Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nat Rev Mol Cell Biol ; 22(8): 529-547, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33990789

RESUMO

Cells have the ability to respond to various types of environmental cues, and in many cases these cues induce directed cell migration towards or away from these signals. How cells sense these cues and how they transmit that information to the cytoskeletal machinery governing cell translocation is one of the oldest and most challenging problems in biology. Chemotaxis, or migration towards diffusible chemical cues, has been studied for more than a century, but information is just now beginning to emerge about how cells respond to other cues, such as substrate-associated cues during haptotaxis (chemical cues on the surface), durotaxis (mechanical substrate compliance) and topotaxis (geometric features of substrate). Here we propose four common principles, or pillars, that underlie all forms of directed migration. First, a signal must be generated, a process that in physiological environments is much more nuanced than early studies suggested. Second, the signal must be sensed, sometimes by cell surface receptors, but also in ways that are not entirely clear, such as in the case of mechanical cues. Third, the signal has to be transmitted from the sensing modules to the machinery that executes the actual movement, a step that often requires amplification. Fourth, the signal has to be converted into the application of asymmetric force relative to the substrate, which involves mostly the cytoskeleton, but perhaps other players as well. Use of these four pillars has allowed us to compare some of the similarities between different types of directed migration, but also to highlight the remarkable diversity in the mechanisms that cells use to respond to different cues provided by their environment.


Assuntos
Movimento Celular/fisiologia , Animais , Polaridade Celular , Quimiotaxia , Citoesqueleto/metabolismo , Humanos , Transdução de Sinais
2.
Cell ; 148(5): 973-87, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22385962

RESUMO

Lamellipodia are sheet-like, leading edge protrusions in firmly adherent cells that contain Arp2/3-generated dendritic actin networks. Although lamellipodia are widely believed to be critical for directional cell motility, this notion has not been rigorously tested. Using fibroblasts derived from Ink4a/Arf-deficient mice, we generated a stable line depleted of Arp2/3 complex that lacks lamellipodia. This line shows defective random cell motility and relies on a filopodia-based protrusion system. Utilizing a microfluidic gradient generation system, we tested the role of Arp2/3 complex and lamellipodia in directional cell migration. Surprisingly, Arp2/3-depleted cells respond normally to shallow gradients of PDGF, indicating that lamellipodia are not required for fibroblast chemotaxis. Conversely, these cells cannot respond to a surface-bound gradient of extracellular matrix (haptotaxis). Consistent with this finding, cells depleted of Arp2/3 fail to globally align focal adhesions, suggesting that one principle function of lamellipodia is to organize cell-matrix adhesions in a spatially coherent manner.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Movimento Celular , Quimiotaxia , Matriz Extracelular/metabolismo , Pseudópodes/metabolismo , Animais , Linhagem Celular , Fibroblastos/metabolismo , Adesões Focais , Camundongos
3.
Nat Rev Mol Cell Biol ; 14(1): 7-12, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23212475

RESUMO

The actin-related protein 2/3 (ARP2/3) complex nucleates branched actin filament networks, but requires nucleation promoting factors (NPFs) to stimulate this activity. NPFs include proteins such as Wiskott-Aldrich syndrome protein (WASP), neural WASP (NWASP), WASP family verprolin-homologous protein (WAVE; also known as SCAR) and the recently identified WASP and SCAR homologue (WASH) complex. The mechanisms underlying NPF-dependent regulation and the cellular functions of ARP2/3 are being unravelled using new chemical and genetic approaches. Of particular interest is the role of the ARP2/3 complex in vesicular trafficking and directional cell motility.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas dos Microfilamentos/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Humanos , Conformação Proteica , Transporte Proteico
4.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L226-L238, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150545

RESUMO

Cell therapy is a potential treatment for cystic fibrosis (CF). However, cell engraftment into the airway epithelium is challenging. Here, we model cell engraftment in vitro using the air-liquid interface (ALI) culture system by injuring well-differentiated CF ALI cultures and delivering non-CF cells at the time of peak injury. Engraftment efficiency was quantified by measuring chimerism by droplet digital PCR and functional ion transport in Ussing chambers. Using this model, we found that human bronchial epithelial cells (HBECs) engraft more efficiently when they are cultured by conditionally reprogrammed cell (CRC) culture methods. Cell engraftment into the airway epithelium requires airway injury, but the extent of injury needed is unknown. We compared three injury models and determined that severe injury with partial epithelial denudation facilitates long-term cell engraftment and functional CFTR recovery up to 20% of wildtype function. The airway epithelium promptly regenerates in response to injury, creating competition for space and posing a barrier to effective engraftment. We examined competition dynamics by time-lapse confocal imaging and found that delivered cells accelerate airway regeneration by incorporating into the epithelium. Irradiating the repairing epithelium granted engrafting cells a competitive advantage by diminishing resident stem cell proliferation. Intentionally, causing severe injury to the lungs of people with CF would be dangerous. However, naturally occurring events like viral infection can induce similar epithelial damage with patches of denuded epithelium. We found that viral preconditioning promoted effective engraftment of cells primed for viral resistance.NEW & NOTEWORTHY Cell therapy is a potential treatment for cystic fibrosis (CF). Here, we model cell engraftment by injuring CF air-liquid interface cultures and delivering non-CF cells. Successful engraftment required severe epithelial injury. Intentionally injuring the lungs to this extent would be dangerous. However, naturally occurring events like viral infection induce similar epithelial damage. We found that viral preconditioning promoted the engraftment of cells primed for viral resistance leading to CFTR functional recovery to 20% of the wildtype.


Assuntos
Fibrose Cística , Viroses , Humanos , Fibrose Cística/terapia , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Epitélio , Células Epiteliais , Terapia Baseada em Transplante de Células e Tecidos , Células Cultivadas
5.
Biophys J ; 122(18): 3816-3829, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37644720

RESUMO

To generate forces that drive migration of a eukaryotic cell, arrays of actin filaments (F-actin) are assembled at the cell's leading membrane edge. To maintain cell propulsion and respond to dynamic external cues, actin filaments must be disassembled to regenerate the actin monomers (G-actin), and transport of G-actin from sites of disassembly back to the leading edge completes the treadmilling cycle and limits the flux of F-actin assembly. Whether or not molecular diffusion is sufficient for G-actin transport has been a long-standing topic of debate, in part because the dynamic nature of cell motility and migration hinders the estimation of transport parameters. In this work, we applied an experimental system in which cells adopt an approximately constant and symmetrical shape; they cannot migrate but exhibit fast, steady treadmilling in the thin region protruding from the cell. Using fluorescence recovery after photobleaching, we quantified the relative concentrations and corresponding fluxes of F- and G-actin in this system. In conjunction with mathematical modeling, constrained by measured features of each region of interest, this approach revealed that diffusion alone cannot account for the transport of G-actin to the leading edge. Although G-actin diffusion and vectorial transport might vary with position in the protruding region, good agreement with the fluorescence recovery after photobleaching measurements was achieved by a model with constant G-actin diffusivity ∼2 µm2/s and anterograde G-actin velocity less than 1 µm/s.


Assuntos
Citoesqueleto de Actina , Actinas , Movimento Celular , Difusão , Fluorescência
6.
J Biol Chem ; 298(5): 101886, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367415

RESUMO

Phospholipase C-γ1 (PLC-γ1) is a receptor-proximal enzyme that promotes signal transduction through PKC in mammalian cells. Because of the complexity of PLC-γ1 regulation, a two-state (inactive/active) model does not account for the intricacy of activation and inactivation steps at the plasma membrane. Here, we introduce a structure-based kinetic model of PLC-γ1, considering interactions of its regulatory Src homology 2 (SH2) domains and perturbation of those dynamics upon phosphorylation of Tyr783, a hallmark of activation. For PLC-γ1 phosphorylation to dramatically enhance enzyme activation as observed, we found that high intramolecular affinity of the C-terminal SH2 (cSH2) domain-pTyr783 interaction is critical, but this affinity need not outcompete the autoinhibitory interaction of the cSH2 domain. Under conditions for which steady-state PLC-γ1 activity is sensitive to the rate of Tyr783 phosphorylation, maintenance of the active state is surprisingly insensitive to the phosphorylation rate, since pTyr783 is well protected by the cSH2 domain while the enzyme is active. In contrast, maintenance of enzyme activity is sensitive to the rate of PLC-γ1 membrane (re)binding. Accordingly, we found that hypothetical PLC-γ1 mutations that either weaken autoinhibition or strengthen membrane binding influence the activation kinetics differently, which could inform the characterization of oncogenic variants. Finally, we used this newly informed kinetic scheme to refine a spatial model of PLC/PKC polarization during chemotaxis. The refined model showed improved stability of the polarized pattern while corroborating previous qualitative predictions. As demonstrated here for PLC-γ1, this approach may be adapted to model the dynamics of other receptor- and membrane-proximal enzymes.


Assuntos
Isoenzimas , Fosfolipases Tipo C , Animais , Proteínas de Transporte/metabolismo , Isoenzimas/metabolismo , Cinética , Mamíferos/metabolismo , Fosfolipase C gama/genética , Fosfolipase C gama/metabolismo , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Fosfolipases Tipo C/metabolismo , Domínios de Homologia de src/genética
7.
Genome Res ; 30(11): 1605-1617, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33020206

RESUMO

Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification associated with transcription and DNA repair. Although the effects of H3K36 methylation have been studied, the genome-wide dynamics of H3K36me deposition and removal are not known. We established rapid and reversible optogenetic control for Set2, the sole H3K36 methyltransferase in yeast, by fusing the enzyme with the light-activated nuclear shuttle (LANS) domain. Light activation resulted in efficient Set2-LANS nuclear localization followed by H3K36me3 deposition in vivo, with total H3K36me3 levels correlating with RNA abundance. Although genes showed disparate levels of H3K36 methylation, relative rates of H3K36me3 accumulation were largely linear and consistent across genes, suggesting that H3K36me3 deposition occurs in a directed fashion on all transcribed genes regardless of their overall transcription frequency. Removal of H3K36me3 was highly dependent on the demethylase Rph1. However, the per-gene rate of H3K36me3 loss weakly correlated with RNA abundance and followed exponential decay, suggesting H3K36 demethylases act in a global, stochastic manner. Altogether, these data provide a detailed temporal view of H3K36 methylation and demethylation that suggests transcription-dependent and -independent mechanisms for H3K36me deposition and removal, respectively.


Assuntos
Histonas/metabolismo , Metiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica , Genoma Fúngico , Código das Histonas , Histona Desmetilases/metabolismo , Histonas/química , Lisina/metabolismo , Metilação , Modelos Estatísticos , Optogenética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
8.
Cell ; 133(5): 765-7, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510919

RESUMO

Capping proteins limit actin filament growth, but paradoxically increase actin-based cell motility. This has been attributed to funneling of actin monomers to the filament ends that remain uncapped. Using a reconstituted motility system, Akin and Mullins (2008) now demonstrate that filament capping increases Arp2/3-based nucleation and branching, rather than elevating the rate of filament elongation.


Assuntos
Actinas/metabolismo , Movimento Celular , Proteínas do Citoesqueleto/metabolismo , Proteínas de Capeamento de Actina/metabolismo , Citoesqueleto de Actina/metabolismo , Modelos Biológicos
9.
Cell ; 134(5): 828-42, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18775315

RESUMO

The dendritic actin network generated by the Arp2/3 complex in lamellipodia underlies formation of protrusions, directional sensing, and migration. While the generation of this network is well studied, the mechanisms regulating network disassembly are poorly understood. We report that Coronin 1B disassembles Arp2/3-containing actin filament branches by inducing Arp2/3 dissociation. This activity is antagonized by Cortactin, a filament branch stabilizer. Consistent with this biochemical competition, depletion of both proteins partially rescues defects in lamellipodial dynamics observed upon depletion of either protein alone. Coronin 1B targets actin branches in a manner that is mutually exclusive with the Arp2/3 complex and alters the branch angle. We conclude that Coronin 1B replaces the Arp2/3 complex at actin filament branches as the dendritic network matures and drives the turnover of branched actin networks.


Assuntos
4-Butirolactona/análogos & derivados , Proteína 2 Relacionada a Actina/metabolismo , Proteína 3 Relacionada a Actina/metabolismo , Actinas/metabolismo , Cortactina/metabolismo , 4-Butirolactona/metabolismo , Animais , Linhagem Celular , Embrião de Mamíferos/citologia , Fibroblastos , Humanos , Camundongos , Pseudópodes , Ratos
10.
Biophys J ; 121(1): 102-118, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34861242

RESUMO

Orchestration of cell migration is essential for development, tissue regeneration, and the immune response. This dynamic process integrates adhesion, signaling, and cytoskeletal subprocesses across spatial and temporal scales. In mesenchymal cells, adhesion complexes bound to extracellular matrix mediate both biochemical signal transduction and physical interaction with the F-actin cytoskeleton. Here, we present a mathematical model that offers insight into both aspects, considering spatiotemporal dynamics of nascent adhesions, active signaling molecules, mechanical clutching, actin treadmilling, and nonmuscle myosin II contractility. At the core of the model is a positive feedback loop, whereby adhesion-based signaling promotes generation of barbed ends at, and protrusion of, the cell's leading edge, which in turn promotes formation and stabilization of nascent adhesions. The model predicts a switch-like transition and optimality of membrane protrusion, determined by the balance of actin polymerization and retrograde flow, with respect to extracellular matrix density. The model, together with new experimental measurements, explains how protrusion can be modulated by mechanical effects (nonmuscle myosin II contractility and adhesive bond stiffness) and F-actin turnover.


Assuntos
Actinas , Miosina Tipo II , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Extensões da Superfície Celular , Miosina Tipo II/metabolismo , Transdução de Sinais
11.
PLoS Comput Biol ; 16(4): e1007708, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32255775

RESUMO

Chemotaxis of fibroblasts and other mesenchymal cells is critical for embryonic development and wound healing. Fibroblast chemotaxis directed by a gradient of platelet-derived growth factor (PDGF) requires signaling through the phospholipase C (PLC)/protein kinase C (PKC) pathway. Diacylglycerol (DAG), the lipid product of PLC that activates conventional PKCs, is focally enriched at the up-gradient leading edge of fibroblasts responding to a shallow gradient of PDGF, signifying polarization. To explain the underlying mechanisms, we formulated reaction-diffusion models including as many as three putative feedback loops based on known biochemistry. These include the previously analyzed mechanism of substrate-buffering by myristoylated alanine-rich C kinase substrate (MARCKS) and two newly considered feedback loops involving the lipid, phosphatidic acid (PA). DAG kinases and phospholipase D, the enzymes that produce PA, are identified as key regulators in the models. Paradoxically, increasing DAG kinase activity can enhance the robustness of DAG/active PKC polarization with respect to chemoattractant concentration while decreasing their whole-cell levels. Finally, in simulations of wound invasion, efficient collective migration is achieved with thresholds for chemotaxis matching those of polarization in the reaction-diffusion models. This multi-scale modeling framework offers testable predictions to guide further study of signal transduction and cell behavior that affect mesenchymal chemotaxis.


Assuntos
Ácidos Fosfatídicos/metabolismo , Proteína Quinase C/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Quimiotaxia/fisiologia , Diglicerídeos/metabolismo , Fibroblastos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Modelos Teóricos , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Ácidos Fosfatídicos/fisiologia , Fosfolipase D/metabolismo , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteína Quinase C/fisiologia , Transdução de Sinais/fisiologia , Fosfolipases Tipo C/fisiologia
12.
J Immunol ; 202(4): 1265-1286, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659108

RESUMO

Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MΦ activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MΦs (BMDM) from Slc2a1M-/- mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MΦ lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1M-/- BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1M-/- BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MΦs of lean Slc2a1M-/- mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/- mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1M-/- BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MΦ were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MΦ function in chronic diseases.


Assuntos
Modelos Animais de Doenças , Transportador de Glucose Tipo 1/metabolismo , Macrófagos/metabolismo , Animais , Transportador de Glucose Tipo 1/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo
13.
Nat Immunol ; 9(11): 1307-15, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18836449

RESUMO

Mice carrying the recessive locus for peripheral T cell deficiency (Ptcd) have a block in thymic egress, but the mechanism responsible is undefined. Here we found that Ptcd T cells had an intrinsic migration defect, impaired lymphoid tissue trafficking and irregularly shaped protrusions. Characterization of the Ptcd locus showed a point substitution of lysine for glutamic acid at position 26 in the actin regulator coronin 1A that enhanced its inhibition of the actin regulator Arp2/3 and resulted in its mislocalization from the leading edge of migrating T cells. The discovery of another coronin 1A mutant during an N-ethyl-N-nitrosourea-mutagenesis screen for T cell-lymphopenic mice prompted us to evaluate a T cell-deficient, B cell-sufficient and natural killer cell-sufficient patient with severe combined immunodeficiency, whom we found had mutations in both CORO1A alleles. Our findings establish a function for coronin 1A in T cell egress, identify a surface of coronin involved in Arp2/3 regulation and demonstrate that actin regulation is a biological process defective in human and mouse severe combined immunodeficiency.


Assuntos
Actinas/metabolismo , Proteínas dos Microfilamentos/fisiologia , Imunodeficiência Combinada Severa/genética , Linfócitos T/imunologia , Timo/imunologia , Complexo 2-3 de Proteínas Relacionadas à Actina/antagonistas & inibidores , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Alelos , Substituição de Aminoácidos , Animais , Movimento Celular/genética , Movimento Celular/imunologia , Forma Celular , Feminino , Ácido Glutâmico/genética , Humanos , Lisina/genética , Masculino , Camundongos , Camundongos Endogâmicos ICR , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Mutação , Imunodeficiência Combinada Severa/imunologia
14.
J Cell Sci ; 130(18): 2971-2983, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28754687

RESUMO

Rho GTPase family members are known regulators of directed migration and therefore play key roles in processes including development, the immune response and cancer metastasis. However, their individual contributions to these processes are complex. Here, we modify the activity of the two Rho GTPase family members Rac and Cdc42 by optogenetically recruiting specific guanine nucleotide exchange factor (GEF) DH or PH domains to defined regions of the cell membrane. We find that the localized activation of both GTPases produces lamellipodia in cells plated on a fibronectin substrate. By using a novel optotaxis assay, we show that biased activation can drive directional migration. Interestingly, in the absence of exogenous fibronectin, Rac activation is insufficient to produce stable lamellipodia or directional migration whereas Cdc42 activation is sufficient for these processes. We find that a remarkably small amount of fibronectin (<10 puncta per protrusion) is necessary to support stable GTPase-driven lamellipodia formation. Cdc42 bypasses the need for exogenous fibronectin by stimulating cellular fibronectin deposition under the newly formed lamellipodia.This article has an associated First Person interview with the first author of the paper.


Assuntos
Movimento Celular , Fibronectinas/metabolismo , Optogenética/métodos , Proteína cdc42 de Ligação ao GTP/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Fibroblastos/metabolismo , Integrinas/metabolismo , Camundongos , Miosinas/metabolismo , Ligação Proteica , Pseudópodes/metabolismo , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
15.
J Cell Sci ; 129(12): 2329-42, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27173494

RESUMO

Haptotaxis is the process by which cells respond to gradients of substrate-bound cues, such as extracellular matrix proteins (ECM); however, the cellular mechanism of this response remains poorly understood and has mainly been studied by comparing cell behavior on uniform ECMs with different concentrations of components. To study haptotaxis in response to gradients, we utilized microfluidic chambers to generate gradients of the ECM protein fibronectin, and imaged the cell migration response. Lamellipodia are fan-shaped protrusions that are common in migrating cells. Here, we define a new function for lamellipodia and the cellular mechanism required for haptotaxis - differential actin and lamellipodial protrusion dynamics lead to biased cell migration. Modest differences in lamellipodial dynamics occurring over time periods of seconds to minutes are summed over hours to produce differential whole cell movement towards higher concentrations of fibronectin. We identify a specific subset of lamellipodia regulators as being crucial for haptotaxis. Numerous studies have linked components of this pathway to cancer metastasis and, consistent with this, we find that expression of the oncogenic Rac1 P29S mutation abrogates haptotaxis. Finally, we show that haptotaxis also operates through this pathway in 3D environments.


Assuntos
Quimiotaxia , Fibronectinas/farmacologia , Pseudópodes/metabolismo , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Animais , Quimiotaxia/efeitos dos fármacos , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrina beta1/metabolismo , Camundongos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos , Proteína 1 Indutora de Invasão e Metástase de Linfoma de Células T , Proteína da Síndrome de Wiskott-Aldrich/metabolismo , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Quinases da Família src/metabolismo
16.
Nat Chem Biol ; 12(6): 399-401, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27089030

RESUMO

We engineered a photoactivatable system for rapidly and reversibly exporting proteins from the nucleus by embedding a nuclear export signal in the LOV2 domain from phototropin 1. Fusing the chromatin modifier Bre1 to the photoswitch, we achieved light-dependent control of histone H2B monoubiquitylation in yeast, revealing fast turnover of the ubiquitin mark. Moreover, this inducible system allowed us to dynamically monitor the status of epigenetic modifications dependent on H2B ubiquitylation.


Assuntos
Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Epigênese Genética/efeitos da radiação , Flavoproteínas/metabolismo , Histonas/metabolismo , Luz , Ubiquitinação/efeitos da radiação , Flavoproteínas/química , Flavoproteínas/genética , Sinais de Exportação Nuclear , Fototropinas/química , Domínios Proteicos , Transporte Proteico/efeitos da radiação , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo
17.
Arterioscler Thromb Vasc Biol ; 37(10): 1903-1912, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28838921

RESUMO

OBJECTIVE: Wound healing is accompanied by neoangiogenesis, and new vessels are thought to originate primarily from the microcirculation; however, how these vessels form and resolve during wound healing is poorly understood. Here, we investigated properties of the smallest capillaries during wound healing to determine their spatial organization and the kinetics of formation and resolution. APPROACH AND RESULTS: We used intravital imaging and high-resolution microscopy to identify a new type of vessel in wounds, called tortuous microvessels. Longitudinal studies showed that tortuous microvessels increased in frequency after injury, normalized as the wound healed, and were closely associated with the wound site. Tortuous microvessels had aberrant cell shapes, increased permeability, and distinct interactions with circulating microspheres, suggesting altered flow dynamics. Moreover, tortuous microvessels disproportionately contributed to wound angiogenesis by sprouting exuberantly and significantly more frequently than nearby normal capillaries. CONCLUSIONS: A new type of transient wound vessel, tortuous microvessels, sprout dynamically and disproportionately contribute to wound-healing neoangiogenesis, likely as a result of altered properties downstream of flow disturbances. These new findings suggest entry points for therapeutic intervention.


Assuntos
Capilares/fisiologia , Neovascularização Fisiológica , Cicatrização/fisiologia , Animais , Células Endoteliais/fisiologia
18.
Proc Natl Acad Sci U S A ; 112(1): 112-7, 2015 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-25535392

RESUMO

The discovery of light-inducible protein-protein interactions has allowed for the spatial and temporal control of a variety of biological processes. To be effective, a photodimerizer should have several characteristics: it should show a large change in binding affinity upon light stimulation, it should not cross-react with other molecules in the cell, and it should be easily used in a variety of organisms to recruit proteins of interest to each other. To create a switch that meets these criteria we have embedded the bacterial SsrA peptide in the C-terminal helix of a naturally occurring photoswitch, the light-oxygen-voltage 2 (LOV2) domain from Avena sativa. In the dark the SsrA peptide is sterically blocked from binding its natural binding partner, SspB. When activated with blue light, the C-terminal helix of the LOV2 domain undocks from the protein, allowing the SsrA peptide to bind SspB. Without optimization, the switch exhibited a twofold change in binding affinity for SspB with light stimulation. Here, we describe the use of computational protein design, phage display, and high-throughput binding assays to create an improved light inducible dimer (iLID) that changes its affinity for SspB by over 50-fold with light stimulation. A crystal structure of iLID shows a critical interaction between the surface of the LOV2 domain and a phenylalanine engineered to more tightly pin the SsrA peptide against the LOV2 domain in the dark. We demonstrate the functional utility of the switch through light-mediated subcellular localization in mammalian cell culture and reversible control of small GTPase signaling.


Assuntos
Luz , Proteínas de Plantas/metabolismo , Engenharia de Proteínas , Multimerização Proteica/efeitos da radiação , Transdução de Sinais/efeitos da radiação , Sequência de Aminoácidos , Avena , Técnicas de Visualização da Superfície Celular , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , GTP Fosfo-Hidrolases/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas de Plantas/química , Estrutura Terciária de Proteína , Transporte Proteico/efeitos da radiação , Frações Subcelulares/metabolismo
19.
Biophys J ; 113(1): 185-194, 2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28700916

RESUMO

During the proliferative phase of cutaneous wound healing, dermal fibroblasts are recruited into the clotted wound by a concentration gradient of platelet-derived growth factor (PDGF), together with other spatial cues. Despite the importance of this chemotactic process, the mechanisms controlling the directed migration of slow-moving mesenchymal cells such as fibroblasts are not well understood. Here, we develop and analyze a reaction-diffusion model of phospholipase C/protein kinase C (PKC) signaling, which was recently identified as a requisite PDGF-gradient-sensing pathway, with the goal of identifying mechanisms that can amplify its sensitivity in the shallow external gradients typical of chemotaxis experiments. We show that phosphorylation of myristoylated alanine-rich C kinase substrate by membrane-localized PKC constitutes a positive feedback that is sufficient for local pathway amplification. The release of phosphorylated myristoylated alanine-rich C kinase substrate and its subsequent diffusion and dephosphorylation in the cytosol also serves to suppress the pathway in down-gradient regions of the cell. By itself, this mechanism only weakly amplifies signaling in a shallow PDGF gradient, but it synergizes with other feedback mechanisms to enhance amplification. This model offers a framework for a mechanistic understanding of phospholipase C/PKC signaling in chemotactic gradient sensing and can guide the design of experiments to assess the roles of putative feedback loops.


Assuntos
Quimiotaxia/fisiologia , Fibroblastos/enzimologia , Modelos Biológicos , Proteína Quinase C/metabolismo , Fosfolipases Tipo C/metabolismo , Animais , Membrana Celular/metabolismo , Difusão , Retroalimentação Fisiológica/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada , Fosforilação , Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais/fisiologia
20.
Biochemistry ; 55(37): 5264-71, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27529180

RESUMO

Inducible dimers are powerful tools for controlling biological processes through colocalizing signaling molecules. To be effective, an inducible system should have a dissociation constant in the "off" state that is greater (i.e., weaker affinity) than the concentrations of the molecules that are being controlled, and in the "on" state a dissociation constant that is less (i.e., stronger affinity) than the relevant protein concentrations. Here, we reengineer the interaction between the light inducible dimer, iLID, and its binding partner SspB, to better control proteins present at high effective concentrations (5-100 µM). iLID contains a light-oxygen-voltage (LOV) domain that undergoes a conformational change upon activation with blue light and exposes a peptide motif, ssrA, that binds to SspB. The new variant of the dimer system contains a single SspB point mutation (A58V), and displays a 42-fold change in binding affinity when activated with blue light (from 3 ± 2 µM to 125 ± 40 µM) and allows for light-activated colocalization of transmembrane proteins in neurons, where a higher affinity switch (0.8-47 µM) was less effective because more colocalization was seen in the dark. Additionally, with a point mutation in the LOV domain (N414L), we lengthened the reversion half-life of iLID. This expanded suite of light induced dimers increases the variety of cellular pathways that can be targeted with light.


Assuntos
Luz , Proteínas de Membrana/metabolismo , Animais , Células Cultivadas , Dimerização , Cinética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA