RESUMO
This study presents a series of short-term studies (total duration 48 h) of uptake and depuration of engineered nanoparticles (ENP) in neonate Daphnia magna. Gold nanoparticles (Au NP) were used to study the influence of size, stabilizing agent and feeding on uptake and depuration kinetics and animal body burdens. 10 and 30 nm Au NP with different stabilizing agents [citrate (CIT) and mercaptoundecanoic acid (MUDA)] were tested in concentrations around 0.5 mg Au/L. Fast initial uptake was observed for all studied Au NP, with CIT stabilized Au NP showing similar rates independent of size and MUDA showing increased uptake for the smaller Au NP (MUDA 10 nm > CIT 10 nm, 30 nm > MUDA 30 nm). However, upon transfer to clean media no clear trend on depuration rates was found in terms of stabilizing agent or size. Independent of stabilizing agent, 10 nm Au NP resulted in higher residual whole-animal body burdens after 24 h depuration than 30 nm Au NP with residual body burdens about one order of magnitude higher of animals exposed to 10 nm Au NP. The presence of food (P. subcapitata) did not significantly affect the body burden after 24 h of exposure, but depuration was increased. While food addition is not necessary to ensure D. magna survival in the presented short-term test design, the influence of food on uptake and depuration kinetics is essential to consider in long term studies of ENP where food addition is necessary. This study demonstrates the feasibility of a short-term test design to assess the uptake and depuration of ENP in D. magna. The findings underlines that the assumptions behind the traditional way of quantifying bioconcentration are not fulfilled when ENPs are studied.
Assuntos
Daphnia/metabolismo , Ouro/farmacocinética , Nanopartículas/metabolismo , Poluentes Químicos da Água/farmacocinética , Animais , Testes de Toxicidade AgudaRESUMO
Tracer tests represent a well-established method for delineating key environmental processes in various media and engineered systems. Tracers like Rhodamine B and WT are frequently applied due to their strong fluorescence even at low concentrations.. However, due to a lack of ecotoxicological data, limit values for these tracers cannot be determined. This study fills this critical data gap by providing ecotoxicity data for Rhodamine B and WT using a battery of short-term standardized tests, including growth rate inhibition tests with algae (Raphidocelis subcapitata) and lethality tests using crustaceans (Daphnia magna) and zebrafish (Danio rerio) embryos, and estimating EQS for surface water. For Rhodamine B, the effective and lethal concentration (EC50 and LC50) -causing 50% toxicity were in the range of 14-24 mg/L. For Rhodamine WT, no statistically significant effects were observed (p<0.05) at the tsted concentrations (up to 91, 100 and 200 mg/L for algae, crustaceans and fish embryos, respectively). Thus for all tested organisms, Rhodamine B was more toxic than Rhodamine WT (more than 14 times more toxic for R. subcapitata, 5.6 times for D. magna, 15 times for D. rerio embryos,based on EC10 and LC10 values). These results signify that read-across assessments using ecotoxicity data obtained with Rhodamine B is not advisable for estimating the ecotoxicity of Rhodamine WT. The annual-average quality standard (AA-QS) and maximum allowable concentration quality standard (MAC-QS) for Rhodamine B were found to be 14 and 140 µg/L, respectively. For Rhodamine WT, the corresponding values were estimated to >91 µg/L (AA-QS) and >910 µg/L (MAC-QS). Hence, concentrations below 140 µg/L or 910 µg/L for Rhodamine B and WT, respectively, are not expected to pose a risk to aquatic freshwater life in the case of intermittent discharges, e.g. tracer experiments released in streams.
Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Daphnia , Rodaminas , Poluentes Químicos da Água/toxicidadeRESUMO
Short-term standardized laboratory tests were carried out for evaluating acute and chronic toxicological effects of novel phosphorus (P) adsorbents on Raphidocelis subcapitata (algal growth rate inhibition) and on Daphnia magna (immobilization, with direct and indirect exposure to adsorbents, and uptake-depuration tests). Four P adsorbents were tested: two magnetic (HQ and Fe3O4) and two non magnetic (CFH-12® and Phoslock®). For the case of the algal growth inhibition test, the EC50 was 1.5 and 0.42â¯gâ¯L-1 for HQ and CFH-12®, respectively, and no inhibition patterns were observed neither for Fe3O4 nor for Phoslock®. When organisms were exposed to a direct contact, in the D. magna immobilization test, no statistically significant differences were found in the EC50 values among the four studied adsorbents. The huge difference between direct and indirect contact experiments suggests that toxicity is mainly physically mediated. The uptake-depuration test evidenced a much faster uptake and depuration rates for Phoslock®, which was precisely the adsorbent with the highest particle size. In a realistic worst-case scenario using data from Honda lake (Almería, Spain), where lake restoration is carried out by a adding a single large dose to bind surplus P in the lake, the predicted environmental concentrations for all adsorbents were lower than EC50 for all adsorbents and they were found to exceed a provisional limit value for ecotoxicity after a short-term exposure. All in all, since neither accumulation nor longer term effects of P adsorbents in the pelagic phase is expected, this risk may however, on a case-to-case basis, be acceptable.
Assuntos
Recuperação e Remediação Ambiental/métodos , Fósforo/química , Poluentes Químicos da Água/toxicidade , Animais , Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Compostos Férricos/toxicidade , Lagos , Magnetismo , Espanha , Testes de Toxicidade , Poluentes Químicos da Água/químicaRESUMO
In this study, we identified the influence of wastewater characteristics on the theoretical and practical methane potential using different food industrial wastewaters as substrates. Ten composite wastewater samples from five industries were investigated. The ultimate practical methane yields (B(o)) were compared to the theoretical methane yields (B(o,th)) in order to evaluate the biodegradability of the tested wastewaters and the influence of their physico-chemical characteristics. The analytical method applied to quantify the wastewaters' organic content proved to influence the estimation of their theoretical yields. The substrate:inoculum ratio as well as the dilution factor of the wastewaters influenced the ultimate practical methane yields differently in each of the wastewaters assessed. Substrate chemical oxygen demand (COD) concentrations did not present any influence on ultimate practical methane yields; on the other hand, it was found that they were affected positively by concentrations of total inorganic carbon when wastewaters were 25% and 50% diluted and affected negatively by concentrations of total acetate when wastewaters were undiluted. Carbohydrate and protein concentrations affected negatively the maximum achieved practical methane yields.
Assuntos
Indústria Alimentícia , Resíduos Industriais , Metano/análise , Oxigênio/análiseRESUMO
The potential of C(60)-nanoparticles (Buckminster fullerenes) as contaminant carriers in aqueous systems was studied in a series of toxicity tests with algae (Pseudokirchneriella subcapitata) and crustaceans (Daphnia magna). Four common environmental contaminants (atrazine, methyl parathion, pentachlorophenol (PCP), and phenanthrene) were used as model compounds, representing different physico-chemical properties and toxic modes of action. The aggregates of nano-C(60) formed over 2 months of stirring in water were mixed with model compounds 5 days prior to testing. Uptake and excretion of phenanthrene in 4-days-old D. magna was studied with and without addition of C(60) in aqueous suspensions. It was found that 85% of the added phenanthrene sorbed to C(60)-aggregates >200 nm whereas about 10% sorption was found for atrazine, methyl parathion, and pentachlorophenol. In algal tests, the presence of C(60)-aggregates increased the toxicity of phenanthrene with 60% and decreased toxicity of PCP about 1.9 times. Addition of C(60)-aggregates reduced the toxicity of PCP with 25% in tests with D. magna, whereas a more than 10 times increase in toxicity was observed for phenanthrene when results were expressed as water phase concentrations. Thus, results from both toxicity tests show that phenanthrene sorbed to C(60)-aggregates is available for the organisms. For atrazine and methyl parathion no statistically significant differences in toxicities could be observed in algal and daphnid tests as a result of the presence of C(60)-aggregates. In bioaccumulation studies with phenanthrene in D. magna it was found that the uptake of phenanthrene was faster when C(60) was present in suspension and that a 1.7 times higher steady-state concentration was reached in the animals. However, a very fast clearance took place when animals were transferred to clean water resulting in no accumulation of phenanthrene. This study is the first to demonstrate the influence of C(60)-aggregates on aquatic toxicity and bioaccumulation of other environmentally relevant contaminants. The data provided underline that not only the inherent toxicity of manufactured nanoparticles, but also interactions with other compounds and characterisation of nanoparticles in aqueous suspension are of importance for risk assessment of nanomaterials.
Assuntos
Clorófitas/efeitos dos fármacos , Daphnia/efeitos dos fármacos , Fulerenos/toxicidade , Fenantrenos/toxicidade , Poluentes Químicos da Água/farmacocinética , Poluentes Químicos da Água/toxicidade , Animais , Atrazina/metabolismo , Atrazina/farmacocinética , Atrazina/toxicidade , Disponibilidade Biológica , Clorófitas/crescimento & desenvolvimento , Fulerenos/análise , Fulerenos/metabolismo , Metil Paration/metabolismo , Metil Paration/farmacocinética , Metil Paration/toxicidade , Pentaclorofenol/metabolismo , Pentaclorofenol/farmacocinética , Pentaclorofenol/toxicidade , Fenantrenos/metabolismo , Fenantrenos/farmacocinética , Suspensões , Fatores de Tempo , Poluentes Químicos da Água/metabolismoRESUMO
The chemical characteristics of stormwater are dependent on the nature of surfaces (roads, roofs etc.) with which it comes into contact during the runoff process as well as natural processes and anthropogenic activities in the catchments. The different types of pollutants may cause problems during utilisation, detention or discharge of stormwater to the environment and may pose specific demands to decentralised treatment. This paper proposes a scientifically justifiable list of selected stormwater priority pollutants (SSPP) to be used, e.g., for evaluation of the chemical risks occurring in different handling strategies. The SSPP-list consists of 25 pollutant parameters including eight of the priority pollutants currently identified in the European Water Framework Directive. It contains general water quality parameters (organic and suspended matter, nutrients and pH); metals (Cd, Cr, Cu, Ni, Pb, Pt and Zn); PAH (naphthalene, pyrene and benzo[a]pyrene); herbicides (pendimethalin, phenmedipham, glyphosate and terbutylazine); and other representative industrially derived compounds (nonylphenol ethoxylates, pentachlorophenol, di(2-ethylhexyl)phthalate, PCB-28 and methyl tert-butyl ether). Tools for flux modelling, enabling calculation of predicted environmental concentrations (PECs), and for ranking the susceptibility of a pollutant to removal within a range of structural stormwater treatment systems or best management practices (BMPs) have been developed, but further work is required to allow all SSPPs to be addressed in the development of future stormwater pollution control measures. In addition, the identified SSPPs should be considered for inclusion in stormwater related monitoring campaigns.
Assuntos
Chuva , Poluentes da Água , Monitoramento Ambiental , Europa (Continente) , Gerenciamento de Resíduos/métodos , Movimentos da Água , Poluição da Água/prevenção & controleRESUMO
A major challenge in nanoecotoxicology is finding suitable methods to determine the uptake and localisation of nanoparticles on a whole-organism level. Some uptake methods have been associated with artefacts induced by sample preparation, including staining for electron microscopy. This study used light sheet microscopy (LSM) to define the uptake and localisation of fluorescently labelled nanoparticles in living organisms with minimal sample preparation. Zebrafish (Danio rerio) were exposed to fluorescent gold nanoparticles (Au NPs) and fluorescent polystyrene NPs via aqueous or dietary exposure. The in vivo uptake and localisation of NPs were investigated using LSM at different time points (1, 3 and 7 days). A time-dependent increase in fluorescence was observed in the gut after dietary exposure to both Au NPs and polystyrene NPs. No fluorescence was observed within gut epithelia regardless of the NP exposure route indicating no or limited uptake via intestinal villi. Fish exposed to polystyrene NPs through the aqueous phase emitted fluorescence signals from the gills and intestine. Fluorescence was also detected in the head region of the fish after aqueous exposure to polystyrene NPs. This was not observed for Au NPs. Aqueous exposure to Au NPs resulted in increased relative swimming distance, while no effect was observed for other exposures. This study supports that the route of exposure is essential for the uptake and subsequent localisation of nanoparticles in zebrafish. Furthermore, it demonstrates that the localisation of NPs in whole living organisms can be visualised in real-time, using LSM.
Assuntos
Nanopartículas/metabolismo , Peixe-Zebra/metabolismo , Animais , Artemia , Fluorescência , Microscopia , Poliestirenos/metabolismoRESUMO
The paper presents a novel methodology (RICH, Ranking and Identification of Chemical Hazards) for ranking and identification of xenobiotic organic compounds of environmental concern in stormwater discharged to surface water. The RICH method is illustrated as a funnel fitted with different filters that sort out problematic and hazardous compounds based on inherent physico-chemical and biological properties. The outcomes of the RICH procedure are separate lists for both water phase and solid phase associated compounds. These lists comprise: a justified list of compounds which can be disregarded in hazard/risk assessments, a justified list of stormwater priority pollutants which must be included in hazard/risk assessments, and a list of compounds which may be present in discharged stormwater, but cannot be evaluated due to lack of data. The procedure was applied to 233 xenobiotic organic chemicals (XOCs) of relevance for stormwater. Of these 233 compounds, 121 compounds were found to be priority pollutants with regard to solids phases (i.e. suspended solids, soil, or sediments) when stormwater is discharged to surface water and 56 compounds were found to be priority pollutants with regard to the water phase. For 11% of the potential stormwater priority pollutants the screening procedure could not be carried out due to lack of data on basic physico-chemical properties and/or data on bioaccumulation, resistance to biodegradation, and ecotoxicity. The tiered approach applied in the RICH procedure and the focus on the phases relevant for monitoring or risk assessment in the aquatic environment refines the list of "compounds of concern" when compared to the outcome of existing classification schemes. In this paper the RICH procedure is focused on effects in the aquatic environment exemplified with xenobiotic organic compounds (XOCs) found in urban stormwater, but it may be transferred to other environmental compartments and problems. Thus, the RICH procedure can be used as a stand-alone tool for selection of potential priority pollutants or it can be integrated in larger priority setting frameworks.
Assuntos
Resíduos Perigosos/análise , Compostos Orgânicos/análise , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Xenobióticos/análise , Biodegradação Ambiental , Filtração , Medição de Risco , VolatilizaçãoRESUMO
An in vitro bioaccessibility test was applied for assessing the transfer of polycyclic aromatic hydrocarbons (PAHs) present in road dust, into benthic organisms living in a receiving water body. The road dust is supposed to be urban runoff particles under wet weather conditions. Sodium dodecyl sulfate (SDS) solution was used as a hypothetical gut fluid. Pyrene, fluoranthene and phenanthrene were the main PAH species in the SDS extractable fraction of road dust, as well as the whole extract. Benzo(ghi)perylene showed relatively low concentrations in the SDS extract in spite of a high concentration in the original dust. The PAH composition in benthic organisms (polychaetes) did not correspond with that of the surrounding sediment and the PAHs detected were also detected in high concentrations in the SDS extract of road dust. When testing the toxicity of the extracted contaminants by a standardised algal toxicity test, SDS extracts of a detention pond sediment showed higher toxicity than the pore water of the corresponding sediment. Sediment suspension showed a comparative toxicity with 0.1% SDS extract. From the results, the in vitro bioaccessibility test seems more suitable to evaluate the exposed contaminants than the traditional organic solvent extraction method and the SDS extracted fraction is applicable to toxicity tests reflecting the digestive process.
Assuntos
Cidades , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Animais , Sistema Digestório/metabolismo , Eucariotos/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Técnicas In Vitro , Poliquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Dodecilsulfato de Sódio/química , Dodecilsulfato de Sódio/metabolismo , Testes de Toxicidade/métodos , Poluentes Químicos da Água/toxicidadeRESUMO
Assessment of chemical hazards is a critical issue, which have to be dealt with when evaluating different strategies for sustainable handling of stormwater. In the present study, a methodology for identifying the most critical and representative chemical pollutants was developed. A list of selected stormwater priority pollutants (SSPP-list) is the out-put from the procedure. Two different strategies for handling of stormwater were considered; discharge into a surface water recipient and infiltration. However, the same methodology can be used for other types of wastewater and other strategies for handling and treatment. A literature survey revealed that at least 656 xenobiotic organic compounds (XOCs) could be present in stormwater. In the next step, 233 XOCs were evaluated with respect to the potential for being hazardous towards either aquatic living organisms or humans, or causing technical or aesthetical problems. 121 XOCs were found have at least one of these negative effects, while 26 XOCs could not be assessed due to the lack of data. The hazard assessment showed that 40 XOCs had a PEC/PNEC ratio above one., e.g. they should be considered as priority pollutants. The final step is the expert judgement, which resulted in a final SSPP-list containing 16 selected priority pollutants.
Assuntos
Medição de Risco/métodos , Poluentes Químicos da Água/classificação , Xenobióticos/classificação , Chuva , Eliminação de Resíduos Líquidos , Movimentos da Água , Poluentes Químicos da Água/análise , Xenobióticos/análiseRESUMO
Hydrophobic organic pollutants in urban wet weather discharges can accumulate in the sediments of receiving waters and may have adverse effects on the ecological system, especially on benthic organisms. Here, a novel method is developed for evaluating the bioavailability of such hydrophobic organic pollutants by considering the digestive guts in deposit-feeding polychaetes. We compared the amount of polycyclic aromatic hydrocarbons (PAHs) extracted by an organic solvent and by sodium dodecyl sulfate (SDS) solution (as a hypothetical digestive gut fluid of polychaetes) and interpreted the ratio of the two values as bioavailability. The sediment extracts were applied to bacterial acute toxicity tests and algal growth inhibition tests. Sediment samples were collected from an urban stream system receiving wet weather discharges. The bioavailability of the total amount of 12 PAHs in the sediments was in the range 14-38% based on the results from the GC/MS determination of the two different extracts. Lower molecular PAHs showed higher bioavailability compared to the higher molecular ones. The sediment extracts were shown to be toxic towards both algae and bacteria. The SDS extracts showed similar or higher toxicity in the two biotests compared to the organic solvent extracts in spite of their lower PAHs content.
Assuntos
Sedimentos Geológicos/química , Modelos Biológicos , Poliquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes Químicos da Água/análise , Aliivibrio fischeri , Animais , Clorófitas , Cidades , Sistema Digestório/metabolismo , Monitoramento Ambiental/métodos , Pentanos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Rios/química , Dodecilsulfato de Sódio , Testes de Toxicidade Aguda , Poluentes Químicos da Água/metabolismoRESUMO
An improved procedure for quantification of results from the umuC tests for genotoxicity is presented. The calculation method better separates toxic growth inhibition (cytotoxicity) from genotoxic effects than currently used methods and therefore, greatly extends the applicability of genotoxicity tests on environmental samples. The basic principle is to normalize the genotoxic response compensating for both decreasing biomass and growth rate reduction that results from cytotoxicity. The improved method and the currently used method was compared for umuC tests on the pure compounds: methylmethanesulfonate (MMS), N-methyl-N'-nitro-N-nitroguanidine (MNNG), sodium azide (NaN3), and 4-nitroquinoline-1-oxide (4-NQO). For compounds with no or low cytotoxicity, the two calculation methods gave practically identical results, while for highly cytotoxic compounds, the traditional method overestimated genotoxicity. umuC tests were also carried out on leachate polluted groundwater sampled downgradient of a landfill (Grindsted, Denmark). All polluted samples showed high cytotoxicity concomitant with high genotoxicity when the results were quantified in the traditional way. The new method showed that these results were in fact false positive, as the apparent genotoxicity was a result of cytotoxicity. Based on the mathematical analysis leading to the improved procedure for correction for cytotoxicity, it is suggested to alter the present test design of the umuC test in order to obtain well-defined exposure concentrations as well as mathematical consistency in the quantification of genotoxicity.
Assuntos
Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Salmonella typhimurium/efeitos dos fármacos , Poluentes da Água/toxicidade , 4-Nitroquinolina-1-Óxido/toxicidade , Antineoplásicos Alquilantes/toxicidade , Biomassa , Reações Falso-Positivas , Metanossulfonato de Metila/toxicidade , Metilnitronitrosoguanidina/toxicidade , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Azida Sódica/toxicidadeRESUMO
A monitoring program comprising chemical analysis and biological toxicity testing of leachate samples from 10 Danish landfills (six engineered and four uncontrolled) revealed the presence of 55 different xenobiotic organic compounds (XOCs) and 10 degradation products of XOCs. The compounds belong to the following groups: BTEX, C3-benzenes, bicyclo compounds, napthalenes, chlorinated aliphatics, phenols (chloro-, methyl-, dimethyl, nonyl-), pesticides, and phthalates. Concentrations of single XOCs ranged from <0.1 to 2220 microg/L. A pesticide screening including 101 different compounds resulted in detection of 18 pesticides and three degradation products. The findings of degradation products of toluene, phenols, phthalates, pesticides, and nonylphenol ethoxylates show that degradation occurred inside the landfills. In biotests with bacteria and algae it was found that the non-volatile organic compounds were toxic as the samples only needed to be pre-concentrated from 1.3 to 9.4 times to give 50% inhibition of the test organisms. One of the ten samples proved to be genotoxic in the umuC test after 141 times pre-concentration. A major part of the organic chemicals causing toxicity remains unknown and it is recommended to combine chemical analyses and biotests in future monitoring programs.
Assuntos
Eliminação de Resíduos , Xenobióticos/análise , Xenobióticos/toxicidade , Bactérias , Dinamarca , Engenharia , Monitoramento Ambiental , Eucariotos , Testes de ToxicidadeRESUMO
The potential uptake and trophic transfer of nanoparticles (NP) is not well understood so far and for ZnO NP the data presented in peer-reviewed literature is limited. In this paper the influence of surface functionalization on the uptake and depuration behavior of ZnO NP, ZnO-OH NP and ZnO-octyl NP in D. magna was studied. Bulk ZnO particles (≤5 µm) and ZnCl2 were used as references for uptake of particles and dissolved species of Zn, respectively. Furthermore, the trophic transfer of ZnO NP and ZnO-octyl NP from daphnids (Daphnia magna) to zebra fish (Danio rerio) was studied. For ZnO NP and ZnO-octyl NP fast uptakes in D. magna were observed, whereas no measurable uptake took place for ZnO-OH NP. Lower body burden of ZnCl2 was found compared to both ZnO NP and ZnO-octyl. Contrary, the body burden for bulk ZnO was higher than that of ZnO NP but lower than ZnO-octyl. The higher body burdens found for functionalized ZnO-octyl NP than for non-functionalized ZnO NP showed that that the functionalization of the NP has a high influence on the uptake and depuration behavior. Though no mortality was observed, the resulting body burdens were 9.6 times (ZnO NP) and 47 times (ZnO-octyl NP) higher than toxic levels reported for zinc in D. magna. Consequently, the zinc recovered in the animals was not solely due to soluble zinc, but agglomerates/aggregates of ZnO NP or ZnO-octyl NP contributed to the body burdens. The trophic transfer study showed uptake of both ZnO NP and ZnO-octyl NP reaching more than tenfold higher levels than those obtained through aqueous exposure in other studies. This study contributes to expand the available data on uptake behavior of differently functionalized ZnO NP in D. magna and the potential trophic transfer from zooplankton to fish.
Assuntos
Daphnia/metabolismo , Nanopartículas/metabolismo , Peixe-Zebra/metabolismo , Óxido de Zinco/metabolismo , Animais , Cloretos/análise , Cadeia Alimentar , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Zinco/análise , Compostos de Zinco/análise , Óxido de Zinco/toxicidadeRESUMO
The ecotoxicity of three different sizes of titanium dioxide (TiO(2)) particles (primary particles sizes: 10, 30, and 300nm) to the freshwater green alga Pseudokirchneriella subcapitata was investigated in this study. Algal growth inhibition was found for all three particle types, but the physiological mode of action is not yet clear. It was possible to establish a concentration/dose-response relationship for the three particle sizes. Reproducibility, however, was affected by concentration-dependent aggregation of the nanoparticles, subsequent sedimentation, and possible attachment to vessel surfaces. It is also believed that heteroaggregation, driven by algal exopolymeric exudates, is occurring and could influence the concentration-response relationship. The ecotoxicity of cadmium to algae was investigated both in the presence and absence of 2mg/L TiO(2). The presence of TiO(2) in algal tests reduced the observed toxicity due to decreased bioavailability of cadmium resulting from sorption/complexation of Cd(2+) ions to the TiO(2) surface. However, for the 30nm TiO(2) nanoparticles, the observed growth inhibition was greater than what could be explained by the concentration of dissolved Cd(II) species, indicating a possible carrier effect, or combined toxic effect of TiO(2) nanoparticles and cadmium. These results emphasize the importance of systematic studies of nanoecotoxicological effects of different sizes of nanoparticles and underline the fact that, in addition to particle toxicity, potential interactions with existing environmental contaminants are also of crucial importance in assessing the potential environmental risks of nanoparticles.
Assuntos
Cádmio/metabolismo , Clorófitas/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Cádmio/química , Cádmio/toxicidade , Clorófitas/crescimento & desenvolvimento , Clorófitas/metabolismo , Relação Dose-Resposta a Droga , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Tamanho da Partícula , Titânio/química , Testes de Toxicidade/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/toxicidadeRESUMO
Based on a literature review and an overview of toxic effects of engineered nanoparticles in aquatic invertebrates, this paper proposes a number of recommendations for the developing field of nanoecotoxicology by highlighting the importance of invertebrates as sensitive and relevant test organisms. Results show that there is a pronounced lack of data in this field (less than 20 peer-reviewed papers are published so far), and the most frequently tested engineered nanoparticles in invertebrate tests are C(60), carbon nanotubes, and titanium dioxide. In addition, the majority of the studies have used Daphnia magna as the test organism. To date, the limited number of studies has indicated acute toxicity in the low mg l(-1) range and higher of engineered nanoparticles to aquatic invertebrates, although some indications of chronic toxicity and behavioral changes have also been described at concentrations in the high microg l(-1) range. Nanoparticles have also been found to act as contaminant carriers of co-existing contaminants and this interaction has altered the toxicity of specific chemicals towards D. magna. We recommend that invertebrate testing is used to advance the level of knowledge in nanoecotoxicology through standardized short-term (lethality) tests with invertebrates as a basis for investigating behaviour and bioavailability of engineered nanoparticles in the aquatic environment. Based on this literature review, we further recommend that research is directed towards invertebrate tests employing long-term low exposure with chronic endpoints along with more research in bioaccumulation of engineered nanoparticles in aquatic invertebrates.
Assuntos
Daphnia/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Monitoramento Ambiental , Cadeia Alimentar , Nanopartículas/química , Testes de Toxicidade Aguda , Testes de Toxicidade CrônicaRESUMO
BACKGROUND AND OBJECTIVE: The literature gives hardly any information about the benefits for children of using a bilateral bone-anchored hearing aid (BAHA) as opposed to a bilateral conventional bone conducting hearing aid. PATIENTS AND METHODS: Within a period of 12 years, three children were selected for treatment with bilateral BAHA. At the time of surgery, the children were aged between 8 and 10 years. Two of the children suffered from Franceschetti syndrome and one child from Goldenhar's syndrome. The clinical course of these three patients is presented. RESULTS: In all cases, treatment with BAHA was beneficial according to subjective and objective criteria despite localized inflammatory complications in two of the three cases. CONCLUSIONS: The bilateral use of BAHA should be considered more frequently as an alternative to conventional bone conducting hearing aids even for children.