Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Infect Immun ; 90(4): e0004822, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311544

RESUMO

It is becoming increasingly clear that the communities of microorganisms that populate the surfaces exposed to the external environment, termed microbiota, are key players in the regulation of pathogen-host cross talk affecting the onset as well as the outcome of infectious diseases. We have performed a multicenter, prospective, observational study in which nasal and oropharyngeal swabs were collected for microbiota predicting the risk of invasive fungal infections (IFIs) in patients with hematological malignancies. Here, we demonstrate that the nasal and oropharyngeal microbiota are different, although similar characteristics differentiate high-risk from low-risk samples at both sites. Indeed, similar to previously published results on the oropharyngeal microbiota, high-risk samples in the nose were characterized by low diversity, a loss of beneficial bacteria, and an expansion of potentially pathogenic taxa, in the presence of reduced levels of tryptophan (Trp). At variance with oropharyngeal samples, however, low Trp levels were associated with defective host-derived kynurenine production, suggesting reduced tolerance mechanisms at the nasal mucosal surface. This was accompanied by reduced levels of the chemokine interleukin-8 (IL-8), likely associated with a reduced recruitment of neutrophils and impaired fungal clearance. Thus, the nasal and pharyngeal microbiomes of hematological patients provide complementary information that could improve predictive tools for the risk of IFI in hematological patients.


Assuntos
Infecções Fúngicas Invasivas , Microbiota , Bactérias , Humanos , Nariz/microbiologia , Estudos Prospectivos
2.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563625

RESUMO

Varicocele (VC) is the most common abnormality identified in men evaluated for hypofertility. Increased levels of reactive oxygen species (ROS) and reduced antioxidants concentrations are key contributors in varicocele-mediated hypofertility. Moreover, inflammation and alterations in testicular immunity negatively impact male fertility. In particular, NLRP3 inflammasome activation was hypothesized to lead to seminal inflammation, in which the levels of specific cytokines, such as IL-1ß and IL-18, are overexpressed. In this review, we described the role played by oxidative stress (OS), inflammation, and NLRP3 inflammasome activation in VC disease. The consequences of ROS overproduction in testis, including inflammation, lipid peroxidation, mitochondrial dysfunction, chromatin damage, and sperm DNA fragmentation, leading to abnormal testicular function and failed spermatogenesis, were highlighted. Finally, we described some therapeutic antioxidant strategies, with recognized beneficial effects in counteracting OS and inflammation in testes, as possible therapeutic drugs against varicocele-mediated hypofertility.


Assuntos
Varicocele , Antioxidantes/farmacologia , Humanos , Inflamassomos/metabolismo , Inflamação , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Varicocele/tratamento farmacológico
3.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804124

RESUMO

The circadian clock driven by the daily light-dark and temperature cycles of the environment regulates fundamental physiological processes and perturbations of these sophisticated mechanisms may result in pathological conditions, including cancer. While experimental evidence is building up to unravel the link between circadian rhythms and tumorigenesis, it is becoming increasingly apparent that the response to antitumor agents is similarly dependent on the circadian clock, given the dependence of each drug on the circadian regulation of cell cycle, DNA repair and apoptosis. However, the molecular mechanisms that link the circadian machinery to the action of anticancer treatments is still poorly understood, thus limiting the application of circadian rhythms-driven pharmacological therapy, or chronotherapy, in the clinical practice. Herein, we demonstrate the circadian protein period 1 (PER1) and the tumor suppressor p53 negatively cross-regulate each other's expression and activity to modulate the sensitivity of cancer cells to anticancer treatments. Specifically, PER1 physically interacts with p53 to reduce its stability and impair its transcriptional activity, while p53 represses the transcription of PER1. Functionally, we could show that PER1 reduced the sensitivity of cancer cells to drug-induced apoptosis, both in vitro and in vivo in NOD scid gamma (NSG) mice xenotransplanted with a lung cancer cell line. Therefore, our results emphasize the importance of understanding the relationship between the circadian clock and tumor regulatory proteins as the basis for the future development of cancer chronotherapy.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Proteínas Circadianas Period/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ritmo Circadiano/efeitos dos fármacos , Cisplatino/farmacologia , Docetaxel/farmacologia , Cronofarmacoterapia , Etoposídeo/farmacologia , Humanos , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445184

RESUMO

The microbiome, i.e., the communities of microbes that inhabit the surfaces exposed to the external environment, participates in the regulation of host physiology, including the immune response against pathogens. At the same time, the immune response shapes the microbiome to regulate its composition and function. How the crosstalk between the immune system and the microbiome regulates the response to fungal infection has remained relatively unexplored. We have previously shown that strict anaerobes protect from infection with the opportunistic fungus Aspergillus fumigatus by counteracting the expansion of pathogenic Proteobacteria. By resorting to immunodeficient mouse strains, we found that the lung microbiota could compensate for the lack of B and T lymphocytes in Rag1-/- mice by skewing the composition towards an increased abundance of protective anaerobes such as Clostridia and Bacteroidota. Conversely, NSG mice, with major defects in both the innate and adaptive immune response, showed an increased susceptibility to infection associated with a low abundance of strict anaerobes and the expansion of Proteobacteria. Further exploration in a murine model of chronic granulomatous disease, a primary form of immunodeficiency characterized by defective phagocyte NADPH oxidase, confirms the association of lung unbalance between anaerobes and Proteobacteria and the susceptibility to aspergillosis. Consistent changes in the lung levels of short-chain fatty acids between the different strains support the conclusion that the immune system and the microbiota are functionally intertwined during Aspergillus infection and determine the outcome of the infection.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Pulmão/microbiologia , Imunidade Adaptativa , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Ácidos Graxos Voláteis/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
5.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796686

RESUMO

The innate immune system represents the host's first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways.


Assuntos
Epigênese Genética , Inflamassomos/genética , Animais , Doença/genética , Humanos , Inflamassomos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
6.
J Biol Chem ; 291(44): 23318-23329, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27634039

RESUMO

Liver regeneration offers a distinctive opportunity to study cell proliferation in vivo Mammalian silent information regulator 1 (SIRT1), a NAD+-dependent histone deacetylase, is an important regulator of various cellular processes, including proliferation, metabolism, and circadian rhythms. In the liver, SIRT1 coordinates the circadian oscillation of clock-controlled genes, including genes that encode enzymes involved in metabolic pathways. We performed partial hepatectomy in WT and liver-specific Sirt1-deficient mice and analyzed the expression of cell cycle regulators in liver samples taken at different times during the regenerative process, by real time PCR, Western blotting analysis, and immunohistochemistry. Lipidomic analysis was performed in the same samples by MS/HPLC. We showed that G1/S progression was significantly affected by absence of SIRT1 in the liver, as well as circadian gene expression. This was associated to lipid accumulation due to defective fatty acid beta-oxidation. Our study revealed for the first time the importance of SIRT1 in the regulation of hepatocellular proliferation, circadian rhythms, and lipid metabolism during liver regeneration in mice. These results represent an additional step toward the characterization of SIRT1 function in the liver.


Assuntos
Ciclo Celular , Proliferação de Células , Metabolismo dos Lipídeos , Hepatopatias/enzimologia , Regeneração Hepática , Fígado/enzimologia , Sirtuína 1/metabolismo , Animais , Humanos , Fígado/metabolismo , Fígado/fisiopatologia , Hepatopatias/genética , Hepatopatias/metabolismo , Hepatopatias/fisiopatologia , Camundongos , Camundongos Knockout , Sirtuína 1/genética
7.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38719750

RESUMO

Celiac disease (CD) is an autoimmune enteropathy resulting from an interaction between diet, genome, and immunity. Although many patients respond to a gluten-free diet, in a substantive number of individuals, the intestinal injury persists. Thus, other factors might amplify the ongoing inflammation. Candida albicans is a commensal fungus that is well adapted to the intestinal life. However, specific conditions increase Candida pathogenicity. The hypothesis that Candida may be a trigger in CD has been proposed after the observation of similarity between a fungal wall component and two CD-related gliadin T-cell epitopes. However, despite being implicated in intestinal disorders, Candida may also protect against immune pathologies highlighting a more intriguing role in the gut. Herein, we postulated that a state of chronic inflammation associated with microbial dysbiosis and leaky gut are favorable conditions that promote C. albicans pathogenicity eventually contributing to CD pathology via a mast cells (MC)-IL-9 axis. However, the restoration of immune and microbial homeostasis promotes a beneficial C. albicans-MC cross-talk favoring the attenuation of CD pathology to alleviate CD pathology and symptoms.


Assuntos
Candida albicans , Doença Celíaca , Homeostase , Mastócitos , Doença Celíaca/imunologia , Doença Celíaca/microbiologia , Doença Celíaca/metabolismo , Humanos , Candida albicans/patogenicidade , Candida albicans/imunologia , Mastócitos/imunologia , Mastócitos/metabolismo , Microbioma Gastrointestinal/imunologia , Disbiose/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Animais , Candida/patogenicidade , Candida/imunologia , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo
8.
PNAS Nexus ; 2(3): pgad036, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36896128

RESUMO

The environmental light/dark cycle has left its mark on the body's physiological functions to condition not only our inner biology, but also the interaction with external cues. In this scenario, the circadian regulation of the immune response has emerged as a critical factor in defining the host-pathogen interaction and the identification of the underlying circuitry represents a prerequisite for the development of circadian-based therapeutic strategies. The possibility to track down the circadian regulation of the immune response to a metabolic pathway would represent a unique opportunity in this direction. Herein, we show that the metabolism of the essential amino acid tryptophan, involved in the regulation of fundamental processes in mammals, is regulated in a circadian manner in both murine and human cells and in mouse tissues. By resorting to a murine model of pulmonary infection with the opportunistic fungus Aspergillus fumigatus, we showed that the circadian oscillation in the lung of the tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO)1, generating the immunoregulatory kynurenine, resulted in diurnal changes in the immune response and the outcome of fungal infection. In addition, the circadian regulation of IDO1 drives such diurnal changes in a pre-clinical model of cystic fibrosis (CF), an autosomal recessive disease characterized by progressive lung function decline and recurrent infections, thus acquiring considerable clinical relevance. Our results demonstrate that the circadian rhythm at the intersection between metabolism and immune response underlies the diurnal changes in host-fungal interaction, thus paving the way for a circadian-based antimicrobial therapy.

9.
Sci Rep ; 13(1): 22692, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123809

RESUMO

Cystic fibrosis (CF) is an autosomal recessive disorder characterized by respiratory failure due to a vicious cycle of defective Cystic Fibrosis Transmembrane conductance Regulator (CFTR) function, chronic inflammation and recurrent bacterial and fungal infections. Although the recent introduction of CFTR correctors/potentiators has revolutionized the clinical management of CF patients, resurgence of inflammation and persistence of pathogens still posit a major concern and should be targeted contextually. On the background of a network-based selectivity that allows to target the same enzyme in the host and microbes with different outcomes, we focused on sphingosine-1-phosphate (S1P) lyase (SPL) of the sphingolipid metabolism as a potential candidate to uniquely induce anti-inflammatory and antifungal activities in CF. As a feasibility study, herein we show that interfering with S1P metabolism improved the immune response in a murine model of CF with aspergillosis while preventing germination of Aspergillus fumigatus conidia. In addition, in an early drug discovery process, we purified human and A. fumigatus SPL, characterized their biochemical and structural properties, and performed an in silico screening to identify potential dual species SPL inhibitors. We identified two hits behaving as competitive inhibitors of pathogen and host SPL, thus paving the way for hit-to-lead and translational studies for the development of drug candidates capable of restraining fungal growth and increasing antifungal resistance.


Assuntos
Fibrose Cística , Humanos , Animais , Camundongos , Fibrose Cística/tratamento farmacológico , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Estudos de Viabilidade , Inflamação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
10.
J Cell Sci ; 123(Pt 22): 3837-48, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21048160

RESUMO

Circadian rhythms regulate a wide variety of physiological and metabolic processes. The clock machinery comprises complex transcriptional-translational feedback loops that, through the action of specific transcription factors, modulate the expression of as many as 10% of cellular transcripts. This marked change in gene expression necessarily implicates a global regulation of chromatin remodeling. Indeed, various descriptive studies have indicated that histone modifications occur at promoters of clock-controlled genes (CCGs) in a circadian manner. The finding that CLOCK, a transcription factor crucial for circadian function, has intrinsic histone acetyl transferase (HAT) activity has paved the way to unraveling the molecular mechanisms that govern circadian chromatin remodeling. A search for the histone deacetylase (HDAC) that counterbalances CLOCK activity revealed that SIRT1, a nicotinamide adenin dinucleotide (NAD(+))-dependent HDAC, functions in a circadian manner. Importantly, SIRT1 is a regulator of aging, inflammation and metabolism. As many transcripts that oscillate in mammalian peripheral tissues encode proteins that have central roles in metabolic processes, these findings establish a functional and molecular link between energy balance, chromatin remodeling and circadian physiology. Here we review recent studies that support the existence of this link and discuss their implications for understanding mammalian physiology and pathology.


Assuntos
Relógios Circadianos/genética , Animais , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo , Montagem e Desmontagem da Cromatina/genética , Epigenômica , Humanos
11.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35236743

RESUMO

BACKGROUND: Despite the great success, the therapeutic benefits of immune checkpoint inhibitors (ICIs) in cancer immunotherapy are limited by either various resistance mechanisms or ICI-associated toxic effects including gastrointestinal toxicity. Thus, novel therapeutic strategies that provide manageable side effects to existing ICIs would enhance and expand their therapeutic efficacy and application. Due to its proven role in cancer development and immune regulation, gut microbiome has gained increasing expectation as a potential armamentarium to optimize immunotherapy with ICI. However, much has to be learned to fully harness gut microbiome for clinical applicability. Here we have assessed whether microbial metabolites working at the interface between microbes and the host immune system may optimize ICI therapy. METHODS: To this purpose, we have tested indole-3-carboxaldehyde (3-IAld), a microbial tryptophan catabolite known to contribute to epithelial barrier function and immune homeostasis in the gut via the aryl hydrocarbon receptor (AhR), in different murine models of ICI-induced colitis. Epithelial barrier integrity, inflammation and changes in gut microbiome composition and function were analyzed. AhR, indoleamine 2,3-dioxygenase 1, interleukin (IL)-10 and IL-22 knockout mice were used to investigate the mechanism of 3-IAld activity. The function of the microbiome changes induced by 3-IAld was evaluated on fecal microbiome transplantation (FMT). Finally, murine tumor models were used to assess the effect of 3-IAld treatment on the antitumor activity of ICI. RESULTS: On administration to mice with ICI-induced colitis, 3-IAld protected mice from intestinal damage via a dual action on both the host and the microbes. Indeed, paralleling the activation of the host AhR/IL-22-dependent pathway, 3-IAld also affected the composition and function of the microbiota such that FMT from 3-IAld-treated mice protected against ICI-induced colitis with the contribution of butyrate-producing bacteria. Importantly, while preventing intestinal damage, 3-IAld did not impair the antitumor activity of ICI. CONCLUSIONS: This study provides a proof-of-concept demonstration that moving past bacterial phylogeny and focusing on bacterial metabolome may lead to a new class of discrete molecules, and that working at the interface between microbes and the host immune system may optimize ICI therapy.


Assuntos
Colite , Neoplasias , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Camundongos , Neoplasias/tratamento farmacológico , Resultado do Tratamento , Triptofano/farmacologia
12.
Sci Transl Med ; 14(664): eabh1209, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36170447

RESUMO

Aspergillus fumigatus is a ubiquitous mold that can cause severe infections in immunocompromised patients, typically manifesting as invasive pulmonary aspergillosis (IPA). Adaptive and innate immune cells that respond to A. fumigatus are present in the endogenous repertoire of patients with IPA but are infrequent and cannot be consistently isolated and expanded for adoptive immunotherapy. Therefore, we gene-engineered A. fumigatus-specific chimeric antigen receptor (Af-CAR) T cells and demonstrate their ability to confer antifungal reactivity in preclinical models in vitro and in vivo. We generated a CAR targeting domain AB90-E8 that recognizes a conserved protein antigen in the cell wall of A. fumigatus hyphae. T cells expressing the Af-CAR recognized A. fumigatus strains and clinical isolates and exerted a direct antifungal effect against A. fumigatus hyphae. In particular, CD8+ Af-CAR T cells released perforin and granzyme B and damaged A. fumigatus hyphae. CD8+ and CD4+ Af-CAR T cells produced cytokines that activated macrophages to potentiate the antifungal effect. In an in vivo model of IPA in immunodeficient mice, CD8+ Af-CAR T cells localized to the site of infection, engaged innate immune cells, and reduced fungal burden in the lung. Adoptive transfer of CD8+ Af-CAR T cells conferred greater antifungal efficacy compared to CD4+ Af-CAR T cells and an improvement in overall survival. Together, our study illustrates the potential of gene-engineered T cells to treat aggressive infectious diseases that are difficult to control with conventional antimicrobial therapy and support the clinical development of Af-CAR T cell therapy to treat IPA.


Assuntos
Aspergilose Pulmonar Invasiva , Receptores de Antígenos Quiméricos , Animais , Antifúngicos , Aspergillus fumigatus , Citocinas , Granzimas , Aspergilose Pulmonar Invasiva/terapia , Camundongos , Perforina , Linfócitos T
13.
Cells ; 10(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209524

RESUMO

Primary sclerosing cholangitis (PSC) is a long-term liver disease characterized by a progressive course of cholestasis with liver inflammation and fibrosis. Intestinal barrier dysfunction has been implicated in the pathogenesis of PSC. According to the "leaky gut" hypothesis, gut inflammation alters the permeability of the intestinal mucosa, with the translocation of gut-derived products that enter the enterohepatic circulation and cause hepatic inflammation. Thus, the administration of molecules that preserve epithelial barrier integrity would represent a promising therapeutic strategy. Indole-3-carboxaldehyde (3-IAld) is a microbial-derived product working at the interface between the host and the microbiota and is able to promote mucosal immune homeostasis in a variety of preclinical settings. Herein, by resorting to a murine model of PSC, we found that 3-IAld formulated for localized delivery in the gut alleviates hepatic inflammation and fibrosis by modulating the intestinal microbiota and activating the aryl hydrocarbon receptor-IL-22 axis to restore mucosal integrity. This study points to the therapeutic potential of 3-IAld in liver pathology.


Assuntos
Colangite Esclerosante/patologia , Indóis/farmacologia , Mucosa Intestinal/patologia , Cirrose Hepática/patologia , Animais , Dieta , Modelos Animais de Doenças , Inflamação/complicações , Inflamação/patologia , Interleucinas/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Cirrose Hepática/complicações , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Piridinas , Receptores de Hidrocarboneto Arílico/metabolismo , Interleucina 22
14.
Liver Int ; 30(3): 388-95, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19968777

RESUMO

BACKGROUND/AIMS: Transcription factors coupled to cyclic adenosine mono phosphate (cAMP) signalling in the cAMP-responsive elements binding (CREB)/ATF family constitute a family of activators or repressors that bind to cAMP-responsive promoter elements (CREs) in the regulatory regions of cAMP-inducible genes. A role for CREB/ATF family has been advocated in the control of hepatocellular carcinoma progression. CREB appears to be activated by the X protein of hepatitis B virus, which links to the unphosphorylated form of CREB and activates transcription, thus obviating an otherwise indispensable Ser-133 phosphorylation. Identification of factors capable of triggering transcription via cAMP-responsive elements modulator (CREM)/CREB signalling in the absence of Ser phosphorylation will improve our knowledge of the molecular mechanism of liver cell proliferation. METHODS: To isolate and study proteins binding and activating CREB and/or CREM in the liver, we performed the screening of a mouse liver cDNA library using the Two-Hybrid System. RESULTS: We report the identification and characterization of a novel peptide, VTIP-peptide (VTIP-P), which binds and enhances the activation of CREM/CREB, obviating the need for transcription factor phosphorylation. We demonstrated that VTIP-P physically interacts with the activation domain (AD) of the transcription factors CREB/CREM and activates transcription by modifying their phosphorylation pattern in hepatoma cells. The data allowed the conclusion that VTIP-P binds the AD of CREB and CREM by stabilizing their phosphorylation. CONCLUSION: The characterization of molecules capable of interfering in the liver with an important pathway such as CREB could be significant in designing and/or developing new therapeutic approaches to the control of liver cell proliferation.


Assuntos
Proteínas de Transporte/metabolismo , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regeneração Hepática/fisiologia , Fígado/metabolismo , Peptídeos/metabolismo , Animais , Proteínas de Transporte/classificação , Linhagem Celular Tumoral , Modulador de Elemento de Resposta do AMP Cíclico/genética , Biblioteca Gênica , Camundongos , Peptídeos/classificação , Fatores de Transcrição/metabolismo , Transfecção , Técnicas do Sistema de Duplo-Híbrido
15.
Cell Death Dis ; 11(10): 865, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060567

RESUMO

HOPS/Tmub1 is a ubiquitously expressed transmembrane ubiquitin-like protein that shuttles between nucleus and cytoplasm during cell cycle progression. HOPS causes cell cycle arrest in G0/G1 phase, an event associated to stabilization of p19Arf, an important tumor suppressor protein. Moreover, HOPS plays an important role in driving centrosomal assembly and maintenance, mitotic spindle proper organization, and ultimately a correct cell division. Recently, HOPS has been described as an important regulator of p53, which acts as modifier, stabilizing p53 half-life and playing a key role in p53 mediating apoptosis after DNA damage. NF-κB is a transcription factor with a central role in many cellular events, including inflammation and apoptosis. Our experiments demonstrate that the transcriptional activity of the p65/RelA NF-κB subunit is regulated by HOPS. Importantly, Hops-/- cells have remarkable alterations of pro-inflammatory responses. Specifically, we found that HOPS enhances NF-κB activation leading to increase transcription of inflammatory mediators, through the reduction of IκBα stability. Notably, this effect is mediated by a direct HOPS binding to the E3 ubiquitin ligase TRAF6, which lessens TRAF6 stability ultimately leading increased IKK complex activation. These findings uncover a previously unidentified function of HOPS/Tmub1 as a novel modulator of TRAF6, regulating inflammatory responses driven by activation of the NF-κB signaling pathway. The comprehension on how HOPS/Tmub1 takes part to the inflammatory processes in vivo and whether this function is important in the control of proliferation and tumorigenesis could establish the basis for the development of novel pharmacological strategies.


Assuntos
Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Núcleo Celular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Ligação Proteica/fisiologia , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-32117804

RESUMO

The organisms of most domains of life have adapted to circadian changes of the environment and regulate their behavior and physiology accordingly. A particular case of such paradigm is represented by some types of host-pathogen interaction during infection. Indeed, not only some hosts and pathogens are each endowed with their own circadian clock, but they are also influenced by the circadian changes of the other with profound consequences on the outcome of the infection. It comes that daily fluctuations in the availability of resources and the nature of the immune response, coupled with circadian changes of the pathogen, may influence microbial virulence, level of colonization and damage to the host, and alter the equilibrium between commensal and invading microorganisms. In the present review, we discuss the potential relevance of circadian rhythms in human bacterial and fungal pathogens, and the consequences of circadian changes of the host immune system and microbiome on the onset and development of infection. By looking from the perspective of the interplay between host and microbes circadian rhythms, these concepts are expected to change the way we approach human infections, not only by predicting the outcome of the host-pathogen interaction, but also by indicating the best time for intervention to potentiate the anti-microbial activities of the immune system and to weaken the pathogen when its susceptibility is higher.


Assuntos
Relógios Circadianos , Microbiota , Ritmo Circadiano , Humanos , Sistema Imunitário , Simbiose
17.
Cell Cycle ; 15(16): 2164-2173, 2016 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-27341299

RESUMO

The liver is the most important organ in cholesterol metabolism, which is instrumental in regulating cell proliferation and differentiation. The gene Tm7sf2 codifies for 3 ß-hydroxysterol-Δ14-reductase (C14-SR), an endoplasmic reticulum resident protein catalyzing the reduction of C14-unsaturated sterols during cholesterol biosynthesis from lanosterol. In this study we analyzed the role of C14-SR in vivo during cell proliferation by evaluating liver regeneration in Tm7sf2 knockout (KO) and wild-type (WT) mice. Tm7sf2 KO mice showed no alteration in cholesterol content. However, accumulation and delayed catabolism of hepatic triglycerides was observed, resulting in persistent steatosis at all times post hepatectomy. Moreover, delayed cell cycle progression to the G1/S phase was observed in Tm7sf2 KO mice, resulting in reduced cell division at the time points examined. This was associated to abnormal ER stress response, leading to alteration in p53 content and, consequently, induction of p21 expression in Tm7sf2 KO mice. In conclusion, our results indicate that Tm7sf2 deficiency during liver regeneration alters lipid metabolism and generates a stress condition, which, in turn, transiently unbalances hepatocytes cell cycle progression.


Assuntos
Regeneração Hepática , Oxirredutases/metabolismo , Animais , Proliferação de Células , Estresse do Retículo Endoplasmático , Fígado Gorduroso/complicações , Fase G1 , Hepatectomia , Hepatócitos/metabolismo , Hepatócitos/patologia , Lipídeos/análise , Regeneração Hepática/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxirredutases/deficiência , Oxirredutases/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Fase S , Receptor de Lamina B
19.
Cell Cycle ; 13(2): 293-302, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24240191

RESUMO

Hepatocyte odd protein shuttling (HOPS) moves between nucleus and cytoplasm. HOPS overexpression leads to cell cycle arrest in G 0/G 1, and HOPS knockdown causes centrosome alterations, with subsequent abnormal cell division. Recently, we demonstrated that HOPS acts as a functional bridge in NPM-p19(Arf) interactions. Here we show that HOPS is present in 3 different isoforms that play distinct intracellular functions. Although HOPS is a transmembrane ubiquitin, an isoform with intermediate molecular weight is cleaved from the membrane and released into the cytosol, to act as the shuttling protein. We identified a signal peptide peptidase structure in N-terminal membrane-bound HOPS that allows the regulated intramembrane proteolysis (RIP) system to control the relative amounts of the released, shuttling isoform capable of binding NPM. These results argue for distinct, isoform-specific functions of HOPS in the nucleolus, nucleus, and cytoplasm and provide insight into the dynamics of HOPS association with NPM, whose mutation and subsequent delocalization is found in 30% of acute myeloid leukemia patients.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas de Transporte/genética , Linhagem Celular , Núcleo Celular/metabolismo , Chlorocebus aethiops , Simulação por Computador , Citosol/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Camundongos , Proteínas Nucleares/genética , Nucleofosmina , Especificidade de Órgãos , Ligação Proteica , Conformação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteólise , Ratos , Ubiquitina/metabolismo
20.
Cell Cycle ; 13(12): 1902-11, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24743017

RESUMO

Liver regeneration is a unique means of studying cell proliferation in vivo. Screening of a large cDNA library from regenerating liver has previously allowed us to identify and characterize a cluster of genes encoding proteins with important roles in proliferative processes. Here, by examining different rat and human tissues as well as cell lines, we characterized a highly conserved gene, guanylyl cyclase domain containing 1 (GUCD1), whose modulation occurs in liver regeneration and cell cycle progression in vitro. High-level expression of GUCD1 transcripts was observed in livers from patients with hepatocellular carcinoma. A yeast two-hybrid interaction assay, aimed at identifying any relevant interaction partners of GUCD1, revealed direct interactions with NEDD4-1 (E3 ubiquitin protein ligase neural precursor cell expressed, developmentally downregulated gene 4), resulting in control of GUCD1 stability. Thus, we have characterized expression and function of a ubiquitous protein, GUCD1, which might have a role in regulating normal and abnormal cell growth in the liver.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Guanilato Ciclase/metabolismo , Regeneração Hepática/genética , Fígado/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular , Proliferação de Células , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Guanilato Ciclase/genética , Humanos , Fígado/citologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos , Ubiquitina-Proteína Ligases Nedd4 , Ratos Sprague-Dawley , Ubiquitina-Proteína Ligases/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA