Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nat Chem Biol ; 18(8): 894-903, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35681029

RESUMO

Membrane proteins, including ion channels, receptors and transporters, are often composed of multiple subunits and can form large complexes. Their specific composition in native tissues is difficult to determine and remains largely unknown. In this study, we developed a method for determining the subunit composition of endogenous cell surface protein complexes from isolated native tissues. Our method relies on nanobody-based sensors, which enable proximity detection between subunits in time-resolved Förster resonance energy transfer (FRET) measurements. Additionally, given conformation-specific nanobodies, the activation of these complexes can be recorded in native brain tissue. Applied to the metabotropic glutamate receptors in different brain regions, this approach revealed the clear existence of functional metabotropic glutamate (mGlu)2-mGlu4 heterodimers in addition to mGlu2 and mGlu4 homodimers. Strikingly, the mGlu4 subunits appear to be mainly heterodimers in the brain. Overall, these versatile biosensors can determine the presence and activity of endogenous membrane proteins in native tissues with high fidelity and convenience.


Assuntos
Ácido Glutâmico , Receptores de Glutamato Metabotrópico , Encéfalo/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de Glutamato Metabotrópico/metabolismo
2.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27233938

RESUMO

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Assuntos
Diacilglicerol Quinase/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Neurônios/enzimologia , Idoso , Animais , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Diacilglicerol Quinase/genética , Diglicerídeos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/enzimologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurônios/metabolismo , Transdução de Sinais
3.
Addict Biol ; 22(5): 1205-1217, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27126842

RESUMO

Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse.


Assuntos
Tonsila do Cerebelo/metabolismo , Analgésicos Opioides/efeitos adversos , Comportamento Animal , Agonistas de Receptores de Canabinoides/efeitos adversos , Depressores do Sistema Nervoso Central/efeitos adversos , Inibidores da Captação de Dopamina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Comportamento Social , Síndrome de Abstinência a Substâncias/fisiopatologia , Abstinência de Álcool , Animais , Ansiedade/psicologia , Encéfalo/metabolismo , Cocaína/efeitos adversos , Dronabinol/efeitos adversos , Comportamento de Procura de Droga , Emoções , Etanol/efeitos adversos , Masculino , Camundongos , Morfina/efeitos adversos , Motivação , Nicotina/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Estereotipado/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
4.
Biol Psychiatry ; 95(2): 123-135, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207936

RESUMO

BACKGROUND: Deficient social interactions are a hallmark of major neuropsychiatric disorders, and accumulating evidence points to altered social reward and motivation as key underlying mechanisms of these pathologies. In the present study, we further explored the role of the balance of activity between D1 and D2 receptor-expressing striatal projection neurons (D1R- and D2R-SPNs) in the control of social behavior, challenging the hypothesis that excessive D2R-SPN activity, rather than deficient D1R-SPN activity, compromises social behavior. METHODS: We selectively ablated D1R- and D2R-SPNs using an inducible diphtheria toxin receptor-mediated cell targeting strategy and assessed social behavior as well as repetitive/perseverative behavior, motor function, and anxiety levels. We tested the effects of optogenetic stimulation of D2R-SPNs in the nucleus accumbens (NAc) and pharmacological compounds repressing D2R-SPN. RESULTS: Targeted deletion of D1R-SPNs in the NAc blunted social behavior in mice, facilitated motor skill learning, and increased anxiety levels. These behaviors were normalized by pharmacological inhibition of D2R-SPN, which also repressed transcription in the efferent nucleus, the ventral pallidum. Ablation of D1R-SPNs in the dorsal striatum had no impact on social behavior but impaired motor skill learning and decreased anxiety levels. Deletion of D2R-SPNs in the NAc produced motor stereotypies but facilitated social behavior and impaired motor skill learning. We mimicked excessive D2R-SPN activity by optically stimulating D2R-SPNs in the NAc and observed a severe deficit in social interaction that was prevented by D2R-SPN pharmacological inhibition. CONCLUSIONS: Repressing D2R-SPN activity may represent a promising therapeutic strategy to relieve social deficits in neuropsychiatric disorders.


Assuntos
Neurônios , Núcleo Accumbens , Camundongos , Animais , Neurônios/fisiologia , Comportamento Social , Motivação , Aprendizagem , Receptores de Dopamina D1/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-39020142

RESUMO

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behaviours. Multiple studies have highlighted the potential of oxytocin (OT) to ameliorate behavioural abnormalities in animal models and subjects with ASD. Clinical trials, however, yielded disappointing results. Our study aimed at assessing the behavioural effects of different regimens of OT administration in the Oprm1 null mouse model of ASD. We assessed the effects of intranasal OT injected once at different doses (0.15, 0.3, and 0.6 IU) and time points (5, 15, and 30 min) following administration, or chronically, on ASD-related behaviours (social interaction and preference, stereotypies, anxiety, nociception) in Oprm1+/+ and Oprm1-/- mice. We then tested whether pairing intranasal OT injection with social experience would influence its outcome on ASD-like symptoms, and measured gene expression in the reward/social circuit. Acute intranasal OT at 0.3 IU improved social behaviour in Oprm1-/- mice 5 min after administration, with limited effects on non-social behaviours. Chronic (8-17 days) OT maintained rescuing effects in Oprm1 null mice but was deleterious in wild-type mice. Finally, improvements in the social behaviour of Oprm1-/- mice were greater and longer lasting when OT was administered in a social context. Under these conditions, the expression of OT and vasopressin receptor genes, as well as marker genes of striatal projection neurons, was suppressed. We detected no sex difference in OT effects. Our results highlight the importance of considering dosage and social context when evaluating the effects of OT treatment in ASD.

6.
Addict Biol ; 17(1): 1-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21955143

RESUMO

Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.


Assuntos
Comportamento Aditivo/fisiopatologia , Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Aditivo/genética , Análise por Conglomerados , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Etanol/administração & dosagem , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Nicotina/administração & dosagem , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/genética , Síndrome de Abstinência a Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Temperança , Tempo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
7.
Neuropsychopharmacology ; 47(9): 1680-1692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35418620

RESUMO

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behavior. To date, no pharmacological treatment has been approved that ameliorates social behavior in patients with ASD. Based on the excitation/inhibition imbalance theory of autism, we hypothesized that bromide ions, long used as an antiepileptic medication, could relieve core symptoms of ASD. We evaluated the effects of chronic sodium bromide (NaBr) administration on autistic-like symptoms in three genetic mouse models of autism: Oprm1-/-, Fmr1-/- and Shank3Δex13-16-/- mice. We showed that chronic NaBr treatment relieved autistic-like behaviors in these three models. In Oprm1-/- mice, these beneficial effects were superior to those of chronic bumetanide administration. At transcriptional level, chronic NaBr in Oprm1 null mice was associated with increased expression of genes coding for chloride ions transporters, GABAA receptor subunits, oxytocin and mGlu4 receptor. Lastly, we uncovered synergistic alleviating effects of chronic NaBr and a positive allosteric modulator (PAM) of mGlu4 receptor on autistic-like behavior in Oprm1-/- mice. We evidenced in heterologous cells that bromide ions behave as PAMs of mGlu4, providing a molecular mechanism for such synergy. Our data reveal the therapeutic potential of bromide ions, alone or in combination with a PAM of mGlu4 receptor, for the treatment of ASDs.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno Autístico/tratamento farmacológico , Comportamento Animal , Brometos/farmacologia , Brometos/uso terapêutico , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/farmacologia , Proteínas dos Microfilamentos/uso terapêutico , Proteínas do Tecido Nervoso/genética , Receptores de GABA-A , Comportamento Social , Compostos de Sódio
8.
Addict Biol ; 16(4): 615-9, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21392173

RESUMO

Alcoholism is characterized by a progressive loss of control over ethanol intake. The purpose of this study was to identify transcriptional changes selectively associated with excessive ethanol drinking in dependent mice, as opposed to non-dependent mice maintaining a stable voluntary consumption or mice solely undergoing forced intoxication. We measured expression levels of 106 candidate genes in the extended amygdala, a key brain structure for the development of drug addiction. Cluster analysis identified 17 and 15 genes selectively induced or repressed, respectively, under conditions of excessive drinking. These genes belong to signaling pathways involved in neurotransmission and transcriptional regulation.


Assuntos
Intoxicação Alcoólica/genética , Intoxicação Alcoólica/fisiopatologia , Alcoolismo/genética , Alcoolismo/fisiopatologia , Tonsila do Cerebelo/fisiopatologia , Regulação da Expressão Gênica/fisiologia , Transcrição Gênica/genética , Animais , Estudos de Associação Genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Opioides mu/genética , Receptores Opioides mu/fisiologia , Transdução de Sinais/genética , Transmissão Sináptica/genética
9.
Neuropsychopharmacology ; 46(7): 1373-1385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33349673

RESUMO

Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.


Assuntos
Cocaína , Receptores de Glutamato Metabotrópico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Núcleo Accumbens
10.
Microbiome ; 9(1): 157, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238386

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS: Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS: The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Microbioma Gastrointestinal , Animais , Transtorno Autístico/etiologia , Cresóis , Transplante de Microbiota Fecal , Humanos , Camundongos
11.
Nat Neurosci ; 8(12): 1735-41, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299503

RESUMO

Prolactin-releasing peptide (PrRP) and its receptor G protein-coupled receptor 10 (GPR10) are expressed in brain areas involved in the processing of nociceptive signals. We investigated the role of this new neuropeptidergic system in GPR10-knockout mice. These mice had higher nociceptive thresholds and stronger stress-induced analgesia than wild-type mice, differences that were suppressed by naloxone treatment. In addition, potentiation of morphine-induced antinociception and reduction of morphine tolerance were observed in mutants. Intracerebroventricular administration of PrRP in wild-type mice promoted hyperalgesia and reversed morphine-induced antinociception. PrRP administration had no effect on GPR10-mutant mice, showing that its effects are mediated by GPR10. Anti-opioid effects of neuropeptide FF were found to require a functional PrRP-GPR10 system. Finally, GPR10 deficiency enhanced the acquisition of morphine-induced conditioned place preference and decreased the severity of naloxone-precipitated morphine withdrawal syndrome. Altogether, our data identify the PrRP-GPR10 system as a new and potent negative modulator of the opioid system.


Assuntos
Encéfalo/metabolismo , Hormônios Hipotalâmicos/metabolismo , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Peptídeos Opioides/metabolismo , Dor/metabolismo , Receptores Acoplados a Proteínas G/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Sinergismo Farmacológico , Tolerância a Medicamentos/fisiologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatologia , Hormônios Hipotalâmicos/farmacologia , Injeções Intraventriculares , Camundongos , Camundongos Knockout , Morfina/agonistas , Antagonistas de Entorpecentes/farmacologia , Neuropeptídeos/farmacologia , Dor/induzido quimicamente , Dor/fisiopatologia , Limiar da Dor/efeitos dos fármacos , Limiar da Dor/fisiologia , Hormônio Liberador de Prolactina , Receptores Acoplados a Proteínas G/genética , Síndrome de Abstinência a Substâncias/genética , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/fisiopatologia
12.
Mol Metab ; 21: 22-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30686771

RESUMO

OBJECTIVES: The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. METHODS: Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased ß-adrenergic-driven lipolysis and lipid utilization. RESULTS: Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. CONCLUSIONS: Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Glucose/metabolismo , Lipólise , Adipócitos/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/patologia , Técnicas de Inativação de Genes , Glucose/análise , Homeostase , Humanos , Insulina/análise , Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/metabolismo
13.
Br J Pharmacol ; 175(14): 2750-2769, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369738

RESUMO

The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the µ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, µ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the µ opioid receptor balance model, to account for the contribution of µ receptors to the subtle regulation of social behaviour. Interestingly, µ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered µ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.


Assuntos
Transtorno do Espectro Autista/metabolismo , Receptores Opioides mu/metabolismo , Recompensa , Comportamento Social , Animais , Humanos , Receptores Opioides mu/genética
14.
Transl Psychiatry ; 8(1): 197, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242222

RESUMO

The mu opioid receptor (MOR) plays a critical role in modulating social behavior in humans and animals. Accordingly, MOR null mice display severe alterations in their social repertoire as well as multiple other behavioral deficits, recapitulating core and secondary symptoms of autism spectrum disorder (ASD). Such behavioral profile suggests that MOR dysfunction, and beyond this, altered reward processes may contribute to ASD etiopathology. Interestingly, the only treatments that proved efficacy in relieving core symptoms of ASD, early behavioral intervention programs, rely principally on positive reinforcement to ameliorate behavior. The neurobiological underpinnings of their beneficial effects, however, remain poorly understood. Here we back-translated applied behavior analysis (ABA)-based behavioral interventions to mice lacking the MOR (Oprm1-/-), as a model of autism with blunted reward processing. By associating a positive reinforcement, palatable food reward, to daily encounter with a wild-type congener, we were able to rescue durably social interaction and preference in Oprm1-/- mice. Along with behavioral improvements, the expression of marker genes of neuronal activity and plasticity as well as genes of the oxytocin/vasopressin system were remarkably normalized in the reward/social circuitry. Our study provides further evidence for a critical involvement of reward processes in driving social behavior and opens new perspectives regarding therapeutic intervention in ASD.


Assuntos
Transtorno do Espectro Autista/terapia , Terapia Comportamental , Comportamento Animal , Receptores Opioides mu/genética , Recompensa , Comportamento Social , Animais , Análise do Comportamento Aplicada , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética
15.
J Med Chem ; 61(19): 8670-8692, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30199637

RESUMO

Oxytocin (OT) and its receptor (OT-R) are implicated in the etiology of autism spectrum disorders (ASD), and OT-R is a potential target for therapeutic intervention. Very few nonpeptide oxytocin agonists have currently been reported. Their molecular and in vivo pharmacology remain to be clarified, and none of them has been shown to be efficient in improving social interaction in animal models relevant to ASD. In an attempt to rationalize the design of centrally active nonpeptide full agonists, we studied in a systematic way the structural determinants of the affinity and efficacy of representative ligands of the V1a and V2 vasopressin receptor subtypes (V1a-R and V2-R) and of the oxytocin receptor. Our results confirm the subtlety of the structure-affinity and structure-efficacy relationships around vasopressin/oxytocin receptor ligands and lead however to the first nonpeptide OT receptor agonist active in a mouse model of ASD after peripheral ip administration.


Assuntos
Transtorno Autístico/tratamento farmacológico , Modelos Animais de Doenças , Relações Interpessoais , Psicotrópicos/farmacologia , Pirazóis/farmacologia , Pirrolidinas/farmacologia , Receptores Opioides mu/fisiologia , Receptores de Ocitocina/administração & dosagem , Receptores de Ocitocina/agonistas , Animais , Transtorno Autístico/psicologia , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Knockout , Psicotrópicos/química , Pirazóis/uso terapêutico , Pirrolidinas/uso terapêutico , Receptores de Ocitocina/uso terapêutico , Relação Estrutura-Atividade
16.
J Stud Alcohol Drugs ; 77(5): 692-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27588526

RESUMO

Quitting drug abuse represents a true challenge for addicted individuals because of the highly persistent vulnerability to relapse. Identifying long-lasting, drug-induced alterations in the brain-including at the transcriptome level-that underlie such vulnerability appears invaluable to improve relapse prevention. Despite substantial technological developments and research effort, however, the picture of drug-induced adaptations provided by high-throughput transcriptomics remains frustratingly partial, notably because of methodological issues. Major advances were made, however, regarding the time course and specificity of long-term transcriptional consequences of drug exposure as well as the recruitment of small, noncoding mRNAs (or miRNAs [microRNAs]) that were previously undetectable. Most importantly, high-throughput studies have benefited from systems biology approaches and shifted their interest toward regulations within functional gene networks rather than individual changes. Such network-based gene discovery approaches have proven informative to delineate the physiological processes, cellular signaling pathways, and neuronal populations altered by drug exposure. Provided the high-throughput effort will be pursued, together with the development of adapted bioinformatics tools, addiction transcriptomics should progressively integrate data across multiple scales (from epigenome to protein), allowing a better understanding of the genetics of drug abuse and opening novel therapeutic trails.


Assuntos
Comportamento Aditivo/genética , Compreensão , Sinais (Psicologia) , Transtornos Relacionados ao Uso de Substâncias/genética , Transcrição Gênica/genética , Adaptação Fisiológica/genética , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/terapia , Encéfalo/fisiologia , Biologia Computacional/tendências , Humanos , Recidiva , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/terapia , Fatores de Tempo
17.
Biol Psychiatry ; 79(11): 917-27, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188600

RESUMO

BACKGROUND: GPR88 is an orphan G protein coupled receptor highly enriched in the striatum, and previous studies have focused on GPR88 function in striatal physiology. The receptor is also expressed in other brain areas, and here we examined whether GPR88 function extends beyond striatal-mediated responses. METHODS: We created Gpr88 knockout mice and examined both striatal and extrastriatal regions at molecular and cellular levels. We also tested striatum-, hippocampus-, and amygdala-dependent behaviors in Gpr88(-/-) mice using extensive behavioral testing. RESULTS: We found increased G protein coupling for delta opioid receptor (DOR) and mu opioid, but not other Gi/o coupled receptors, in the striatum of Gpr88 knockout mice. We also found modifications in gene transcription, dopamine and serotonin contents, and dendritic morphology inside and outside the striatum. Behavioral testing confirmed striatal deficits (hyperactivity, stereotypies, motor impairment in rotarod). In addition, mutant mice performed better in spatial tasks dependent on hippocampus (Y-maze, novel object recognition, dual solution cross-maze) and also showed markedly reduced levels of anxiety (elevated plus maze, marble burying, novelty suppressed feeding). Strikingly, chronic blockade of DOR using naltrindole partially improved motor coordination and normalized spatial navigation and anxiety of Gpr88(-/-) mice. CONCLUSIONS: We demonstrate that GPR88 is implicated in a large repertoire of behavioral responses that engage motor activity, spatial learning, and emotional processing. Our data also reveal functional antagonism between GPR88 and DOR activities in vivo. The therapeutic potential of GPR88 therefore extends to cognitive and anxiety disorders, possibly in interaction with other receptor systems.


Assuntos
Ansiedade/metabolismo , Transtornos dos Movimentos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Aprendizagem Espacial/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/patologia , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/patologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Serotonina/metabolismo , Aprendizagem Espacial/efeitos dos fármacos
18.
J Comp Neurol ; 524(14): 2776-802, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-26918661

RESUMO

GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Núcleo Celular/metabolismo , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Receptores Acoplados a Proteínas G/biossíntese , Fatores Etários , Animais , Animais Recém-Nascidos , Córtex Cerebral/química , Citoplasma/química , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Wistar , Receptores Acoplados a Proteínas G/análise , Adulto Jovem
19.
J Med Chem ; 47(7): 1864-7, 2004 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15027881

RESUMO

The structure-activity requirements of the ORL1 antagonist Ac-Arg-D-Cha-Qaa-D-Arg-D-p-ClPhe-NH(2) 4 were investigated by varying the position, structure, and charge of the Arg residues. Attempts to abridge the peptide by removal of the Arg, D-Cha, and D-p-ClPhe residues abolished affinity for the ORL1 receptor, whereas deletion of the acetamido N-terminus maintained receptor affinity and selectivity. This series of analogues has provided an improved potent and selective ORL1 receptor antagonist, Ac-Cit-D-Cha-Qaa-D-Arg-D-p-ClPhe-NH(2).


Assuntos
Antagonistas de Entorpecentes , Animais , Ligação Competitiva , Células CHO , Células COS , Cricetinae , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Humanos , Ensaio Radioligante , Receptores Opioides , Relação Estrutura-Atividade , Receptor de Nociceptina
20.
J Med Chem ; 45(24): 5353-7, 2002 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-12431062

RESUMO

Azacycloalkane turn mimics 6-9 were used to explore the relationship between conformation and biological activity of peptide ligands to the opioid receptor-like (ORL1) receptor. Three azabicyclo[x.y.0]alkane amino acids and a 5-tBuPro type VI beta-turn mimic were introduced into peptides 10-13 by solid-phase synthesis on MBHA resin. Biological examination of peptides 10-13 showed two new antagonists (10 and 12) exhibiting increased selectivity for the ORL1 receptor.


Assuntos
Aminoácidos/síntese química , Compostos Aza/síntese química , Antagonistas de Entorpecentes , Peptídeos/síntese química , Aminoácidos/química , Aminoácidos/farmacologia , Animais , Compostos Aza/química , Compostos Aza/farmacologia , Células CHO , Células COS , Cricetinae , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Ligantes , Peptídeos/química , Peptídeos/farmacologia , Estrutura Secundária de Proteína , Ensaio Radioligante , Receptores Opioides/agonistas , Relação Estrutura-Atividade , Receptor de Nociceptina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA