Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Biomacromolecules ; 25(7): 4492-4509, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38910355

RESUMO

A major shortcoming associated with the application of enzymes in drug synergism originates from the lack of site-specific, multifunctional nanomedicine. This study introduces catalytic nanocompartments (CNCs) made of a mixture of PDMS-b-PMOXA diblock copolymers, decorated with glycooligomer tethers comprising eight mannose-containing repeating units and coencapsulating two enzymes, providing multifunctionality by their in situ parallel reactions. Beta-glucuronidase (GUS) serves for local reactivation of the drug hymecromone, while glucose oxidase (GOx) induces cell starvation through glucose depletion and generation of the cytotoxic H2O2. The insertion of the pore-forming peptide, melittin, facilitates diffusion of substrates and products through the membranes. Increased cell-specific internalization of the CNCs results in a substantial decrease in HepG2 cell viability after 24 h, attributed to simultaneous production of hymecromone and H2O2. Such parallel enzymatic reactions taking place in nanocompartments pave the way to achieve efficient combinatorial cancer therapy by enabling localized drug production along with reactive oxygen species (ROS) elevation.


Assuntos
Glucose Oxidase , Peróxido de Hidrogênio , Humanos , Glucose Oxidase/química , Glucose Oxidase/metabolismo , Células Hep G2 , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/metabolismo , Glucuronidase/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Catálise , Espécies Reativas de Oxigênio/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo
2.
Biomacromolecules ; 24(4): 1924-1933, 2023 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-36976928

RESUMO

Glycopolymers are potent candidates for biomedical applications by exploiting multivalent carbohydrate-lectin interactions. Owing to their specific recognition capabilities, glycosylated polymers can be utilized for targeted drug delivery to certain cell types bearing the corresponding lectin receptors. A fundamental challenge in glycopolymer research, however, is the specificity of recognition to receptors binding to the same sugar unit (e.g., mannose). Variation of polymer backbone chirality has emerged as an effective method to distinguish between lectins on a molecular level. Herein, we present a facile route toward producing glycopolymers with a defined tacticity based on a step-growth polymerization technique using click chemistry. A set of polymers have been fabricated and further functionalized with mannose moieties to enable lectin binding to receptors relevant to the immune system (mannose-binding lectin, dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin, and dendritic and thymic epithelial cell-205). Surface plasmon resonance spectrometry was employed to determine the kinetic parameters of the step-growth glycopolymers. The results highlight the importance of structural complexity in advancing glycopolymer synthesis, yet multivalency remains a main driving force in lectin recognition.


Assuntos
Lectinas , Manose , Lectinas/química , Manose/química , Carboidratos , Ressonância de Plasmônio de Superfície , Polímeros/química
3.
Mol Ther ; 30(5): 2005-2023, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35038579

RESUMO

Despite rapid development and deployment of vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), clinically relevant modalities to curb the pandemic by directly attacking the virus on a genetic level remain highly desirable and are urgently needed. Here we comprehensively illustrate the capacity of adeno-associated virus (AAV) vectors co-expressing a cocktail of three short hairpin RNAs (shRNAs; RNAi triggers) directed against the SARS-CoV-2 RdRp and N genes as versatile and effective antiviral agents. In cultured monkey cells and human gut organoids, our most potent vector, SAVIOR (SARS virus repressor), suppressed SARS-CoV-2 infection to background levels. Strikingly, in control experiments using single shRNAs, multiple SARS-CoV-2 escape mutants quickly emerged from infected cells within 24-48 h. Importantly, such adverse viral adaptation was fully prevented with the triple-shRNA AAV vector even during long-term cultivation. In addition, AAV-SAVIOR efficiently purged SARS-CoV-2 in a new model of chronically infected human intestinal cells. Finally, intranasal AAV-SAVIOR delivery using an AAV9 capsid moderately diminished viral loads and/or alleviated disease symptoms in hACE2-transgenic or wild-type mice infected with human or mouse SARS-CoV-2 strains, respectively. Our combinatorial and customizable AAV/RNAi vector complements ongoing global efforts to control the coronavirus disease 2019 (COVID-19) pandemic and holds great potential for clinical translation as an original and flexible preventive or therapeutic antiviral measure.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Antivirais , COVID-19/prevenção & controle , Dependovirus , Camundongos , Pandemias , Interferência de RNA , RNA Interferente Pequeno/genética , SARS-CoV-2/genética
4.
Nucleic Acids Res ; 49(13): 7665-7679, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34157102

RESUMO

Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3'CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1's accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.


Assuntos
Elongação Traducional da Cadeia Peptídica/efeitos dos fármacos , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Microscopia Crioeletrônica , Células HeLa , Humanos , Degradação do RNAm Mediada por Códon sem Sentido/efeitos dos fármacos , Nucleosídeos/química , Nucleosídeos/farmacologia , Fatores de Terminação de Peptídeos/metabolismo , Peptídeos/metabolismo , Inibidores da Síntese de Proteínas/química , RNA Mensageiro/metabolismo , RNA de Transferência/química , RNA de Transferência/metabolismo , Subunidades Ribossômicas Maiores de Eucariotos/química , Subunidades Ribossômicas Maiores de Eucariotos/efeitos dos fármacos , Subunidades Ribossômicas Maiores de Eucariotos/metabolismo , Ribossomos/metabolismo
5.
Biomacromolecules ; 23(3): 543-575, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-34982551

RESUMO

Carbohydrates bearing a distinct complexity use a special code (Glycocode) to communicate with carbohydrate-binding proteins at a high precision to manipulate biological activities in complex biological environments. The level of complexity in carbohydrate-containing macromolecules controls the amount and specificity of information that can be stored in biomacromolecules. Therefore, a better understanding of the glycocode is crucial to open new areas of biomedical applications by controlling or manipulating the interaction between immune cells and pathogens in terms of trafficking and signaling, which would become a powerful tool to prevent infectious diseases. Even though a certain level of progress has been achieved over the past decade, synthetic glycomacromolecules are still lagging far behind naturally existing glycans in terms of complexity and precision because of insufficient and inefficient synthetic techniques. Currently, specific targeting at a cellular level using synthetic glycomacromolecules is still challenging. It is obvious that multidisciplinary collaborations are essential between different specialized disciplines to enhance the carbohydrate receptor-targeting paradigm for new biomedical applications. In this Perspective, recent developments in the synthesis of sophisticated glycomacromolecules are highlighted, and their biological and biomedical applications are also discussed in detail.


Assuntos
Carboidratos , Polissacarídeos , Carboidratos/química , Glicoproteínas , Substâncias Macromoleculares , Polissacarídeos/química
6.
Phys Rev Lett ; 124(2): 023602, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-32004012

RESUMO

Solid-state quantum emitters that couple coherent optical transitions to long-lived spin qubits are essential for quantum networks. Here we report on the spin and optical properties of individual tin-vacancy (SnV) centers in diamond nanostructures. Through cryogenic magneto-optical and spin spectroscopy, we verify the inversion-symmetric electronic structure of the SnV, identify spin-conserving and spin-flipping transitions, characterize transition linewidths, measure electron spin lifetimes, and evaluate the spin dephasing time. We find that the optical transitions are consistent with the radiative lifetime limit even in nanofabricated structures. The spin lifetime is phonon limited with an exponential temperature scaling leading to T_{1}>10 ms, and the coherence time, T_{2}^{*} reaches the nuclear spin-bath limit upon cooling to 2.9 K. These spin properties exceed those of other inversion-symmetric color centers for which similar values require millikelvin temperatures. With a combination of coherent optical transitions and long spin coherence without dilution refrigeration, the SnV is a promising candidate for feasable and scalable quantum networking applications.

7.
Angew Chem Int Ed Engl ; 59(43): 19352-19358, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32720745

RESUMO

We present a strategy to achieve highly cooperative photoswitching, where the initial switching event greatly facilitates subsequent switching of the neighboring unit. By linking donor/acceptor substituted dihydropyrenes via suitable π-conjugated bridges, the quantum yield of the second photochemical ring-opening process could be enhanced by more than two orders of magnitude as compared to the first ring-opening. As a result, the intermediate mixed switching state is not detected during photoisomerization although it is formed during the thermal back reaction. Comparing the switching behavior of various dimers, both experimentally and computationally, helped to unravel the crucial role of the bridging moiety connecting both photochromic units. The presented dihydropyrene dimer serves as model system for longer cooperative switching chains, which, in principle, should enable efficient and directional transfer of information along a molecularly defined path. Moreover, our concept allows to enhance the photosensitivity in oligomeric and polymeric systems and materials thereof.

8.
Phys Rev Lett ; 122(6): 063601, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30822048

RESUMO

Strong light-matter interactions are critical for quantum technologies based on light, such as memories or nonlinear interactions. Solid state materials will be particularly important for such applications due to the relative ease of fabrication of components. Silicon vacancy centers (SiV^{-}) in diamond feature especially narrow inhomogeneous spectral lines, which are rare in solid materials. Here, we demonstrate resonant coherent manipulation, stimulated Raman adiabatic passage, and strong light-matter interaction via the four-wave mixing of a weak signal field in an ensemble of SiV^{-} centers.

9.
Phys Rev Lett ; 122(11): 110601, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30951320

RESUMO

The ability of the internal states of a working fluid to be in a coherent superposition is one of the basic properties of a quantum heat engine. It was recently predicted that in the regime of small engine action, this ability can enable a quantum heat engine to produce more power than any equivalent classical heat engine. It was also predicted that in the same regime, the presence of such internal coherence causes different types of quantum heat engines to become thermodynamically equivalent. Here, we use an ensemble of nitrogen vacancy centers in diamond for implementing two types of quantum heat engines, and experimentally observe both effects.

10.
Phys Rev Lett ; 121(7): 077202, 2018 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-30169092

RESUMO

Based on large-scale quantum Monte Carlo simulations, we examine the dynamical spin structure factor of the Balents-Fisher-Girvin kagome lattice spin-1/2 model, which is known to harbor an extended Z_{2} quantum spin liquid phase. We use a correlation-matrix sampling scheme combined with a stochastic analytic continuation method to resolve the spectral functions of this anisotropic quantum spin model with a three-site unit cell. Based on this approach, we monitor the spin dynamics throughout the phase diagram of this model, from the XY-ferromagnetic region to the Z_{2} quantum spin liquid regime. In the latter phase, we identify a gapped two-spinon continuum in the transverse scattering channel, which is faithfully modeled by an effective spinon tight-binding model. Within the longitudinal channel, we identify gapped vison excitations and exhibit indications for the translational symmetry fractionalization of the visons via an enhanced spectral periodicity.

11.
Phys Rev Lett ; 120(5): 053603, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481176

RESUMO

The silicon-vacancy center in diamond offers attractive opportunities in quantum photonics due to its favorable optical properties and optically addressable electronic spin. Here, we combine both to achieve all-optical coherent control of its spin states. We utilize this method to explore spin dephasing effects in an impurity-rich sample beyond the limit of phonon-induced decoherence: Employing Ramsey and Hahn-echo techniques at temperatures down to 40 mK we identify resonant coupling to a substitutional nitrogen spin bath as limiting decoherence source for the electron spin.

12.
J Biol Chem ; 2015 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-26048988

RESUMO

The duration and strength of the dopaminergic signal is regulated by the dopamine transporter (DAT). Drug addiction, neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine (AMPH) induced DAT-meditated DA efflux and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT/α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells, and that AMPH-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases DA efflux and enhances DAT localization in cholesterol rich membrane microdomains.

13.
J Biol Chem ; 290(49): 29542-54, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26442590

RESUMO

The duration and strength of the dopaminergic signal are regulated by the dopamine transporter (DAT). Drug addiction and neurodegenerative and neuropsychiatric diseases have all been associated with altered DAT activity. The membrane localization and the activity of DAT are regulated by a number of intracellular proteins. α-Synuclein, a protein partner of DAT, is implicated in neurodegenerative disease and drug addiction. Little is known about the regulatory mechanisms of the interaction between DAT and α-synuclein, the cellular location of this interaction, and the functional consequences of this interaction on the basal, amphetamine-induced DAT-mediated dopamine efflux, and membrane microdomain distribution of the transporter. Here, we found that the majority of DAT·α-synuclein protein complexes are found at the plasma membrane of dopaminergic neurons or mammalian cells and that the amphetamine-mediated increase in DAT activity enhances the association of these proteins at the plasma membrane. Further examination of the interaction of DAT and α-synuclein revealed a transient interaction between these two proteins at the plasma membrane. Additionally, we found DAT-induced membrane depolarization enhances plasma membrane localization of α-synuclein, which in turn increases dopamine efflux and enhances DAT localization in cholesterol-rich membrane microdomains.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , alfa-Sinucleína/metabolismo , Anfetamina/metabolismo , Animais , Biotinilação , Encéfalo/metabolismo , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Neurônios Dopaminérgicos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Microdomínios da Membrana/metabolismo , Doenças Neurodegenerativas/metabolismo , Transmissão Sináptica , Sinucleínas/metabolismo
14.
Opt Express ; 24(19): 22250-60, 2016 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-27661959

RESUMO

We present experimental results on quantum frequency down-conversion of indistinguishable single photons emitted by an InAs/GaAs quantum dot at 904 nm to the telecom C-band at 1557 nm. Hong-Ou-Mandel (HOM) interference measurements are shown prior to and after the down-conversion step. We perform Monte-Carlo simulations of the HOM experiments taking into account the time delays of the different interferometers used and the signal-to-background ratio and further estimate the impact of spectral diffusion on the degree of indistinguishability. By that we conclude that the down-conversion step does not introduce any loss of HOM interference visibility. A noise-free conversion-process along with a high conversion-efficiency (> 30 %) emphasize that our scheme is a promising candidate for an efficient source of indistinguishable single photons at telecom wavelengths.

15.
Anal Biochem ; 509: 124-129, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27325500

RESUMO

Firefly luciferase-based reporter gene assays are the most commonly used assays to investigate the transcriptional regulation of gene expression. However, direct interaction of tested compounds with the firefly luciferase leading to altered enzymatic activity may lead to misinterpretation of experimental data. When investigating the proteasome inhibitors bortezomib, carfilzomib, and ixazomib, we observed increased luminescence for bortezomib and ixazomib, but not for carfilzomib, in a pregnane-X-receptor (PXR) reporter gene assay, which was inconsistent with the mRNA expression levels of the main PXR target gene CYP3A4. To further scrutinize this phenomenon, we performed experiments with constitutively expressed firefly luciferase and demonstrated that the increase in cellular firefly luciferase activity is independent from PXR activation or CYP3A4 promoter. Using cell-free assays with recombinant firefly luciferase enzyme, we made the counterintuitive observation that firefly luciferase activity is inhibited by bortezomib and ixazomib in a reversible and competitive manner. This inhibition stabilizes the firefly luciferase enzyme against proteolytic degradation (e.g., toward trypsin), thereby increasing its half-life with subsequent enhancement of total cellular luminescence that eventually mimicked PXR-driven luciferase induction. These data show that particular compounds can strikingly interfere with firefly luciferase and once more illustrate the importance of careful interpretation of data obtained from luciferase-based assays.


Assuntos
Compostos de Boro/farmacologia , Bortezomib/farmacologia , Genes Reporter , Glicina/análogos & derivados , Luciferases de Vaga-Lume/metabolismo , Proteólise/efeitos dos fármacos , Linhagem Celular Tumoral , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Glicina/farmacologia , Humanos , Luciferases de Vaga-Lume/genética , Receptor de Pregnano X , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo
16.
Phys Rev Lett ; 113(26): 263601, 2014 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-25615329

RESUMO

Spin impurities in diamond can be versatile tools for a wide range of solid-state-based quantum technologies, but finding spin impurities that offer sufficient quality in both photonic and spin properties remains a challenge for this pursuit. The silicon-vacancy center has recently attracted much interest because of its spin-accessible optical transitions and the quality of its optical spectrum. Complementing these properties, spin coherence is essential for the suitability of this center as a spin-photon quantum interface. Here, we report all-optical generation of coherent superpositions of spin states in the ground state of a negatively charged silicon-vacancy center using coherent population trapping. Our measurements reveal a characteristic spin coherence time, T2*, exceeding 45 nanoseconds at 4 K. We further investigate the role of phonon-mediated coupling between orbital states as a source of irreversible decoherence. Our results indicate the feasibility of all-optical coherent control of silicon-vacancy spins using ultrafast laser pulses.

17.
Phys Rev Lett ; 112(3): 036405, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24484153

RESUMO

The negatively charged silicon vacancy (SiV) color center in diamond has recently proven its suitability for bright and stable single photon emission. However, its electronic structure so far has remained elusive. We here explore the electronic structure by exposing single SiV defects to a magnetic field where the Zeeman effect lifts the degeneracy of magnetic sublevels. The similar responses of single centers and a SiV ensemble in a low strain reference sample prove our ability to fabricate almost perfect single SiVs, revealing the true nature of the defect's electronic properties. We model the electronic states using a group-theoretical approach yielding a good agreement with the experimental observations. Furthermore, the model correctly predicts polarization measurements on single SiV centers and explains recently discovered spin selective excitation of SiV defects.

18.
Inorg Chem ; 53(2): 1135-43, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24372174

RESUMO

Chemical bonding in and electronic structure of lithium and magnesium rhodium hydrides are studied theoretically using DFT methods. For Li3RhH4 with planar complex RhH4 structural units, Crystal Orbital Hamilton Populations reveal significant Rh−Rh interactions within infinite one-dimensional ∞ 1 [RhH4] stacks in addition to strong rhodium−hydrogen bonding. These metal−metal interactions are considerably weaker in the hypothetical, heavier homologue Na3RhH4. Both compounds are small-band gap semiconductors. The electronic structures of Li3RhH6 and Na3RhH6 with rhodium surrounded octahedrally by hydrogen, on the other hand, are compatible with a classical complex hydride model according to the limiting ionic formula (M+)3[RhH6]3− without any metal−metal interaction between the 18-electron hydridorhodate complexes. In MgRhH, building blocks of the composition (RhH2)4 are formed with strong rhodium−hydrogen and significant rhodium−rhodium bonding (bond lengths of 298 pm within Rh4 squares). These units are linked together to infinite two-dimensional layers ∞ 2 [(RhH2/2)4] via common hydrogen atoms. Li3RhH4 and MgRhH are accordingly examples for border cases of chemical bonding where the classical picture of hydridometalate complexes in complex hydrides is not sufficient to properly describe the chemical bonding situation.

19.
Front Immunol ; 14: 1294565, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239352

RESUMO

Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized ß2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered ß2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.


Assuntos
Linfócitos T CD8-Positivos , Peptídeos , Humanos , Receptores de Antígenos de Linfócitos T , Antígenos HLA/metabolismo , Antígenos de Neoplasias
20.
Front Immunol ; 13: 883989, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464395

RESUMO

Presentation of tumor-specific or tumor-associated peptides by HLA class I molecules to CD8+ T cells is the foundation of epitope-centric cancer immunotherapies. While often in silico HLA binding predictions or in vitro immunogenicity assays are utilized to select candidates, mass spectrometry-based immunopeptidomics is currently the only method providing a direct proof of actual cell surface presentation. Despite much progress in the last decade, identification of such HLA-presented peptides remains challenging. Here we review typical workflows and current developments in the field of immunopeptidomics, highlight the challenges which remain to be solved and emphasize the importance of direct target validation for clinical immunotherapy development.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Epitopos , Espectrometria de Massas , Peptídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA