RESUMO
Sepsis induces significant immune dysregulation characterized by lymphocyte apoptosis and alterations in the cytokine milieu. Because cancer patients exhibit a 10-fold greater risk of developing sepsis compared with the general population, we aimed to understand how pre-existing malignancy alters sepsis-induced immune dysregulation. To address this question, we assessed the impact of tumor-specific CD8+ T cells on the immune response in a mouse model of cecal ligation and puncture (CLP)-induced sepsis. Tumor-bearing animals containing Thy1.1+ tumor-specific CD8+ T cells were subjected to CLP, and groups of animals received anti-Thy1.1 mAb to deplete tumor-specific CD8+ T cells or isotype control. Results indicated that depleting tumor-specific T cells significantly improved mortality from sepsis. The presence of tumor-specific CD8+ T cells resulted in increased expression of the 2B4 coinhibitory receptor and increased apoptosis of endogenous CD8+ T cells. Moreover, tumor-specific T cells were not reduced in number in the tumors during sepsis but did exhibit impaired IFN-γ production in the tumor, tumor draining lymph node, and spleen 24 h after CLP. Our research provides novel insight into the mechanisms by which pre-existing malignancy contributes to increased mortality during sepsis.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunidade , Neoplasias Pulmonares/complicações , Neoplasias Pulmonares/imunologia , Melanoma Experimental/complicações , Melanoma Experimental/imunologia , Sepse/complicações , Sepse/imunologia , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/imunologia , Animais , Apoptose/imunologia , Linhagem Celular Tumoral , Citocinas/sangue , Interferon gama/metabolismo , Neoplasias Pulmonares/sangue , Linfonodos/imunologia , Masculino , Melanoma Experimental/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Sepse/sangue , Sepse/mortalidade , Neoplasias Cutâneas/sangue , Baço/imunologia , Antígenos Thy-1/genéticaRESUMO
We chose to evaluate Hypoxanthine Guanine Phosphoribosyltransferase (HPRT) as a possible biomarker for prostate cancer due to its involvement in nucleotide synthesis and cell cycle progression. We utilized two prostate cancer cell lines (PC3 and DU145) along with patient tissue and knockdowns to evaluate overall HPRT expression. The surface localization of HPRT was determined utilizing flow cytometry, confocal microscopy, and scanning electron microscopy followed by ADCC to evaluate targeting potential. We found significant upregulation of HPRT within malignant samples with approximately 47% of patients had elevated levels of HPRT compared to normal controls. We also observed a significant association between HPRT and the plasma membrane of DU145 cells (p = 0.0004), but found no presence on PC3 cells (p = 0.14). This was confirmed with scanning electron microscopy and confocal microscopy. ADCC experiments were performed to determine whether HPRT could be used as a target antigen for selective cell-mediated killing. We found that DU145 cells treated with HPRT antibodies had a significantly higher incidence of cell death than both isotype treated samples and PC3 cells treated with the same concentrations of HPRT antibody. Finally, we determined that p53 had a significant impact on HPRT expression both internally and on the surface of cancer cells. These results suggest HPRT as a possible biomarker target for the treatment of patients with prostate cancer.
Assuntos
Divisão Celular/fisiologia , Citotoxicidade Imunológica/imunologia , Hipoxantina Fosforribosiltransferase/metabolismo , Neoplasias da Próstata/metabolismo , Linhagem Celular , Membrana Celular/metabolismo , Humanos , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/imunologia , Masculino , Neoplasias da Próstata/imunologia , Proteína Supressora de Tumor p53/metabolismoRESUMO
The regulatory circuits dictating CD8+ T cell responsiveness versus exhaustion during anti-tumor immunity are incompletely understood. Here we report that tumor-infiltrating antigen-specific PD-1+ TCF-1- CD8+ T cells express the immunosuppressive cytokine Fgl2. Conditional deletion of Fgl2 specifically in mouse antigen-specific CD8+ T cells prolongs CD8+ T cell persistence, suppresses phenotypic and transcriptomic signatures of T cell exhaustion, and improves control of the tumor. In a mouse model of chronic viral infection, PD-1+ CD8+ T cell-derived Fgl2 also negatively regulates virus-specific T cell responses. In humans, CD8+ T cell-derived Fgl2 is associated with poorer survival in patients with melanoma. Mechanistically, the dampened responsiveness of WT Fgl2-expressing CD8+ T cells, when compared to Fgl2-deficient CD8+ T cells, is underpinned by the cell-intrinsic interaction of Fgl2 with CD8+ T cell-expressed FcγRIIB and concomitant caspase 3/7-mediated apoptosis. Our results thus illuminate a cell-autonomous regulatory axis by which PD-1+ CD8+ T cells both express the receptor and secrete its ligand in order to mediate suppression of anti-tumor and anti-viral immunity.
Assuntos
Linfócitos T CD8-Positivos , Melanoma , Camundongos Endogâmicos C57BL , Receptor de Morte Celular Programada 1 , Receptores de IgG , Animais , Feminino , Humanos , Camundongos , Apoptose , Linfócitos T CD8-Positivos/imunologia , Melanoma/imunologia , Melanoma/genética , Camundongos Knockout , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptores de IgG/metabolismo , Receptores de IgG/genética , Receptores de IgG/imunologiaRESUMO
Checkpoint inhibition using Fc-containing monoclonal antibodies has emerged as a powerful therapeutic approach to augment antitumor immunity. We recently showed that FcγRIIB, the only inhibitory IgG-Fc receptor, is expressed on a population of highly differentiated effector CD8+ T cells in the tumors of mice and humans, raising the possibility that CD8+ T cell responses may be directly modulated by checkpoint inhibitor binding to T cell-expressed FcγRIIB. Here, we show that despite exhibiting strong proliferative and cytokine responses at baseline, human FcγRIIBpos CD8+ T cells exhibited reduced responsiveness to both PD-1 and CTLA-4 checkpoint inhibition as compared with FcγRIIBneg CD8+ T cells in vitro. Moreover, frequencies of FcγRIIBpos CD8+ T cells were reduced after treatment of patients with melanoma with nivolumab in vivo. This reduced responsiveness was FcγRIIB dependent, because conditional genetic deletion of FcγRIIB on tumor-specific CD8+ T cells improved response to checkpoint blockade in B16 and LLC mouse models of cancer. The limited responsiveness of FcγRIIBpos CD8+ T cells was also dependent on an intact Fc region of the checkpoint inhibitor, in that treatment with Fc-devoid anti-PD-1 F(ab) fragments resulted in increased proliferation of FcγRIIBpos CD8+ T cells, without altering the response of FcγRIIBneg CD8+ T cells. Last, the addition of FcγRIIB blockade improved efficacy of PD-1 checkpoint inhibition in mouse models of melanoma, lung, and colon cancer. These results illuminate an FcγRIIB-mediated, cell-autonomous mechanism of CD8+ T cell suppression, which limits the efficacy of checkpoint inhibitors during antitumor immune responses in vivo.
Assuntos
Neoplasias do Colo , Melanoma , Animais , Humanos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Linfócitos T CD8-Positivos , Citocinas , Modelos Animais de Doenças , Fragmentos Fc das Imunoglobulinas , Melanoma/tratamento farmacológico , Receptores de IgGRESUMO
In the setting of cancer, T cells upregulate coinhibitory molecules that attenuate TCR signaling and lead to the loss of proliferative capacity and effector function. Checkpoint inhibitors currently in clinical use have dramatically improved mortality from melanoma yet are not effective in all patients, suggesting that additional pathways may contribute to suppression of tumor-specific CD8+ T cell responses in melanoma. Here, we show that FcγRIIB, an inhibitory Fc receptor previously thought to be exclusively expressed on B cells and innate immune cells, is upregulated on tumor-infiltrating effector CD8+ T cells in an experimental melanoma model and expressed on CD8+ T cells in patients with melanoma. Genetic deficiency of Fcgr2b resulted in enhanced tumor-infiltrating CD8+ T cell responses and significantly reduced tumor burden. Adoptive transfer experiments of Fcgr2b-/- tumor antigen-specific T cells into FcγRIIB-sufficient hosts resulted in an increased frequency of tumor-infiltrating CD8+ T cells with greater effector function. Finally, FcγRIIB was expressed on CD8+ memory T cells isolated from patients with melanoma. These data illuminate a cell-intrinsic role for the FcγRIIB checkpoint in suppressing tumor-infiltrating CD8+ T cells.