Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Nature ; 600(7887): 143-147, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34646012

RESUMO

Anaplastic lymphoma kinase (ALK)1 and the related leukocyte tyrosine kinase (LTK)2 are recently deorphanized receptor tyrosine kinases3. Together with their activating cytokines, ALKAL1 and ALKAL24-6 (also called FAM150A and FAM150B or AUGß and AUGα, respectively), they are involved in neural development7, cancer7-9 and autoimmune diseases10. Furthermore, mammalian ALK recently emerged as a key regulator of energy expenditure and weight gain11, consistent with a metabolic role for Drosophila ALK12. Despite such functional pleiotropy and growing therapeutic relevance13,14, structural insights into ALK and LTK and their complexes with cognate cytokines have remained scarce. Here we show that the cytokine-binding segments of human ALK and LTK comprise a novel architectural chimera of a permuted TNF-like module that braces a glycine-rich subdomain featuring a hexagonal lattice of long polyglycine type II helices. The cognate cytokines ALKAL1 and ALKAL2 are monomeric three-helix bundles, yet their binding to ALK and LTK elicits similar dimeric assemblies with two-fold symmetry, that tent a single cytokine molecule proximal to the cell membrane. We show that the membrane-proximal EGF-like domain dictates the apparent cytokine preference of ALK. Assisted by these diverse structure-function findings, we propose a structural and mechanistic blueprint for complexes of ALK family receptors, and thereby extend the repertoire of ligand-mediated dimerization mechanisms adopted by receptor tyrosine kinases.


Assuntos
Quinase do Linfoma Anaplásico/química , Quinase do Linfoma Anaplásico/metabolismo , Citocinas/química , Citocinas/metabolismo , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/metabolismo , Quinase do Linfoma Anaplásico/classificação , Quinase do Linfoma Anaplásico/genética , Sítios de Ligação , Ativação Enzimática , Fator de Crescimento Epidérmico/química , Glicina , Células HEK293 , Humanos , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Mutação , Ligação Proteica , Domínios Proteicos , Multimerização Proteica , Especificidade por Substrato
2.
Cell ; 145(4): 513-28, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21565611

RESUMO

Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.


Assuntos
Doenças Renais Císticas/genética , Proteínas de Membrana/genética , Transdução de Sinais , Animais , Ataxina-10 , Centrossomo/metabolismo , Cílios/metabolismo , Transtornos da Motilidade Ciliar/genética , Encefalocele/genética , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/metabolismo , Camundongos , Células NIH 3T3 , Proteínas do Tecido Nervoso/genética , Doenças Renais Policísticas/genética , Retinose Pigmentar , Peixe-Zebra
3.
Proc Natl Acad Sci U S A ; 120(4): e2209964120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669111

RESUMO

Sonic hedgehog signaling regulates processes of embryonic development across multiple tissues, yet factors regulating context-specific Shh signaling remain poorly understood. Exome sequencing of families with polymicrogyria (disordered cortical folding) revealed multiple individuals with biallelic deleterious variants in TMEM161B, which encodes a multi-pass transmembrane protein of unknown function. Tmem161b null mice demonstrated holoprosencephaly, craniofacial midline defects, eye defects, and spinal cord patterning changes consistent with impaired Shh signaling, but were without limb defects, suggesting a CNS-specific role of Tmem161b. Tmem161b depletion impaired the response to Smoothened activation in vitro and disrupted cortical histogenesis in vivo in both mouse and ferret models, including leading to abnormal gyration in the ferret model. Tmem161b localizes non-exclusively to the primary cilium, and scanning electron microscopy revealed shortened, dysmorphic, and ballooned ventricular zone cilia in the Tmem161b null mouse, suggesting that the Shh-related phenotypes may reflect ciliary dysfunction. Our data identify TMEM161B as a regulator of cerebral cortical gyration, as involved in primary ciliary structure, as a regulator of Shh signaling, and further implicate Shh signaling in human gyral development.


Assuntos
Furões , Proteínas Hedgehog , Animais , Feminino , Humanos , Camundongos , Gravidez , Sistema Nervoso Central/metabolismo , Cílios/genética , Cílios/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Camundongos Knockout , Transdução de Sinais
4.
Cell ; 141(7): 1208-19, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20603001

RESUMO

The BBSome is a complex of Bardet-Biedl Syndrome (BBS) proteins that shares common structural elements with COPI, COPII, and clathrin coats. Here, we show that the BBSome constitutes a coat complex that sorts membrane proteins to primary cilia. The BBSome is the major effector of the Arf-like GTPase Arl6/BBS3, and the BBSome and GTP-bound Arl6 colocalize at ciliary punctae in an interdependent manner. Strikingly, Arl6(GTP)-mediated recruitment of the BBSome to synthetic liposomes produces distinct patches of polymerized coat apposed onto the lipid bilayer. Finally, the ciliary targeting signal of somatostatin receptor 3 needs to be directly recognized by the BBSome in order to mediate targeting of membrane proteins to cilia. Thus, we propose that trafficking of BBSome cargoes to cilia entails the coupling of BBSome coat polymerization to the recognition of sorting signals by the BBSome.


Assuntos
Cílios/metabolismo , Complexos Multiproteicos/metabolismo , Retina/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Animais , Síndrome de Bardet-Biedl/metabolismo , Bovinos , Membrana Celular/metabolismo , Humanos , Lipossomos/metabolismo , Camundongos , Fosfolipídeos/metabolismo , Dobramento de Proteína , Transporte Proteico , Receptores de Somatostatina/metabolismo , Extratos de Tecidos/metabolismo
5.
Development ; 148(19)2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34486668

RESUMO

Birth defects result from interactions between genetic and environmental factors, but the mechanisms remain poorly understood. We find that mutations and teratogens interact in predictable ways to cause birth defects by changing target cell sensitivity to Hedgehog (Hh) ligands. These interactions converge on a membrane protein complex, the MMM complex, that promotes degradation of the Hh transducer Smoothened (SMO). Deficiency of the MMM component MOSMO results in elevated SMO and increased Hh signaling, causing multiple birth defects. In utero exposure to a teratogen that directly inhibits SMO reduces the penetrance and expressivity of birth defects in Mosmo-/- embryos. Additionally, tissues that develop normally in Mosmo-/- embryos are refractory to the teratogen. Thus, changes in the abundance of the protein target of a teratogen can change birth defect outcomes by quantitative shifts in Hh signaling. Consequently, small molecules that re-calibrate signaling strength could be harnessed to rescue structural birth defects.


Assuntos
Anormalidades Induzidas por Medicamentos/genética , Interação Gene-Ambiente , Proteínas Hedgehog/metabolismo , Penetrância , Animais , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Transdução de Sinais , Receptor Smoothened/genética , Receptor Smoothened/metabolismo
6.
Cell Mol Life Sci ; 80(6): 170, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37261541

RESUMO

Although aspartic intramembrane-cleaving proteases (I-CLIPs) are crucial switches of multiple signaling pathways and involved in several devastating diseases, little is known about their physiological regulation. We have recently identified Frey regulator of sperm-oocyte fusion 1 (Frey1) as an inhibitory protein of Signal Peptide Peptidase-like 2c (SPPL2c), a member of this protease family. Employing structure modeling along with cell-based inhibition and interaction studies, we identify a short motif within the Frey1 transmembrane domain essential for inhibition of SPPL2c. Intriguingly, this motif can be transplanted to the SPPL2c substrate PLN, thereby transforming it into an inhibitor of this enzyme. It can be adopted for the generation of Notch1-based γ-Secretase inhibitors demonstrating its versatile use among aspartic I-CLIPs. In summary, we describe a mechanism of aspartic I-CLIP inhibition which allows the targeted generation of specific inhibitors of these enzymes and might enable the identification of endogenous negative regulators of these enzymes.


Assuntos
Proteínas de Membrana , Sêmen , Masculino , Animais , Proteínas de Membrana/metabolismo , Proteólise , Sêmen/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
8.
Proc Natl Acad Sci U S A ; 109(1): 273-8, 2012 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-22187460

RESUMO

Toll like receptors (TLRs) use Toll-IL-1 receptor (TIR) domain-containing adapters, such as myeloid differentiation primary response gene 88 (MyD88) and TIR domain-containing adapter inducing IFN-ß (TRIF), to induce activation of transcription factors, including NF-κB, MAP kinases, and IFN regulatory factors. TLR signaling also leads to activation of PI3K, but the molecular mechanism is not understood. Here we have discovered a unique role for B-cell adapter for PI3K (BCAP) in the TLR-signaling pathway. We find that BCAP has a functional N-terminal TIR homology domain and links TLR signaling to activation of PI3K. In addition, BCAP negatively regulates proinflammatory cytokine secretion upon TLR stimulation. In vivo, the absence of BCAP leads to exaggerated recruitment of inflammatory myeloid cells following infections and enhanced susceptibility to dextran sulfate sodium-induced colitis. Our results demonstrate that BCAP is a unique TIR domain-containing TLR signaling adapter crucial for linking TLRs to PI3K activation and regulating the inflammatory response.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfócitos B/enzimologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Receptores Toll-Like/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Animais , Ativação Enzimática , Células HEK293 , Humanos , Inflamação/metabolismo , Inflamação/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Fator 88 de Diferenciação Mieloide/metabolismo , Estrutura Terciária de Proteína
9.
Proc Natl Acad Sci U S A ; 109(14): 5399-404, 2012 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-22421438

RESUMO

Nectins (nectin1-4) and Necls [nectin-like (Necl1-5)] are Ig superfamily cell adhesion molecules that regulate cell differentiation and tissue morphogenesis. Adherens junction formation and subsequent cell-cell signaling is initiated by the assembly of higher-order receptor clusters of cognate molecules on juxtaposed cells. However, the structural and mechanistic details of signaling cluster formation remain unclear. Here, we report the crystal structure of poliovirus receptor (PVR)/Nectin-like-5/CD155) in complex with its cognate immunoreceptor ligand T-cell-Ig-and-ITIM-domain (TIGIT). The TIGIT/PVR interface reveals a conserved specific "lock-and-key" interaction. Notably, two TIGIT/PVR dimers assemble into a heterotetramer with a core TIGIT/TIGIT cis-homodimer, each TIGIT molecule binding one PVR molecule. Structure-guided mutations that disrupt the TIGIT/TIGIT interface limit both TIGIT/PVR-mediated cell adhesion and TIGIT-induced PVR phosphorylation in primary dendritic cells. Our data suggest a cis-trans receptor clustering mechanism for cell adhesion and signaling by the TIGIT/PVR complex and provide structural insights into how the PVR family of immunoregulators function.


Assuntos
Adesão Celular , Receptores Imunológicos/metabolismo , Receptores Virais/metabolismo , Transdução de Sinais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Conformação Proteica , Receptores Imunológicos/química
10.
Proteins ; 82 Suppl 2: 26-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24318984

RESUMO

For the last two decades, CASP has assessed the state of the art in techniques for protein structure prediction and identified areas which required further development. CASP would not have been possible without the prediction targets provided by the experimental structural biology community. In the latest experiment, CASP10, more than 100 structures were suggested as prediction targets, some of which appeared to be extraordinarily difficult for modeling. In this article, authors of some of the most challenging targets discuss which specific scientific question motivated the experimental structure determination of the target protein, which structural features were especially interesting from a structural or functional perspective, and to what extent these features were correctly reproduced in the predictions submitted to CASP10. Specifically, the following targets will be presented: the acid-gated urea channel, a difficult to predict transmembrane protein from the important human pathogen Helicobacter pylori; the structure of human interleukin (IL)-34, a recently discovered helical cytokine; the structure of a functionally uncharacterized enzyme OrfY from Thermoproteus tenax formed by a gene duplication and a novel fold; an ORFan domain of mimivirus sulfhydryl oxidase R596; the fiber protein gene product 17 from bacteriophage T7; the bacteriophage CBA-120 tailspike protein; a virus coat protein from metagenomic samples of the marine environment; and finally, an unprecedented class of structure prediction targets based on engineered disulfide-rich small proteins.


Assuntos
Biologia Computacional/métodos , Conformação Proteica , Proteínas/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Proteínas/genética , Alinhamento de Sequência
11.
Int J Biol Macromol ; 246: 125632, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37399862

RESUMO

RYBP (Ring1 and YY 1 binding protein) is a multifunctional, intrinsically disordered protein (IDP), best described as a transcriptional regulator. It exhibits a ubiquitin-binding functionality, binds to other transcription factors, and has a key role during embryonic development. RYBP, which folds upon binding to DNA, has a Zn-finger domain at its N-terminal region. By contrast, PADI4 is a well-folded protein and it is one the human isoforms of a family of enzymes implicated in the conversion of arginine to citrulline. As both proteins intervene in signaling pathways related to cancer development and are found in the same localizations within the cell, we hypothesized they may interact. We observed their association in the nucleus and cytosol in several cancer cell lines, by using immunofluorescence (IF) and proximity ligation assays (PLAs). Binding also occurred in vitro, as measured by isothermal titration calorimetry (ITC) and fluorescence, with a low micromolar affinity (~1 µM). AlphaFold2-multimer (AF2) results indicate that PADI4's catalytic domain interacts with the Arg53 of RYBP docking into its active site. As RYBP sensitizes cells to PARP (Poly (ADP-ribose) polymerase) inhibitors, we applied them in combination with an enzymatic inhibitor of PADI4 observing a change in cell proliferation, and the hampering of the interaction of both proteins. This study unveils for the first time the possible citrullination of an IDP, and suggests that this new interaction, whether it involves or not citrullination of RYBP, might have implications in cancer development and progression.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Linhagem Celular , Neoplasias/genética , Epigênese Genética , Proteínas Repressoras/genética
12.
J Biol Chem ; 286(21): 18969-81, 2011 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-21454693

RESUMO

Psoriasis is a human skin condition characterized by epidermal hyperproliferation and infiltration of multiple leukocyte populations. In characterizing a novel insulin growth factor (IGF)-like (IGFL) gene in mice (mIGFL), we found transcripts of this gene to be most highly expressed in skin with enhanced expression in models of skin wounding and psoriatic-like inflammation. A possible functional ortholog in humans, IGFL1, was uniquely and significantly induced in psoriatic skin samples. In vitro IGFL1 expression was up-regulated in cultured primary keratinocytes stimulated with tumor necrosis factor α but not by other psoriasis-associated cytokines. Finally, using a secreted and transmembrane protein library, we discovered high affinity interactions between human IGFL1 and mIGFL and the TMEM149 ectodomain. TMEM149 (renamed here as IGFLR1) is an uncharacterized gene with structural similarity to the tumor necrosis factor receptor family. Our studies demonstrate that IGFLR1 is expressed primarily on the surface of mouse T cells. The connection between mIGFL and IGFLR1 receptor suggests mIGFL may influence T cell biology within inflammatory skin conditions.


Assuntos
Fator de Crescimento Insulin-Like I/biossíntese , Psoríase/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Pele/metabolismo , Regulação para Cima , Ferimentos e Lesões/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Fator de Crescimento Insulin-Like I/genética , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Terciária de Proteína , Psoríase/genética , Psoríase/patologia , Receptores do Fator de Necrose Tumoral/genética , Pele/patologia , Linfócitos T/metabolismo , Linfócitos T/patologia , Ferimentos e Lesões/genética , Ferimentos e Lesões/patologia
13.
Curr Top Dev Biol ; 150: 25-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35817504

RESUMO

Paracrine cell-cell communication is central to all developmental processes, ranging from cell diversification to patterning and morphogenesis. Precise calibration of signaling strength is essential for the fidelity of tissue formation during embryogenesis and tissue maintenance in adults. Membrane-tethered ubiquitin ligases can control the sensitivity of target cells to secreted ligands by regulating the abundance of signaling receptors at the cell surface. We discuss two examples of this emerging concept in signaling: (1) the transmembrane ubiquitin ligases ZNRF3 and RNF43 that regulate WNT and bone morphogenetic protein receptor abundance in response to R-spondin ligands and (2) the membrane-recruited ubiquitin ligase MGRN1 that controls Hedgehog and melanocortin receptor abundance. We focus on the mechanistic logic of these systems, illustrated by structural and protein interaction models enabled by AlphaFold. We suggest that membrane-tethered ubiquitin ligases play a widespread role in remodeling the cell surface proteome to control responses to extracellular ligands in diverse biological processes.


Assuntos
Trombospondinas , Via de Sinalização Wnt , Proteínas Hedgehog , Homeostase , Ligantes , Trombospondinas/química , Trombospondinas/metabolismo , Ubiquitina , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
14.
Cell Rep ; 41(3): 111490, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36261006

RESUMO

Interleukin-27 (IL-27) uniquely assembles p28 and EBI3 subunits to a heterodimeric cytokine that signals via IL-27Rα and gp130. To provide the structural framework for receptor activation by IL-27 and its emerging therapeutic targeting, we report here crystal structures of mouse IL-27 in complex with IL-27Rα and of human IL-27 in complex with SRF388, a monoclonal antibody undergoing clinical trials with oncology indications. One face of the helical p28 subunit interacts with EBI3, while the opposite face nestles into the interdomain elbow of IL-27Rα to juxtapose IL-27Rα to EBI3. This orients IL-27Rα for paired signaling with gp130, which only uses its immunoglobulin domain to bind to IL-27. Such a signaling complex is distinct from those mediated by IL-12 and IL-23. The SRF388 binding epitope on IL-27 overlaps with the IL-27Rα interaction site explaining its potent antagonistic properties. Collectively, our findings will facilitate the mechanistic interrogation, engineering, and therapeutic targeting of IL-27.


Assuntos
Interleucina-27 , Humanos , Camundongos , Animais , Receptor gp130 de Citocina/metabolismo , Receptores de Citocinas/metabolismo , Interleucina-12 , Citocinas , Anticorpos Monoclonais/farmacologia , Epitopos , Interleucina-23
15.
Dev Cell ; 57(20): 2381-2396.e13, 2022 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-36228617

RESUMO

Kinesins are canonical molecular motors but can also function as modulators of intracellular signaling. KIF26A, an unconventional kinesin that lacks motor activity, inhibits growth-factor-receptor-bound protein 2 (GRB2)- and focal adhesion kinase (FAK)-dependent signal transduction, but its functions in the brain have not been characterized. We report a patient cohort with biallelic loss-of-function variants in KIF26A, exhibiting a spectrum of congenital brain malformations. In the developing brain, KIF26A is preferentially expressed during early- and mid-gestation in excitatory neurons. Combining mice and human iPSC-derived organoid models, we discovered that loss of KIF26A causes excitatory neuron-specific defects in radial migration, localization, dendritic and axonal growth, and apoptosis, offering a convincing explanation of the disease etiology in patients. Single-cell RNA sequencing in KIF26A knockout organoids revealed transcriptional changes in MAPK, MYC, and E2F pathways. Our findings illustrate the pathogenesis of KIF26A loss-of-function variants and identify the surprising versatility of this non-motor kinesin.


Assuntos
Cinesinas , Neurônios , Humanos , Animais , Camundongos , Cinesinas/genética , Neurônios/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Apoptose , Encéfalo/metabolismo
16.
J Biol Chem ; 285(12): 9172-9, 2010 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-20093360

RESUMO

Wnt/beta-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/beta-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD.Wnt3a.LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth beta-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/beta-catenin signaling by Dkk1.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas Relacionadas a Receptor de LDL/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Proteínas Wnt/metabolismo , Animais , Sítios de Ligação , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Insetos , Cinética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/metabolismo
17.
Proteins ; 79 Suppl 10: 6-20, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22020785

RESUMO

One goal of the CASP community wide experiment on the critical assessment of techniques for protein structure prediction is to identify the current state of the art in protein structure prediction and modeling. A fundamental principle of CASP is blind prediction on a set of relevant protein targets, that is, the participating computational methods are tested on a common set of experimental target proteins, for which the experimental structures are not known at the time of modeling. Therefore, the CASP experiment would not have been possible without broad support of the experimental protein structural biology community. In this article, several experimental groups discuss the structures of the proteins which they provided as prediction targets for CASP9, highlighting structural and functional peculiarities of these structures: the long tail fiber protein gp37 from bacteriophage T4, the cyclic GMP-dependent protein kinase Iß dimerization/docking domain, the ectodomain of the JTB (jumping translocation breakpoint) transmembrane receptor, Autotaxin in complex with an inhibitor, the DNA-binding J-binding protein 1 domain essential for biosynthesis and maintenance of DNA base-J (ß-D-glucosyl-hydroxymethyluracil) in Trypanosoma and Leishmania, an so far uncharacterized 73 residue domain from Ruminococcus gnavus with a fold typical for PDZ-like domains, a domain from the phycobilisome core-membrane linker phycobiliprotein ApcE from Synechocystis, the heat shock protein 90 activators PFC0360w and PFC0270w from Plasmodium falciparum, and 2-oxo-3-deoxygalactonate kinase from Klebsiella pneumoniae.


Assuntos
Biologia Computacional/métodos , Modelos Moleculares , Proteínas/química , Sequência de Aminoácidos , Animais , Bacteriófago T4/química , Proteínas Quinases Dependentes de GMP Cíclico/química , Proteínas de Ligação a DNA/química , Humanos , Klebsiella pneumoniae/química , Klebsiella pneumoniae/enzimologia , Leishmania/química , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Plasmodium falciparum/química , Conformação Proteica , Dobramento de Proteína , Proteínas de Protozoários/química , Trypanosoma/química , Proteínas Virais/química
18.
EMBO J ; 26(23): 4902-12, 2007 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17989695

RESUMO

Neuropilins (Nrps) are co-receptors for class 3 semaphorins and vascular endothelial growth factors and important for the development of the nervous system and the vasculature. The extracellular portion of Nrp is composed of two domains that are essential for semaphorin binding (a1a2), two domains necessary for VEGF binding (b1b2), and one domain critical for receptor dimerization (c). We report several crystal structures of Nrp1 and Nrp2 fragments alone and in complex with antibodies that selectively block either semaphorin or vascular endothelial growth factor (VEGF) binding. In these structures, Nrps adopt an unexpected domain arrangement in which the a2, b1, and b2 domains form a tightly packed core that is only loosely connected to the a1 domain. The locations of the antibody epitopes together with in vitro experiments indicate that VEGF and semaphorin do not directly compete for Nrp binding. Based upon our structural and functional data, we propose possible models for ligand binding to neuropilins.


Assuntos
Neuropilinas/química , Semaforina-3A/química , Fator A de Crescimento do Endotélio Vascular/química , Sequência de Aminoácidos , Anticorpos/química , Sítios de Ligação , Cristalografia por Raios X/métodos , Dimerização , Conformação Molecular , Dados de Sequência Molecular , Neuropilinas/fisiologia , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Semaforina-3A/metabolismo , Semaforinas/metabolismo , Homologia de Sequência de Aminoácidos , Fator A de Crescimento do Endotélio Vascular/metabolismo
19.
Biochem J ; 417(1): 149-60, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18939944

RESUMO

A family of anti-apoptotic regulators known as IAP (inhibitor of apoptosis) proteins interact with multiple cellular partners and inhibit apoptosis induced by a variety of stimuli. c-IAP (cellular IAP) 1 and 2 are recruited to TNFR1 (tumour necrosis factor receptor 1)-associated signalling complexes, where they mediate receptor-induced NF-kappaB (nuclear factor kappaB) activation. Additionally, through their E3 ubiquitin ligase activities, c-IAP1 and c-IAP2 promote proteasomal degradation of NIK (NF-kappaB-inducing kinase) and regulate the non-canonical NF-kappaB pathway. In the present paper, we describe a novel ubiquitin-binding domain of IAPs. The UBA (ubiquitin-associated) domain of IAPs is located between the BIR (baculovirus IAP repeat) domains and the CARD (caspase activation and recruitment domain) or the RING (really interesting new gene) domain of c-IAP1 and c-IAP2 or XIAP (X-linked IAP) respectively. The c-IAP1 UBA domain binds mono-ubiquitin and Lys(48)- and Lys(63)-linked polyubiquitin chains with low-micromolar affinities as determined by surface plasmon resonance or isothermal titration calorimetry. NMR analysis of the c-IAP1 UBA domain-ubiquitin interaction reveals that this UBA domain binds the classical hydrophobic patch surrounding Ile(44) of ubiquitin. Mutations of critical amino acid residues in the highly conserved MGF (Met-Gly-Phe) binding loop of the UBA domain completely abrogate ubiquitin binding. These mutations in the UBA domain do not overtly affect the ubiquitin ligase activity of c-IAP1 or the participation of c-IAP1 and c-IAP2 in the TNFR1 signalling complex. Treatment of cells with IAP antagonists leads to proteasomal degradation of c-IAP1 and c-IAP2. Deletion or mutation of the UBA domain decreases this degradation, probably by diminishing the interaction of the c-IAPs with the proteasome. These results suggest that ubiquitin binding may be an important mechanism for rapid turnover of auto-ubiquitinated c-IAP1 and c-IAP2.


Assuntos
Proteínas Inibidoras de Apoptose/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Ubiquitina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/genética , Calorimetria , Linhagem Celular , Linhagem Celular Tumoral , Dicroísmo Circular , Humanos , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/química , Cinética , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , NF-kappa B/metabolismo , Poliubiquitina/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Ubiquitinação , Quinase Induzida por NF-kappaB
20.
Cancer Res ; 67(2): 465-73, 2007 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-17234753

RESUMO

Missense variants are commonly identified in genomic sequence but only a small fraction directly contribute to oncogenesis. The ability to distinguish those missense changes that contribute to cancer progression from those that do not is a difficult problem usually only accomplished through functional in vivo analyses. Using two computational algorithms, Sorting Intolerant from Tolerant (SIFT) and the Pfam-based LogR.E-value method, we have identified features that distinguish cancer-associated missense mutations from other classes of missense change. Our data reveal that cancer mutants behave similarly to Mendelian disease mutations, but are clearly distinct from either complex disease mutations or common single-nucleotide polymorphisms. We show that both activating and inactivating oncogenic mutations are predicted to be deleterious, although activating changes are likely to increase protein activity. Using the Gene Ontology and data from the SIFT and LogR.E-value metrics, a classifier was built that predicts cancer-associated missense mutations with a very low false-positive rate. The classifier does remarkably well in a number of different experiments designed to distinguish polymorphisms from true cancer-associated mutations. We also show that recurrently observed mutations are much more likely to be predicted to be cancer-associated than rare mutations, suggesting that our classifier will be useful in distinguishing causal from passenger mutations. In addition, from an expressed sequence tag-based screen, we identified a previously unknown germ line change (P1104A) in tumor tissues that is predicted to disrupt the function of the TYK2 protein. The data presented here show that this novel bioinformatics approach to classifying cancer-associated variants is robust and can be used for large-scale analyses.


Assuntos
Mutação de Sentido Incorreto , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Algoritmos , Alelos , Linhagem Celular Tumoral , Biologia Computacional/métodos , DNA de Neoplasias/genética , Etiquetas de Sequências Expressas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA