Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Cell ; 150(5): 1002-15, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22921914

RESUMO

In plants, where cells cannot migrate, asymmetric cell divisions (ACDs) must be confined to the appropriate spatial context. We investigate tissue-generating asymmetric divisions in a stem cell daughter within the Arabidopsis root. Spatial restriction of these divisions requires physical binding of the stem cell regulator SCARECROW (SCR) by the RETINOBLASTOMA-RELATED (RBR) protein. In the stem cell niche, SCR activity is counteracted by phosphorylation of RBR through a cyclinD6;1-CDK complex. This cyclin is itself under transcriptional control of SCR and its partner SHORT ROOT (SHR), creating a robust bistable circuit with either high or low SHR-SCR complex activity. Auxin biases this circuit by promoting CYCD6;1 transcription. Mathematical modeling shows that ACDs are only switched on after integration of radial and longitudinal information, determined by SHR and auxin distribution, respectively. Coupling of cell-cycle progression to protein degradation resets the circuit, resulting in a "flip flop" that constrains asymmetric cell division to the stem cell region.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Raízes de Plantas/citologia , Sequência de Aminoácidos , Divisão Celular Assimétrica , Ciclina D/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ácidos Indolacéticos/metabolismo , Células do Mesofilo/metabolismo , Dados de Sequência Molecular , Fosforilação , Raízes de Plantas/metabolismo , Alinhamento de Sequência
2.
Plant Cell ; 34(10): 3844-3859, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35876813

RESUMO

The Arabidopsis thaliana GSK3-like kinase, BRASSINOSTEROID-INSENSITIVE2 (BIN2) is a key negative regulator of brassinosteroid (BR) signaling and a hub for crosstalk with other signaling pathways. However, the mechanisms controlling BIN2 activity are not well understood. Here we performed a forward genetic screen for resistance to the plant-specific GSK3 inhibitor bikinin and discovered that a mutation in the ADENOSINE MONOPHOSPHATE DEAMINASE (AMPD)/EMBRYONIC FACTOR1 (FAC1) gene reduces the sensitivity of Arabidopsis seedlings to both bikinin and BRs. Further analyses revealed that AMPD modulates BIN2 activity by regulating its oligomerization in a hydrogen peroxide (H2O2)-dependent manner. Exogenous H2O2 induced the formation of BIN2 oligomers with a decreased kinase activity and an increased sensitivity to bikinin. By contrast, AMPD activity inhibition reduced the cytosolic reactive oxygen species (ROS) levels and the amount of BIN2 oligomers, correlating with the decreased sensitivity of Arabidopsis plants to bikinin and BRs. Furthermore, we showed that BIN2 phosphorylates AMPD to possibly alter its function. Our results uncover the existence of an H2O2 homeostasis-mediated regulation loop between AMPD and BIN2 that fine-tunes the BIN2 kinase activity to control plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Monofosfato de Adenosina/metabolismo , Aminopiridinas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Brassinosteroides/farmacologia , Regulação da Expressão Gênica de Plantas , Quinase 3 da Glicogênio Sintase/genética , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Succinatos
3.
New Phytol ; 228(2): 778-793, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533857

RESUMO

Efficient seed germination and establishment are important traits for field and glasshouse crops. Large-scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale germination scoring. Here, we present the SeedGerm system, which combines cost-effective hardware and open-source software for seed germination experiments, automated seed imaging, and machine-learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination- and establishment-related traits, in both comma-separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists' scoring of radicle emergence. Germination curves were produced based on seed-level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large-scale seed phenotyping and testing, for both research and routine seed technology applications.


Assuntos
Brassica napus , Germinação , Ácido Abscísico , Análise Custo-Benefício , Aprendizado de Máquina , Sementes/genética
4.
PLoS Biol ; 11(11): e1001724, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24302889

RESUMO

Quiescent long-term somatic stem cells reside in plant and animal stem cell niches. Within the Arabidopsis root stem cell population, the Quiescent Centre (QC), which contains slowly dividing cells, maintains surrounding short-term stem cells and may act as a long-term reservoir for stem cells. The RETINOBLASTOMA-RELATED (RBR) protein cell-autonomously reinforces mitotic quiescence in the QC. RBR interacts with the stem cell transcription factor SCARECROW (SCR) through an LxCxE motif. Disruption of this interaction by point mutation in SCR or RBR promotes asymmetric divisions in the QC that renew short-term stem cells. Analysis of the in vivo role of quiescence in the root stem cell niche reveals that slow cycling within the QC is not needed for structural integrity of the niche but allows the growing root to cope with DNA damage.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Meristema/citologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proliferação de Células , Técnicas de Silenciamento de Genes , Meristema/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Nicho de Células-Tronco , Células-Tronco/fisiologia
5.
Nat Cell Biol ; 8(3): 249-56, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16489343

RESUMO

Root gravitropism describes the orientation of root growth along the gravity vector and is mediated by differential cell elongation in the root meristem. This response requires the coordinated, asymmetric distribution of the phytohormone auxin within the root meristem, and depends on the concerted activities of PIN proteins and AUX1 - members of the auxin transport pathway. Here, we show that intracellular trafficking and proteasome activity combine to control PIN2 degradation during root gravitropism. Following gravi-stimulation, proteasome-dependent variations in PIN2 localization and degradation at the upper and lower sides of the root result in asymmetric distribution of PIN2. Ubiquitination of PIN2 occurs in a proteasome-dependent manner, indicating that the proteasome is involved in the control of PIN2 turnover. Stabilization of PIN2 affects its abundance and distribution, and leads to defects in auxin distribution and gravitropic responses. We describe the effects of auxin on PIN2 localization and protein levels, indicating that redistribution of auxin during the gravitropic response may be involved in the regulation of PIN2 protein.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Gravitropismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/fisiologia , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endossomos/metabolismo , Hidrólise , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Meristema/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico
6.
Proc Natl Acad Sci U S A ; 107(6): 2705-10, 2010 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-20133796

RESUMO

Like animals, the mature plant body develops via successive sets of instructions that determine cell fate, patterning, and organogenesis. In the coordination of various developmental programs, several plant hormones play decisive roles, among which auxin is the best-documented hormonal signal. Despite the broad range of processes influenced by auxin, how such a single signaling molecule can be translated into a multitude of distinct responses remains unclear. In Arabidopsis thaliana, lateral root development is a classic example of a developmental process that is controlled by auxin at multiple stages. Therefore, we used lateral root formation as a model system to gain insight into the multifunctionality of auxin. We were able to demonstrate the complementary and sequential action of two discrete auxin response modules, the previously described Solitary Root/indole-3-Acetic Acid (IAA)14-Auxin Response Factor (ARF)7-ARF19-dependent lateral root initiation module and the successive Bodenlos/IAA12-Monopteros/ARF5-dependent module, both of which are required for proper organogenesis. The genetic framework in which two successive auxin response modules control early steps of a developmental process adds an extra dimension to the complexity of auxin's action.


Assuntos
Arabidopsis/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Raízes de Plantas/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Ciclinas/genética , Fatores de Transcrição E2F/genética , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Morfogênese , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases , Receptores de Superfície Celular/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Annu Rev Plant Biol ; 59: 443-65, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18444904

RESUMO

The phytohormone auxin is a key factor in plant growth and development. Forward and reverse genetic strategies have identified important molecular components in auxin perception, signaling, and transport. These advances resulted in the identification of some of the underlying regulatory mechanisms as well as the emergence of functional frameworks for auxin action. This review focuses on the feedback loops that form an integrative part of these regulatory mechanisms.


Assuntos
Ácidos Indolacéticos/metabolismo , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Receptores de Superfície Celular/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Proteínas de Plantas/genética
8.
BMC Genomics ; 12: 256, 2011 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-21599977

RESUMO

BACKGROUND: Phenotype-driven forward genetic experiments are powerful approaches for linking phenotypes to genomic elements but they still involve a laborious positional cloning process. Although sequencing of complete genomes now becomes available, discriminating causal mutations from the enormous amounts of background variation remains a major challenge. METHOD: To improve this, we developed a universal two-step approach, named 'fast forward genetics', which combines traditional bulk segregant techniques with targeted genomic enrichment and next-generation sequencing technology RESULTS: As a proof of principle we successfully applied this approach to two Arabidopsis mutants and identified a novel factor required for stem cell activity. CONCLUSION: We demonstrated that the 'fast forward genetics' procedure efficiently identifies a small number of testable candidate mutations. As the approach is independent of genome size, it can be applied to any model system of interest. Furthermore, we show that experiments can be multiplexed and easily scaled for the identification of multiple individual mutants in a single sequencing run.


Assuntos
Arabidopsis/genética , Meristema/genética , Análise de Sequência/métodos , Teste de Complementação Genética , Genômica , Mutação , Fenótipo , Fatores de Tempo
9.
Curr Biol ; 30(19): 3703-3712.e4, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32763174

RESUMO

Seed dormancy is an adaptive trait defining where and when plants are established. Diverse signals from the environment are used to decide when to initiate seed germination, a process driven by the expansion of cells within the embryo. How these signals are integrated and transduced into the biomechanical changes that drive embryo growth remains poorly understood. Using Arabidopsis seeds, we demonstrate that cell-wall-loosening EXPANSIN (EXPA) genes promote gibberellic acid (GA)-mediated germination, identifying EXPAs as downstream molecular targets of this developmental phase transition. Molecular interaction screening identified transcription factors (TFs) that bind to both EXPA promoter fragments and DELLA GA-response regulators. A subset of these TFs is targeted each by nitric oxide (NO) and the phytochrome-interacting TF PIL5. This molecular interaction network therefore directly links the perception of an external environmental signal (light) and internal hormonal signals (GA and NO) with downstream germination-driving EXPA gene expression. Experimental validation of this network established that many of these TFs mediate GA-regulated germination, including TCP14/15, RAP2.2/2.3/2.12, and ZML1. The reduced germination phenotype of the tcp14 tcp15 mutant seed was partially rescued through ectopic expression of their direct target EXPA9. The GA-mediated control of germination by TCP14/15 is regulated through EXPA-mediated control of cell wall loosening, providing a mechanistic explanation for this phenotype and a previously undescribed role for TCPs in the control of cell expansion. This network reveals the paths of signal integration that culminate in seed germination and provides a resource to uncover links between the genetic and biomechanical bases of plant growth.


Assuntos
Arabidopsis/metabolismo , Germinação/fisiologia , Sementes/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Germinação/genética , Giberelinas/metabolismo , Fitocromo/metabolismo , Dormência de Plantas/genética , Dormência de Plantas/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Sementes/genética , Fatores de Transcrição/metabolismo
10.
Sci Rep ; 6: 32196, 2016 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-27553690

RESUMO

Directional transport of auxin is essential for plant development, with PIN auxin transport proteins representing an integral part of the machinery that controls hormone distribution. However, unlike the rapidly emerging framework of molecular determinants regulating PIN protein abundance and subcellular localization, insights into mechanisms controlling PIN transcription are still limited. Here we describe PIN2 PROMOTER BINDING PROTEIN 1 (PPP1), an evolutionary conserved plant-specific DNA binding protein that acts on transcription of PIN genes. Consistent with PPP1 DNA-binding activity, PPP1 reporter proteins are nuclear localized and analysis of PPP1 null alleles and knockdown lines indicated a function as a positive regulator of PIN expression. Furthermore, we show that ppp1 pleiotropic mutant phenotypes are partially reverted by PIN overexpression, and results are presented that underline a role of PPP1-PIN promoter interaction in PIN expression control. Collectively, our findings identify an elementary, thus far unknown, plant-specific DNA-binding protein required for post-embryonic plant development, in general, and correct expression of PIN genes, in particular.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Arabidopsis/química , Sítios de Ligação , Núcleo Celular/metabolismo , Simulação por Computador , Citoplasma/metabolismo , Proteínas de Ligação a DNA/química , Regulação da Expressão Gênica de Plantas , Meristema/fisiologia , Filogenia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Domínios Proteicos , Proteínas de Ligação a RNA/química
12.
Plant J ; 51(4): 537-50, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17651372

RESUMO

Polar transport of the phytohormone auxin controls numerous growth responses in plants. Molecular characterization of auxin transport in Arabidopsis thaliana has provided important insights into the mechanisms underlying the regulation of auxin distribution. In particular, the control of subcellular localization and expression of PIN-type auxin efflux components appears to be fundamental for orchestrated distribution of the growth regulator throughout the entire plant body. Here we describe the identification of two Arabidopsis loci, MOP2 and MOP3 (for MODULATOR OF PIN), that are involved in control of the steady-state levels of PIN protein. Mutations in both loci result in defects in auxin distribution and polar auxin transport, and cause phenotypes consistent with a reduction of PIN protein levels. Genetic interaction between PIN2 and both MOP loci is suggestive of functional cross-talk, which is further substantiated by findings demonstrating that ectopic PIN up-regulation is compensated in the mop background. Thus, in addition to pathways that control PIN localization and transcription, MOP2 and MOP3 appear to be involved in fine-tuning of auxin distribution via post-transcriptional regulation of PIN expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Genes de Plantas/genética , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Northern Blotting , Regulação da Expressão Gênica de Plantas , Imuno-Histoquímica , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
13.
Bioessays ; 27(12): 1246-55, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16299756

RESUMO

With the discovery of the phytohormone auxin in the late 1920s, it became possible to link the regulation of complex plant growth responses to a single biologically active compound. Among all the plant growth regulators characterised so far, only auxin appears to be actively transported throughout the plant to create complex variations in concentration patterns and flow directions over time. This stimulated interest in the specific mechanisms underlying auxin transport as key factors in plant growth responses. Research in the last decade revealed several genes involved in the controlled transport of auxin and greatly improved our understanding of the basic principles of auxin-mediated responses. We are at this point, however, only starting to understand the complex interplay and control of factors that ultimately underlie the observed spatiotemporal variations in auxin transport and thus mediate plant growth and environmental responses. This review highlights important findings that provide us with a framework of molecular players and potential regulatory mechanisms that should contribute to the formulation of a comprehensive dynamic model of spatiotemporal auxin distribution.


Assuntos
Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Plantas/metabolismo , Transporte Biológico , Meio Ambiente
14.
Development ; 132(20): 4521-31, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16192309

RESUMO

Plant development displays an exceptional plasticity and adaptability that involves the dynamic, asymmetric distribution of the phytohormone auxin. Polar auxin flow, which requires polarly localized transport facilitators of the PIN family, largely contributes to the establishment and maintenance of the auxin gradients. Functionally overlapping action of PIN proteins mediates multiple developmental processes, including embryo formation, organ development and tropisms. Here we show that PIN proteins exhibit synergistic interactions, which involve cross-regulation of PIN gene expression in pin mutants or plants with inhibited auxin transport. Auxin itself positively feeds back on PIN gene expression in a tissue-specific manner through an AUX/IAA-dependent signalling pathway. This regulatory switch is indicative of a mechanism by which the loss of a specific PIN protein is compensated for by auxin-dependent ectopic expression of its homologues. The compensatory properties of the PIN-dependent transport network might enable the stabilization of auxin gradients and potentially contribute to the robustness of plant adaptive development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Regulação para Baixo/genética , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Fatores de Tempo , Transcrição Gênica/genética
15.
Plant Physiol ; 132(3): 1623-30, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12857841

RESUMO

The plant hormone auxin is a central regulator of plant development. In Arabidopsis, the PINOID (PID) protein serine/threonine kinase is a key component in the signaling of this phytohormone. To further investigate the biological function of PID, we performed a screen for PID-interacting proteins using the yeast two-hybrid system. Here, we show that PID interacts with two calcium-binding proteins: TOUCH3 (TCH3), a calmodulin-related protein, and PID-BINDING PROTEIN 1 (PBP1), a previously uncharacterized protein containing putative EF-hand calcium-binding motifs. The interaction between PID and the calcium-binding proteins is significant because it is calcium dependent and requires an intact PID protein. Furthermore, the expression of all three genes (PID, TCH3, and PBP1) is up-regulated by auxin. TCH3 and PBP1 are not targets for phosphorylation by PID, suggesting that these proteins act upstream of PID. PBP1 was found to stimulate the autophosphorylation activity of PID, and calcium influx and calmodulin inhibitors where found to enhance the activity of PID in vivo. Our results indicate that TCH3 and PBP1 interact with the PID protein kinase and regulate the activity of this protein in response to changes in calcium levels. This work provides the first molecular evidence for the involvement of calcium in auxin-regulated plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cálcio/farmacologia , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Calmodulina/antagonistas & inibidores , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Dados de Sequência Molecular , Fosforilação , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
16.
Science ; 306(5697): 862-5, 2004 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-15514156

RESUMO

Polar transport-dependent local accumulation of auxin provides positional cues for multiple plant patterning processes. This directional auxin flow depends on the polar subcellular localization of the PIN auxin efflux regulators. Overexpression of the PINOID protein kinase induces a basal-to-apical shift in PIN localization, resulting in the loss of auxin gradients and strong defects in embryo and seedling roots. Conversely, pid loss of function induces an apical-to-basal shift in PIN1 polar targeting at the inflorescence apex, accompanied by defective organogenesis. Our results show that a PINOID-dependent binary switch controls PIN polarity and mediates changes in auxin flow to create local gradients for patterning processes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Meristema/metabolismo , Mutação , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Proteínas Serina-Treonina Quinases/genética , Proteínas Recombinantes de Fusão/metabolismo , Sementes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA