibits HPAEC migration, a critical process for vascular regeneration, via TLR4- and IRF3-dependent mechanisms.


Assuntos
Movimento Celular/fisiologia , Proteína HMGB1/fisiologia , Fator Regulador 3 de Interferon/fisiologia , Artéria Pulmonar/citologia , Receptor 4 Toll-Like/fisiologia , Western Blotting , Células Cultivadas , Imunofluorescência , Humanos , Fator Regulador 3 de Interferon/genética , Fator 88 de Diferenciação Mieloide/fisiologia , RNA Interferente Pequeno , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptor 4 Toll-Like/genética , Fator A de Crescimento do Endotélio Vascular/fisiologia
4.
J Biol Chem ; 288(51): 36426-36, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24196963

RESUMO

The interaction between vascular cells and macrophages is critical during vascular remodeling. Here we report that the scaffolding protein, ezrin-binding phosphoprotein 50 (EBP50), is a central regulator of macrophage and vascular smooth muscle cells (VSMC) function. EBP50 is up-regulated in intimal VSMC following endoluminal injury and promotes neointima formation. However, the mechanisms underlying these effects are not fully understood. Because of the fundamental role that inflammation plays in vascular diseases, we hypothesized that EBP50 mediates macrophage activation and the response of vessels to inflammation. Indeed, EBP50 expression increased in primary macrophages and VSMC, and in the aorta of mice, upon treatment with LPS or TNFα. This increase was nuclear factor-κB (NF-κB)-dependent. Conversely, activation of NF-κB was impaired in EBP50-null VSMC and macrophages. We found that inflammatory stimuli promote the formation of an EBP50-PKCζ complex at the cell membrane that induces NF-κB signaling. Macrophage activation and vascular inflammation after acute LPS treatment were reduced in EBP50-null cells and mice as compared with WT. Furthermore, macrophage recruitment to vascular lesions was significantly reduced in EBP50 knock-out mice. Thus, EBP50 and NF-κB participate in a feed-forward loop leading to increased macrophage activation and enhanced response of vascular cells to inflammation.


Assuntos
Retroalimentação Fisiológica , NF-kappa B/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Vasculite/metabolismo , Animais , Aorta/metabolismo , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Fosfoproteínas/genética , Proteína Quinase C/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Fator de Necrose Tumoral alfa/farmacologia , Vasculite/etiologia
5.
Mol Med ; 18: 1509-18, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23269975

RESUMO

Survival rates for patients with pulmonary hypertension (PH) remain low, and our understanding of the mechanisms involved are incomplete. Here we show in a mouse model of chronic hypoxia (CH)-induced PH that the nuclear protein and damage-associate molecular pattern molecule (DAMP) high mobility group box 1 (HMGB1) contributes to PH via a Toll-like receptor 4 (TLR4)-dependent mechanism. We demonstrate extranuclear HMGB1 in pulmonary vascular lesions and increased serum HMGB1 in patients with idiopathic pulmonary arterial hypertension. The increase in circulating HMGB1 correlated with mean pulmonary artery pressure. In mice, we similarly detected the translocation and release of HMGB1 after exposure to CH. HMGB1-neutralizing antibody attenuated the development of CH-induced PH, as assessed by measurement of right ventricular systolic pressure, right ventricular hypertrophy, pulmonary vascular remodeling and endothelial activation and inflammation. Genetic deletion of the pattern recognition receptor TLR4, but not the receptor for advanced glycation end products, likewise attenuated CH-induced PH. Finally, daily treatment of mice with recombinant human HMGB1 exacerbated CH-induced PH in wild-type (WT) but not Tlr4(-/-) mice. These data demonstrate that HMGB1-mediated activation of TLR4 promotes experimental PH and identify HMGB1 and/or TLR4 as potential therapeutic targets for the treatment of PH.


Assuntos
Proteína HMGB1/metabolismo , Hipertensão Pulmonar/patologia , Receptor 4 Toll-Like/metabolismo , Adulto , Animais , Anticorpos Neutralizantes/farmacologia , Doença Crônica , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Hipertensão Pulmonar Primária Familiar , Feminino , Humanos , Hipertensão Pulmonar/complicações , Hipertensão Pulmonar/fisiopatologia , Hipóxia/complicações , Hipóxia/patologia , Hipóxia/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Receptor 4 Toll-Like/genética
6.
Arterioscler Thromb Vasc Biol ; 32(1): 33-41, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22034511

RESUMO

OBJECTIVE: The Ezrin-radixin-moesin-binding phosphoprotein 50 (EBP50) is a scaffolding protein known to regulate ion homeostasis in the kidney and intestine. Previous work showed that EBP50 expression increases after balloon injury in rat carotids. This study was designed to determine the role of EBP50 on vascular smooth muscle cells (VSMC) proliferation and the development of neointimal hyperplasia. METHODS AND RESULTS: Wire injury was performed in wild type (WT) and EBP50 knockout (KO) mice. Two weeks after injury, neointima formation was 80% lower in KO than in WT mice. Proliferation of KO VSMC was significantly lower than WT cells and overexpression of EBP50 increased VSMC proliferation. Akt activity and expression of S-phase kinase protein2 decreased in KO cells resulting in the stabilization of the cyclin-dependent kinase inhibitor, p21(cip1). Consequently, KO cells were arrested in G(0)/G(1) phase. Consistent with these observations, p21(cip1) was detected in injured femoral arteries of KO but not WT mice. No differences in apoptosis between WT and KO were observed. CONCLUSIONS: EBP50 is critical for neointima formation and induces VSMC proliferation by decreasing S-phase kinase protein2 stability, thereby accelerating the degradation of the cell cycle inhibitor p21(cip1).


Assuntos
Inibidor de Quinase Dependente de Ciclina p21/fisiologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/fisiologia , Neointima/etiologia , Fosfoproteínas/fisiologia , Proteínas Quinases Associadas a Fase S/fisiologia , Trocadores de Sódio-Hidrogênio/fisiologia , Animais , Proliferação de Células , Artéria Femoral/lesões , Artéria Femoral/patologia , Artéria Femoral/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neointima/patologia , Neointima/fisiopatologia , Fosfoproteínas/deficiência , Fosfoproteínas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Trocadores de Sódio-Hidrogênio/genética
7.
J Biol Chem ; 286(38): 33134-40, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21808054

RESUMO

Activation of bone morphogenetic protein (BMP) receptor II (BMPRII) promotes pulmonary artery endothelial cell (PAEC) survival, proliferation, and migration. Mutations to BMPRII are associated with the development of pulmonary arterial hypertension (PAH). Endothelial dysfunction, including decreased endothelial nitric-oxide synthase (eNOS) activity and loss of bioactive nitric oxide (NO), plays a prominent role in the development of PAH. We hypothesized that stimulation of BMPRII promotes normal PAEC function by activating eNOS. We report that BMPRII ligands, BMP2 and BMP4, (i) stimulate eNOS phosphorylation at a critical regulatory site, (ii) increase eNOS activity, and (iii) result in canonical changes in eNOS protein-protein interactions. The stimulation of eNOS activity by BMPRII ligands was largely dependent on protein kinase A (PKA) activation, as demonstrated using the PKA inhibitors H89 and myristoylated PKI(6-22) amide. PAEC migration stimulated by BMP2 and BMP4 was inhibited by the NOS inhibitor l-nitroarginine methyl ester, providing functional evidence of eNOS activation. Furthermore, BMP2 and BMP4 failed to stimulate eNOS phosphorylation when BMPRII was knocked down by siRNA. Most important to the pathophysiology of the disease, BMP2 and BMP4 failed to stimulate eNOS phosphorylation in PAECs isolated from patients with mutations in the BMPR2 gene. These data demonstrate a new action of BMPs/BMPRII in the pulmonary endothelium and provide novel mechanistic insight into the pathogenesis of PAH.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 4/farmacologia , Bovinos , Movimento Celular/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Humanos , Mutação/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Artéria Pulmonar/citologia
8.
Am J Physiol Heart Circ Physiol ; 302(12): H2518-27, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22505641

RESUMO

Caveolin-1 (Cav-1)-/- mice develop mild pulmonary hypertension as they age. In this study, we sought to determine the effect of chronic hypoxia, an established model of pulmonary hypertension, on young Cav-1-/- mice with no measurable signs of pulmonary hypertension. Exposure of Cav-1-/- mice to chronic hypoxia resulted in an initial rise in right ventricular (RV) systolic pressure (RVSP) similar to wild-type (WT) mice. By three weeks RVSP decreased in the Cav-1-/- mice, whereas it was maintained in WT mice. The drop in RVSP in Cav-1-/- mice was accompanied by decreased cardiac output, increased RV hypertrophy, RV interstitial fibrosis, decreased RV sarco(endo)plasmic reticulum Ca(2+)-ATPase 2a mRNA and decreased RV function compared with WT mice. Importantly, minimal differences were noted in pulmonary vascular remodeling between WT and Cav-1-/- mice, and left ventricular function was normal in hypoxic Cav-1-/- mice. Mechanistically, increased endothelial nitric oxide synthase uncoupling and increased tyrosine nitration of protein kinase G were detected in the RV of Cav-1-/- mice. These hemodynamic, histological, and molecular changes were prevented in Cav-1-/- mice expressing an endothelial-specific Cav-1 transgene or by nitric oxide synthase inhibition. These data suggest that, in Cav-1-/- mice, increased oxidative/nitrosative stress due to endothelial nitric oxide synthase uncoupling modifies the response of the RV to pressure overload, accelerating the deterioration of RV function.


Assuntos
Pressão Sanguínea/fisiologia , Caveolina 1/genética , Insuficiência Cardíaca/etiologia , Hipóxia/complicações , Animais , Débito Cardíaco/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/fisiopatologia , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/fisiopatologia , Hipertrofia Ventricular Direita/genética , Hipertrofia Ventricular Direita/fisiopatologia , Hipóxia/genética , Hipóxia/fisiopatologia , Pulmão/irrigação sanguínea , Pulmão/metabolismo , Pulmão/fisiopatologia , Camundongos , Camundongos Knockout , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/fisiologia
9.
Circulation ; 121(1): 98-109, 2010 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-20026772

RESUMO

BACKGROUND: Pulmonary arterial hypertension is a progressive proliferative vasculopathy of the small pulmonary arteries that is characterized by a primary failure of the endothelial nitric oxide and prostacyclin vasodilator pathways, coupled with dysregulated cellular proliferation. We have recently discovered that the endogenous anion salt nitrite is converted to nitric oxide in the setting of physiological and pathological hypoxia. Considering the fact that nitric oxide exhibits vasoprotective properties, we examined the effects of nitrite on experimental pulmonary arterial hypertension. METHODS AND RESULTS: We exposed mice and rats with hypoxia or monocrotaline-induced pulmonary arterial hypertension to low doses of nebulized nitrite (1.5 mg/min) 1 or 3 times a week. This dose minimally increased plasma and lung nitrite levels yet completely prevented or reversed pulmonary arterial hypertension and pathological right ventricular hypertrophy and failure. In vitro and in vivo studies revealed that nitrite in the lung was metabolized directly to nitric oxide in a process significantly enhanced under hypoxia and found to be dependent on the enzymatic action of xanthine oxidoreductase. Additionally, physiological levels of nitrite inhibited hypoxia-induced proliferation of cultured pulmonary artery smooth muscle cells via the nitric oxide-dependent induction of the cyclin-dependent kinase inhibitor p21(Waf1/Cip1). The therapeutic effect of nitrite on hypoxia-induced pulmonary hypertension was significantly reduced in the p21-knockout mouse; however, nitrite still reduced pressures and right ventricular pathological remodeling, indicating the existence of p21-independent effects as well. CONCLUSIONS: These studies reveal a potent effect of inhaled nitrite that limits pathological pulmonary arterial hypertrophy and cellular proliferation in the setting of experimental pulmonary arterial hypertension.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hipóxia/tratamento farmacológico , Óxido Nítrico/metabolismo , Nitrito de Sódio/farmacologia , Xantina Desidrogenase/metabolismo , Administração por Inalação , Animais , Divisão Celular/efeitos dos fármacos , Células Cultivadas , Doença Crônica , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Modelos Animais de Doenças , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monocrotalina/toxicidade , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/enzimologia , Artéria Pulmonar/citologia , Ratos , Ratos Sprague-Dawley , Nitrito de Sódio/farmacocinética , Xantina Desidrogenase/antagonistas & inibidores
10.
Circ Res ; 105(10): 965-72, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19797175

RESUMO

RATIONALE: Fatty acid nitroalkenes are endogenously generated electrophilic byproducts of nitric oxide and nitrite-dependent oxidative inflammatory reactions. Existing evidence indicates nitroalkenes support posttranslational protein modifications and transcriptional activation that promote the resolution of inflammation. OBJECTIVE: The aim of this study was to assess whether in vivo administration of a synthetic nitroalkene could elicit antiinflammatory actions in vivo using a murine model of vascular injury. METHODS AND RESULTS: The in vivo administration (21 days) of nitro-oleic acid (OA-NO(2)) inhibited neointimal hyperplasia after wire injury of the femoral artery in a murine model (OA-NO(2) treatment resulted in reduced intimal area and intima to media ratio versus vehicle- or oleic acid (OA)-treated animals,P<0.0001). Increased heme oxygenase (HO)-1 expression accounted for much of the vascular protection induced by OA-NO(2) in both cultured aortic smooth muscle cells and in vivo. Inhibition of HO by Sn(IV)-protoporphyrin or HO-1 small interfering RNA reversed OA-NO(2)-induced inhibition of platelet-derived growth factor-stimulated rat aortic smooth muscle cell migration. The upregulation of HO-1 expression also accounted for the antistenotic actions of OA-NO(2) in vivo, because inhibition of neointimal hyperplasia following femoral artery injury was abolished in HO-1(-/-) mice (OA-NO(2)-treated wild-type versus HO-1(-/-) mice, P=0.016). CONCLUSIONS: In summary, electrophilic nitro-fatty acids induce salutary gene expression and cell functional responses that are manifested by a clinically significant outcome, inhibition of neointimal hyperplasia induced by arterial injury.


Assuntos
Artéria Femoral/enzimologia , Artéria Femoral/lesões , Heme Oxigenase (Desciclizante)/biossíntese , Nitrocompostos/farmacologia , Ácidos Oleicos/farmacologia , Túnica Íntima/enzimologia , Animais , Movimento Celular/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/metabolismo , Camundongos , Camundongos Knockout , Óxido Nítrico/metabolismo , Nitrocompostos/metabolismo , Ácidos Oleicos/metabolismo , Oxirredução/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Regulação para Cima/efeitos dos fármacos
11.
Arterioscler Thromb Vasc Biol ; 30(1): 98-104, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19875720

RESUMO

OBJECTIVE: Heme oxygenase-1 (HO-1), via its enzymatic degradation products, exhibits cell and tissue protective effects in models of vascular injury and disease. The migration of vascular smooth muscle cells (VSMC) from the medial to the intimal layer of blood vessels plays an integral role in the development of a neointima in these models. Despite this, there are no studies addressing the effect of increased HO-1 expression on VSMC migration. Results and Methods- The effects of increased HO-1 expression, as well as biliverdin, bilirubin, and carbon monoxide (CO), were studied in in vitro models of VSMC migration. Induction of HO-1 or CO, but not biliverdin or bilirubin, inhibited VSMC migration. This effect was mediated by the inhibition of Nox1 as determined by a range of approaches, including detection of intracellular superoxide, nicotinamide adenine dinucleotide phosphate oxidase activity measurements, and siRNA experiments. Furthermore, CO decreased platelet-derived growth factor-stimulated, redox-sensitive signaling pathways. CONCLUSIONS: Herein, we demonstrate that increased HO-1 expression and CO decreases platelet-derived growth factor-stimulated VSMC migration via inhibition of Nox1 enzymatic activity. These studies reveal a novel mechanism by which HO-1 and CO may mediate their beneficial effects in arterial inflammation and injury.


Assuntos
Movimento Celular/fisiologia , Heme Oxigenase (Desciclizante)/metabolismo , Músculo Liso Vascular/citologia , Músculo Liso Vascular/enzimologia , NADH NADPH Oxirredutases/antagonistas & inibidores , Vasculite/metabolismo , Adenoviridae/genética , Animais , Aorta/citologia , Bilirrubina/metabolismo , Biliverdina/metabolismo , Monóxido de Carbono/metabolismo , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Heme Oxigenase (Desciclizante)/genética , Técnicas In Vitro , NADH NADPH Oxirredutases/metabolismo , NADPH Oxidase 1 , NADPH Oxidases/metabolismo , Oxirredução , Oxigênio/metabolismo , Fator de Crescimento Derivado de Plaquetas/farmacologia , Ratos , Transdução de Sinais/fisiologia , Túnica Íntima/citologia
12.
Biochem Biophys Res Commun ; 375(4): 557-61, 2008 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-18725205

RESUMO

Recent studies demonstrate the interaction of BMPRII and caveolin-1 in various cell types. In this study we test the hypothesis that caveolin-1 interacts with and regulates BMPRII-dependent signaling in vascular smooth muscle cells. We demonstrate that BMPRII localizes to caveolae and directly interacts with caveolin-1 in mouse aortic smooth muscle cells. We demonstrate that this interaction is mediated by the caveolin-1 scaffolding domain and is regulated by caveolin-1 phosphorylation. Downregulation of caveolin-1 via siRNA resulted in a loss of BMP-dependent SMAD phosphorylation and gene regulation. Further studies revealed that loss of caveolin-1 results in decreased BMPRII membrane localization and decreased association of BMPRII with the type I BMP receptor BMPRIa. Dominant negative caveolin-1 decreased BMPRII membrane localization suggesting a role for caveolin-1 in BMPRII trafficking. Taken together, our findings establish caveolin-1 as an important regulator of downstream signaling and membrane targeting of BMPRII in vascular smooth muscle cells.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Caveolina 1/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Animais , Aorta/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Caveolina 1/genética , Membrana Celular/enzimologia , Regulação para Baixo , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Transdução de Sinais , Proteínas Smad/metabolismo
13.
Free Radic Biol Med ; 35(7): 729-41, 2003 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-14583337

RESUMO

Shear stress stimulates NO production involving the Ca2+-independent mechanisms in endothelial cells. We have shown that exposure of bovine aortic endothelial cells (BAEC) to shear stress stimulates phosphorylation of eNOS at S635 and S1179 by the protein kinase A- (PKA-) dependent mechanisms. We examined whether phosphorylation of S635 of eNOS induced by PKA stimulates NO production in a calcium-independent manner. Expression of a constitutively active catalytic subunit of PKA (Cqr) in BAEC induced phosphorylation of S635 and S1179 residues and dephosphorylation of T497. Additionally, Cqr expression stimulated NO production, which could not be prevented by treating cells with the intracellular calcium chelator BAPTA-AM. To determine the role of each eNOS phosphorylation site in NO production, HEK-293 cells transfected with eNOS point mutants whereby S116, T497, S635, and S1179 were mutated to either A or D. Maximum NO production from S635D-expressing cells was significantly higher than that of either wild type or S635A in both basal and elevated [Ca2+]i conditions. More interestingly, S635D cells produced NO even when [Ca2+]i was nearly depleted by BAPTA-AM. We confirmed these results obtained in HEK-293 cells in BAEC transfected with S635D, S635A, or wild-type eNOS vector. These findings suggest that, once phosphorylated at S635 residue, eNOS produces NO without requiring any changes in [Ca2+]i. PKA-dependent phosphorylation of eNOS S635 and subsequent basal NO production in a Ca2+-independent manner may play an important role in regulating vascular biology and pathophysiology.


Assuntos
Cálcio/metabolismo , Endotélio Vascular/enzimologia , Líquido Intracelular/metabolismo , Óxido Nítrico Sintase/química , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Fosfosserina/metabolismo , Animais , Aorta Torácica , Células CHO , Bovinos , Técnicas de Cultura de Células , Linhagem Celular , Cricetinae , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Mutação , Óxido Nítrico Sintase/genética , Óxido Nítrico Sintase Tipo III , Fosforilação
14.
PLoS One ; 9(5): e96720, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24837600

RESUMO

Pulmonary hypertension (PH) is a progressive and fatal disease with no cure. Vascular remodeling in PH involves intraluminal growth of endothelial and smooth muscle cells, leading to obliterative vascular lesions. Cell growth in these lesions is quasi-neoplastic, with evidence of monoclonality, apoptosis resistance and cancer-like metabolic derangements. Herein we tested the effect of human interferon alpha 2b (IFNα), a pleiotropic cytokine and anti-cancer therapeutic, on the development and progression of PH in the rat SU5416/hypoxia (SUH) model and mouse hypoxia model of the disease. In both models IFNα attenuated the development of PH and reversed established PH as assessed by measuring right ventricular systolic pressure and right ventricular hypertrophy. The effect of IFNα was dependent on the type I interferon receptor (IFNAR) since mice lacking a subunit of the IFNAR were not protected by IFNα. Morphometric analysis of pulmonary aterioles from hypoxic mice or SUH rats showed that IFNα inhibited pulmonary vascular remodeling in both models and that IFNα reversed remodeling in SUH rats with established disease. Immunohistochemical staining revealed that IFNα decreased the number of PCNA and Tunel positive cells in the wall of pulmonary arterioles. In vitro, IFNα inhibited proliferation of human pulmonary artery smooth muscle cells and as well as human pulmonary artery endothelial cell proliferation and apoptosis. Together these findings demonstrate that IFNα reverses established experimental PH and provide a rationale for further exploration of the use of IFNα and other immunotherpies in PH.


Assuntos
Hipertensão Pulmonar/tratamento farmacológico , Hipertensão Pulmonar/prevenção & controle , Hipóxia/complicações , Interferon-alfa/farmacologia , Análise de Variância , Animais , Western Blotting , Células Cultivadas , Humanos , Hipertensão Pulmonar/etiologia , Hipertrofia Ventricular Direita/patologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Interferon alfa-2 , Interferon-alfa/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/metabolismo , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/uso terapêutico , Remodelação Vascular/efeitos dos fármacos , Pressão Ventricular/fisiologia
15.
PLoS One ; 8(11): e81903, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24312378

RESUMO

Although a critical role for caveolae-mediated albumin transcytosis in pulmonary endothelium is well established, considerably less is known about caveolae-independent pathways. In this current study, we confirmed that cultured rat pulmonary microvascular (RPMEC) and pulmonary artery (RPAEC) endothelium endocytosed Alexa488-labeled albumin in a saturable, temperature-sensitive mode and internalization resulted in co-localization by fluorescence microscopy with cholera B toxin and caveolin-1. Although siRNA to caveolin-1 (cav-1) in RPAEC significantly inhibited albumin uptake, a remnant portion of albumin uptake was cav-1-independent, suggesting alternative pathways for albumin uptake. Thus, we isolated and cultured mouse lung endothelial cells (MLEC) from wild type and cav-1(-/-) mice and noted that ~ 65% of albumin uptake, as determined by confocal imaging or live cell total internal reflectance fluorescence microscopy (TIRF), persisted in total absence of cav-1. Uptake of colloidal gold labeled albumin was evaluated by electron microscopy and demonstrated that albumin uptake in MLEC from cav-1(-/-) mice was through caveolae-independent pathway(s) including clathrin-coated pits that resulted in endosomal accumulation of albumin. Finally, we noted that albumin uptake in RPMEC was in part sensitive to pharmacological agents (amiloride [sodium transport inhibitor], Gö6976 [protein kinase C inhibitor], and cytochalasin D [inhibitor of actin polymerization]) consistent with a macropinocytosis-like process. The amiloride sensitivity accounting for macropinocytosis also exists in albumin uptake by both wild type and cav-1(-/-) MLEC. We conclude from these studies that in addition to the well described caveolar-dependent pulmonary endothelial cell endocytosis of albumin, a portion of overall uptake in pulmonary endothelial cells is cav-1 insensitive and appears to involve clathrin-mediated endocytosis and macropinocytosis-like process.


Assuntos
Albuminas/metabolismo , Cavéolas/fisiologia , Endocitose , Endotélio Vascular/metabolismo , Pulmão/irrigação sanguínea , Animais , Sequência de Bases , Caveolina 1/genética , Caveolina 1/metabolismo , Células Cultivadas , Primers do DNA , Endotélio Vascular/citologia , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Pinocitose , RNA Interferente Pequeno/genética , Ratos
16.
PLoS One ; 7(2): e31495, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22355372

RESUMO

Chronic alterations in blood flow initiate structural changes in vessel lumen caliber to normalize shear stress. The loss of endothelial derived nitric oxide synthase (eNOS) in mice promotes abnormal flow dependent vascular remodeling, thus uncoupling mechanotransduction from adaptive vascular remodeling. However, the mechanisms of how the loss of eNOS promotes abnormal remodeling are not known. Here we show that abnormal flow-dependent remodeling in eNOS knockout mice (eNOS (-/-)) is associated with activation of the platelet derived growth factor (PDGF) signaling pathway leading to the induction of the inhibitor of apoptosis, survivin. Interfering with PDGF signaling or survivin function corrects the abnormal remodeling seen in eNOS (-/-) mice. Moreover, nitric oxide (NO) negatively regulates PDGF driven survivin expression and cellular proliferation in cultured vascular smooth muscle cells. Collectively, our data suggests that eNOS negatively regulates the PDGF-survivin axis to maintain proportional flow-dependent luminal remodeling and vascular quiescence.


Assuntos
Vasos Sanguíneos/fisiopatologia , Endotélio Vascular/metabolismo , Proteínas Inibidoras de Apoptose/metabolismo , Músculo Liso Vascular/metabolismo , Neovascularização Fisiológica/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteínas Repressoras/metabolismo , Animais , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Endotélio Vascular/citologia , Técnicas Imunoenzimáticas , Proteínas Inibidoras de Apoptose/genética , Masculino , Mecanotransdução Celular/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/citologia , Óxido Nítrico/metabolismo , Fator de Crescimento Derivado de Plaquetas/genética , Ligação Proteica , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/genética , Transdução de Sinais , Survivina
17.
Cardiovasc Res ; 93(4): 682-93, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22215724

RESUMO

AIMS: Pulmonary arterial hypertension (PAH) is a progressive lung disease characterized by pulmonary vasoconstriction and vascular remodelling, leading to increased pulmonary vascular resistance and right heart failure. Loss of nitric oxide (NO) signalling and increased endothelial nitric oxide synthase (eNOS)-derived oxidative stress are central to the pathogenesis of PAH, yet the mechanisms involved remain incompletely determined. In this study, we investigated the role activated CD47 plays in promoting PAH. METHODS AND RESULTS: We report high-level expression of thrombospondin-1 (TSP1) and CD47 in the lungs of human subjects with PAH and increased expression of TSP1 and activated CD47 in experimental models of PAH, a finding matched in hypoxic human and murine pulmonary endothelial cells. In pulmonary endothelial cells CD47 constitutively associates with caveolin-1 (Cav-1). Conversely, in hypoxic animals and cell cultures activation of CD47 by TSP1 disrupts this constitutive interaction, promoting eNOS-dependent superoxide production, oxidative stress, and PAH. Hypoxic TSP1 null mice developed less right ventricular pressure and hypertrophy and markedly less arteriole muscularization compared with wild-type animals. Further, therapeutic blockade of CD47 activation in hypoxic pulmonary artery endothelial cells upregulated Cav-1, increased Cav-1CD47 co-association, decreased eNOS-derived superoxide, and protected animals from developing PAH. CONCLUSION: Activated CD47 is upregulated in experimental and human PAH and promotes disease by limiting Cav-1 inhibition of dysregulated eNOS.


Assuntos
Antígeno CD47/metabolismo , Caveolina 1/metabolismo , Hipertensão Pulmonar/metabolismo , Pulmão/metabolismo , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia , Animais , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Humanos , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/patologia , Hipóxia/metabolismo , Hipóxia/patologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Monocrotalina/efeitos adversos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/fisiologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Trombospondina 1/deficiência , Trombospondina 1/genética , Trombospondina 1/metabolismo
18.
J Clin Invest ; 121(9): 3747-55, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21804187

RESUMO

Aberrant regulation of eNOS and associated NO release are directly linked with various vascular diseases. Caveolin-1 (Cav-1), the main coat protein of caveolae, is highly expressed in endothelial cells. Its scaffolding domain serves as an endogenous negative regulator of eNOS function. Structure-function analysis of Cav-1 has shown that phenylalanine 92 (F92) is critical for the inhibitory actions of Cav-1 toward eNOS. Herein, we show that F92A-Cav-1 and a mutant cell-permeable scaffolding domain peptide called Cavnoxin can increase basal NO release in eNOS-expressing cells. Cavnoxin reduced vascular tone ex vivo and lowered blood pressure in normal mice. In contrast, similar experiments performed with eNOS- or Cav-1-deficient mice showed that the vasodilatory effect of Cavnoxin is abolished in the absence of these gene products, which indicates a high level of eNOS/Cav-1 specificity. Mechanistically, biochemical assays indicated that noninhibitory F92A-Cav-1 and Cavnoxin specifically disrupted the inhibitory actions of endogenous Cav-1 toward eNOS and thereby enhanced basal NO release. Collectively, these data raise the possibility of studying the inhibitory influence of Cav-1 on eNOS without interfering with the other actions of endogenous Cav-1. They also suggest a therapeutic application for regulating the eNOS/Cav-1 interaction in diseases characterized by decreased NO release.


Assuntos
Caveolina 1/química , Caveolina 1/genética , Caveolina 1/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico/biossíntese , Peptídeos/metabolismo , Vasodilatação/fisiologia , Animais , Células Cultivadas , Humanos , Camundongos , Camundongos Knockout , Peptídeos/genética , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
19.
PLoS One ; 6(12): e28578, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22194859

RESUMO

BACKGROUND: Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension. METHODOLOGY/PRINCIPAL FINDINGS: Immunofluorescent staining revealed significant C3d deposition in lung sections from IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension. Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice, which were attenuated in C3-/- hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C3-/- mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C3-/- mice, chronic hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C3-/- mice. CONCLUSIONS: Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of PAH in humans.


Assuntos
Complemento C3/deficiência , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/prevenção & controle , Hipóxia/complicações , Animais , Arteríolas/metabolismo , Arteríolas/patologia , Biomarcadores/metabolismo , Proliferação de Células , Doença Crônica , Complemento C3/metabolismo , Complemento C3a/metabolismo , Complemento C5a/metabolismo , Endotélio Vascular/patologia , Endotélio Vascular/fisiopatologia , Fibrina/metabolismo , Deleção de Genes , Humanos , Hipertensão Pulmonar/fisiopatologia , Hipóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Ativação Plaquetária , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Tromboplastina/metabolismo , Regulação para Cima/genética
20.
Cardiovasc Res ; 88(3): 471-81, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20610415

RESUMO

AIMS: Thrombospondin-1 (TSP1), via its necessary receptor CD47, inhibits nitric oxide (NO)-stimulated soluble guanylate cyclase activation in vascular smooth muscle cells, and TSP1-null mice have increased shear-dependent blood flow compared with wild-type mice. Yet, the endothelial basement membrane should in theory function as a barrier to diffusion of soluble TSP1 into the arterial smooth muscle cell layer. These findings suggested that endothelial-dependent differences in blood flow in TSP1-null mice may be the result of direct modulation of endothelial NO synthase (eNOS) activation by circulating TSP1. Here we tested the hypothesis that TSP1 inhibits eNOS activation and endothelial-dependent arterial relaxation. METHODS AND RESULTS: Acetylcholine (ACh)-stimulated activation of eNOS and agonist-driven calcium transients in endothelial cells were inhibited by TSP1. TSP1 also inhibited eNOS phosphorylation at serine(1177). TSP1 treatment of the endothelium of wild-type and TSP1-null but not CD47-null arteries inhibited ACh-stimulated relaxation. TSP1-null vessels demonstrated greater endothelial-dependent vasorelaxation compared with the wild type. Conversely, TSP1-null arteries demonstrated less vasoconstriction to phenylephrine compared with the wild type, which was corrected upon inhibition of eNOS. In TSP1-null mice, intravenous TSP1 blocked ACh-stimulated decreases in blood pressure, and both intravenous TSP1 and a CD47 agonist antibody acutely elevated blood pressure in mice. CONCLUSION: TSP1, via CD47, inhibits eNOS activation and endothelial-dependent arterial relaxation and limits ACh-driven decreases in blood pressure. Conversely, intravenous TSP1 and a CD47 antibody increase blood pressure. These findings suggest that circulating TSP1, by limiting endogenous NO production, functions as a pressor agent supporting blood pressure.


Assuntos
Pressão Sanguínea/fisiologia , Endotélio Vascular/fisiologia , Óxido Nítrico Sintase Tipo III/fisiologia , Trombospondina 1/fisiologia , Vasodilatação/fisiologia , Acetilcolina/farmacologia , Animais , Anticorpos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Antígeno CD47/imunologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/efeitos dos fármacos , Humanos , Camundongos , Modelos Animais , Óxido Nítrico Sintase Tipo III/efeitos dos fármacos , Fenilefrina/farmacologia , Trombospondina 1/genética , Trombospondina 1/farmacologia , Vasoconstrição/efeitos dos fármacos , Vasoconstrição/fisiologia , Vasoconstritores/farmacologia , Vasodilatadores/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA