Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 21(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059372

RESUMO

This current study was conducted to investigate whether bone tissue impairment induced by early life exposure to cadmium (Cd) during postnatal development could result from disruption to zinc (Zn) metabolism. For this reason, the offspring from mothers receiving either tap water, Cd, Zn or Cd + Zn during gestation and lactation periods were euthanized at PND21 and PND70. At the end of the lactation period (PND21), our results showed that exposure to Cd increased Cd accumulation and Zn depletion in the femur. Furthermore, calcium (Ca) level was reduced. At the molecular level, Cd induced an increase of MT-1 expression and caused an upregulation of ZIP2 accompanied with a down-regulation of ZnT5. Runx2, ALP, colα-1 and Oc mRNA levels were also decreased. In plasma, IGF-1 and osteocalcin concentrations were decreased. Further, Cd altered femoral growth by generating changes in the growth plate. Consequently, the toxic effect of Cd persisted at adult age (PND70) by decreasing bone volume (%BV/TV), bone mineral density (BMD) and Ca content and by increasing trabecular separation (Tb.Sp) in the distal femur. Interestingly, Zn supply provided total or partial corrections of several toxic effects of Cd. These data suggest that the increases of Zn bioavailability as well as the reduction of Cd accumulation in the femur following the changes in ZIP2 and ZnT5 expression are part of the mechanism involved in Zn protection against Cd toxicity on bone tissue.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Cádmio/toxicidade , Zinco/metabolismo , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/patologia , Feminino , Fêmur/efeitos dos fármacos , Fator de Crescimento Insulin-Like I , Lactação/efeitos dos fármacos , Masculino , Osteocalcina/sangue , Gravidez/efeitos dos fármacos , Ratos , Ratos Wistar
2.
J Cell Physiol ; 234(9): 15872-15884, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30714133

RESUMO

The present study examined the involvement of zinc (Zn)-transporters (ZnT3) in cadmium (Cd)-induced alterations of Zn homeostasis in rat hippocampal neurons. We treated primary rat hippocampal neurons for 24 or 48 hr with various concentrations of CdCl2 (0, 0.5, 5, 10, 25, or 50 µM) and/or ZnCl 2 (0, 10, 30, 50, 70, or 90 µM), using normal neuronal medium as control. By The CellTiter 96 ® Aqueous One Solution Cell Proliferation Assay (MTS; Promega, Madison, WI) assay and immunohistochemistry for cell death markers, 10 and 25 µM of Cd were found to be noncytotoxic doses, and both 30 and 90 µM of Zn as the best concentrations for cell proliferation. We tested these selected doses. Cd, at concentrations of 10 or 25 µM (and depending on the absence or presence of Zn), decreased the percentage of surviving cells. Cd-induced neuronal death was either apoptotic or necrotic depending on dose, as indicated by 7-AAD and/or annexin V labeling. At the molecular level, Cd exposure induced a decrease in hippocampal brain-derived neurotrophic factor-tropomyosin receptor kinase B (BDNF-TrkB) and Erk1/2 signaling, a significant downregulation of the expression of learning- and memory-related receptors and synaptic proteins such as the NMDAR NR2A subunit and PSD-95, as well as the expression of the synapse-specific vesicular Zn transporter ZnT3 in cultured hippocampal neurons. Zn supplementation, especially at the 30 µM concentration, led to partial or total protection against Cd neurotoxicity both with respect to the number of apoptotic cells and the expression of several genes. Interestingly, after knockdown of ZnT3 by small interfering RNA transfection, we did not find the restoration of the expression of this gene following Zn supplementation at 30 µM concentration. These data indicate the involvement of ZnT3 in the mechanism of Cd-induced hippocampal neurotoxicity.

3.
J Cell Physiol ; 233(11): 8677-8690, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29761825

RESUMO

Oxidative stress is a major factor involved in the pathogenesis of renal ischemia/reperfusion (I/R). Exogenous zinc (Zn) was suggested as a potent antioxidant; however, the mechanism by which it strengthens the organ resistance against the effects of reactive oxygen species (ROS) is not yet investigated. The present study aims to determine whether acute zinc chloride (ZnCl2 ) administration could attenuate endoplasmic reticulum (ER) stress, autophagy, and inflammation after renal I/R. Rats were subjected to either sham operation (Sham group, n = 6), or 1 hr of bilateral ischemia followed by 2 hr of reperfusion (I/R groups, n = 6), or they received ZnCl2 orally 24 hr and 30 min before ischemia (ZnCl2 group, n = 6). Rats were subjected to 1 hr of bilateral renal ischemia followed by 2 hr of reperfusion (I/R group, n = 6). Our results showed that ZnCl2 enhances renal function and reduces cytolysis (p < 0,05). In addition, it increased significantly the activities of antioxidant enzymes (SOD, CAT, and GPX) and the level of GSH in comparison to I/R (p < 0,05). Interestingly, ZnCl2 treatment resulted in significant decreased ER stress, as reflected by GRP78, ATF-6,p-eIF-2α, XPB-1, and CHOP downregulaion. Rats undergoing ZnCl2 treatment demonstrated a low expression of autophagy parameters (Beclin-1 and LAMP-2), which was correlated with low induction of apoptosis (caspase-9, caspase-3, and p-JNK), and reduction of inflammation (IL-1ß, IL-6, and MCP-1) (p < 0,05). In conclusion, we demonstrated the potential effect of Zn supplementation to modulate ER pathway and autophagic process after I/R.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Cloretos/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Compostos de Zinco/administração & dosagem , Injúria Renal Aguda/genética , Injúria Renal Aguda/fisiopatologia , Animais , Antioxidantes/administração & dosagem , Apoptose/efeitos dos fármacos , Autofagia/genética , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/genética , Humanos , Rim/metabolismo , Rim/patologia , Masculino , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/genética , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
4.
Drug Chem Toxicol ; 41(4): 424-433, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29722553

RESUMO

The present study was conducted to assess the possible effect of cadmium (Cd) throughout gestation and lactation on the volume of the subregion of the hippocampus as well as the potential protective role of zinc (Zn) against Cd neurotoxicity. For this purpose, female rats received either tap water, Cd, Zn or Cd + Zn in their drinking water during gestation and lactation. At postnatal day 35 (PND35), the male pups were sacrificed, and their brains were taken for histologic, chemical, and biochemical analysis. Hippocampal volume was measured in histologic brain slices using Cavalieri's principle. Zn depletion was observed in the brains of pups issued from mothers exposed to Cd. Biochemical analysis further revealed that Cd exposure significantly increases the superoxide dismutase (SOD) activity, as well as the metallothionein (MT) level. During histologic investigation, our results showed that gestational and lactational exposure to Cd significantly altered and decreased the volume of CA1, CA3 pyramidal cell layer and the dentate gyrus. However, there were no marked differences shown in CA2 subfield. Compared to Cd group, co-treatment with Cd and Zn provided correction of the changes induced by the Cd exposure. These results highlight the protective role of Zn against Cd-induced alteration in the hippocampus which is a crucial structure implicated in learning and memory processes.


Assuntos
Cádmio/toxicidade , Feto/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Zinco/farmacologia , Animais , Cádmio/análise , Feminino , Hipocampo/patologia , Lactação , Masculino , Exposição Materna , Gravidez , Ratos , Ratos Wistar , Zinco/análise
5.
Chem Biol Interact ; 286: 88-95, 2018 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-29548726

RESUMO

This study was carried out to investigate the effects of maternal Cd and/or Zn exposure on some parameters of Zn metabolism in fetal brain of Wistar rats. Thus, female controls and other exposed by the oral route during the gestation period to Cd (50 mg CdCl2/L) and/or Zn (ZnCl2 60 mg/L) were used. The male fetuses at age 20 days of gestation (GD20) were sacrificed and their brains were taken for histological, chemical and molecular analysis. Zn depletion was observed in the brains of fetuses issued from mothers exposed to Cd. Histological analysis showed that Cd exposure induces pyknosis in cortical region and CA1 region of the hippocampus compared to controls. Under Cd exposure, we noted an overexpression of the genes coding for membrane transporter involved in the intracellular incorporation of Zn (ZIP6) associated with inhibition of that encoding the transporters involved in the output of the Zn into the extracellular medium (ZnT1 and ZnT3). A decrease in the expression of the gene encoding the neuro-trophic factor (BDNF) associated with overexpression of the encoding the metal regulatory transcription factor 1 (MTF1), factor involved in the homeostasis of Zn, was also noted in Cd group. Interestingly, Zn supply provided a total or partial restauration of the changes induced by the Cd exposure. The depletion of brain Zn contents as well as the modification of the profile of expression of genes encoding membrane Zn transporters, suggest that the toxicity of Cd observed in fetal brain level are mediated, in part, by impairment of Zn metabolism.


Assuntos
Encéfalo/efeitos dos fármacos , Cloreto de Cádmio/toxicidade , Cloretos/metabolismo , Compostos de Zinco/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Idade Gestacional , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , Metalotioneína/análise , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Wistar , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fator MTF-1 de Transcrição
6.
Biomed Pharmacother ; 105: 573-581, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29890465

RESUMO

AIM: Zinc has proved its efficacy in many models of ischemia reperfusion (I/R) injury. In this study, we used zinc acexamate (ZAC) as an exogenous source of zinc against renal I/R injury and we investigated whether its protective effects are mediated by the decrease of oxidative stress, inflammation, and mitochondria induced-apoptosis. METHODS: Rats were orally pretreated with vehicle or ZAC (10 or 100 mg/kg) 24 h and 30 min prior to 1 h of bilateral renal warm ischemia and 2 h of reperfusion. RESULTS: Our data showed that 10 mg/kg of ZAC, but not 100 mg/kg, improved renal architecture and function. Also, the low dose of ZAC up-regulated antioxidant enzymes activities and glutathione level and decreased lipids and proteins oxidation. Interestingly, the use of ZAC resulted in a significant reduce of pro-inflammatory cytokines (IL-1ß, IL-6 and MCP-1), enhanced mitochondria integrity and decreased expression of the pro-apoptotic protein caspase-9. CONCLUSION: We conclude that renal I/R induced oxidative stress, inflammation and apoptosis and that the use of ZAC at 10 mg/kg, but not 100 mg/kg, protects rat kidneys from I/R injury by down-regulating these processes.


Assuntos
Aminocaproatos/uso terapêutico , Antioxidantes/uso terapêutico , Apoptose/efeitos dos fármacos , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão/prevenção & controle , Aminocaproatos/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Citocinas/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Rim/irrigação sanguínea , Masculino , Ratos Wistar , Isquemia Quente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA