Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Acc Chem Res ; 56(23): 3525-3534, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963266

RESUMO

ConspectusThe quantum chemical modeling of organic crystals and other molecular condensed-phase problems requires computationally affordable electronic structure methods which can simultaneously describe intramolecular conformational energies and intermolecular interactions accurately. To achieve this, we have developed a spin-component-scaled, dispersion-corrected second-order Møller-Plesset perturbation theory (SCS-MP2D) model. SCS-MP2D augments canonical MP2 with a dispersion correction which removes the uncoupled Hartree-Fock dispersion energy present in canonical MP2 and replaces it with a more reliable coupled Kohn-Sham treatment, all evaluated within the framework of Grimme's D3 dispersion model. The spin-component scaling is then used to improve the description of the residual (nondispersion) portion of the correlation energy.The SCS-MP2D model improves upon earlier corrected MP2 models in a few ways. Compared to the highly successful dispersion-corrected MP2C model, which is based solely on intermolecular perturbation theory, the SCS-MP2D dispersion correction improves the description of both inter- and intramolecular interactions. The dispersion correction can also be evaluated with trivial computational cost, and nuclear analytic gradients are computed readily to enable geometry optimizations. In contrast to earlier spin-component scaling MP2 models, the optimal spin-component scaling coefficients are only mildly sensitive to the choice of training data, and a single global parametrization of the model can describe both thermochemistry and noncovalent interactions.The resulting dispersion-corrected, spin-component-scaled MP2 (SCS-MP2D) model predicts conformational energies and intermolecular interactions with accuracy comparable to or better than those of many range-separated and double-hybrid density functionals, as is demonstrated on a variety of benchmark tests. Among the functionals considered here, only the revDSD-PBEP86-D3(BJ) functional gives consistently smaller errors in benchmark tests. The results presented also hint that further improvements of SCS-MP2D may be possible through a more robust fitting procedure for the seven empirical parameters.To demonstrate the performance of SCS-MP2D further, several applications to molecular crystal problems are presented. The three chosen examples all represent cases where density-driven delocalization error causes GGA or hybrid density functionals to artificially stabilize crystals exhibiting more extended π-conjugation. Our pragmatic strategy addresses the delocalization error by combining a periodic density functional theory (DFT) treatment of the infinite lattice with intramolecular/conformational energy corrections computed with SCS-MP2D. For the anticancer drug axitinib, applying the SCS-MP2D conformational energy correction produces crystal polymorph stabilities that are consistent with experiment, in contrast to earlier studies. For the crystal structure prediction of the ROY molecule, so named for its colorful red, orange, and yellow crystals, this approach leads to the first plausible crystal energy landscape, and it reveals that the lowest-energy polymorphs have already been found experimentally. Finally, in the context of photomechanical crystals, which transform light into mechanical work, these techniques are used to predict the structural transformations and extract design principles for maximizing the work performed.

2.
J Phys Chem A ; 127(12): 2846-2858, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36940431

RESUMO

Ab initio predictions of chemical shifts and electric field gradient (EFG) tensor components are frequently used to help interpret solid-state nuclear magnetic resonance (NMR) experiments. Typically, these predictions employ density functional theory (DFT) with generalized gradient approximation (GGA) functionals, though hybrid functionals have been shown to improve accuracy relative to experiment. Here, the performance of a dozen models beyond the GGA approximation are examined for the prediction of solid-state NMR observables, including meta-GGA, hybrid, and double-hybrid density functionals and second-order Møller-Plesset perturbation theory (MP2). These models are tested on organic molecular crystal data sets containing 169 experimental 13C and 15N chemical shifts and 114 17O and 14N EFG tensor components. To make these calculations affordable, gauge-including projector augmented wave (GIPAW) Perdew-Burke-Ernzerhof (PBE) calculations with periodic boundary conditions are combined with a local intramolecular correction computed at the higher level of theory. Within the context of typical NMR property calculations performed on a static, DFT-optimized crystal structure, the benchmarking finds that the double-hybrid DFT functionals produce errors versus experiment that are no smaller than those of hybrid functionals in the best cases, and they can be larger. MP2 errors versus experiment are even bigger. Overall, no practical advantages are found for using any of the tested double-hybrid functionals or MP2 to predict experimental solid-state NMR chemical shifts and EFG tensor components for routine organic crystals, especially given the higher computational cost of those methods. This finding likely reflects error cancellation benefiting the hybrid functionals. Improving the accuracy of the predicted chemical shifts and EFG tensors relative to experiment would probably require more robust treatments of the crystal structures, their dynamics, and other factors.

3.
Phys Chem Chem Phys ; 24(6): 3695-3712, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080535

RESUMO

Second-order Møller-Plesset perturbation theory (MP2) provides a valuable alternative to density functional theory for modeling problems in organic and biological chemistry. However, MP2 suffers from known limitations in the description of van der Waals (London) dispersion interactions and reaction thermochemistry. Here, a spin-component-scaled, dispersion-corrected MP2 model (SCS-MP2D) is proposed that addresses these weaknesses. The dispersion correction, which is based on Grimme's D3 formalism, replaces the uncoupled Hartree-Fock dispersion inherent in MP2 with a more robust coupled Kohn-Sham treatment. The spin-component scaling of the residual MP2 correlation energy then reduces the remaining errors in the model. This two-part correction strategy solves the problem found in earlier spin-component-scaled MP2 models where completely different spin-scaling parameters were needed for describing reaction energies versus intermolecular interactions. Results on 18 benchmark data sets and two challenging potential energy curves demonstrate that SCS-MP2D considerably improves upon the accuracy of MP2 for intermolecular interactions, conformational energies, and reaction energies. Its accuracy and computational cost are competitive with state-of-the-art density functionals such as DSD-BLYP-D3(BJ), revDSD-PBEP86-D3(BJ), ωB97X-V, and ωB97M-V for systems with ∼100 atoms.

4.
J Chem Phys ; 156(10): 104112, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35291791

RESUMO

Conformational polymorphs of organic molecular crystals represent a challenging test for quantum chemistry because they require careful balancing of the intra- and intermolecular interactions. This study examines 54 molecular conformations from 20 sets of conformational polymorphs, along with the relative lattice energies and 173 dimer interactions taken from six of the polymorph sets. These systems are studied with a variety of van der Waals-inclusive density functionals theory models; dispersion-corrected spin-component-scaled second-order Møller-Plesset perturbation theory (SCS-MP2D); and domain local pair natural orbital coupled cluster singles, doubles, and perturbative triples [DLPNO-CCSD(T)]. We investigate how delocalization error in conventional density functionals impacts monomer conformational energies, systematic errors in the intermolecular interactions, and the nature of error cancellation that occurs in the overall crystal. The density functionals B86bPBE-XDM, PBE-D4, PBE-MBD, PBE0-D4, and PBE0-MBD are found to exhibit sizable one-body and two-body errors vs DLPNO-CCSD(T) benchmarks, and the level of success in predicting the relative polymorph energies relies heavily on error cancellation between different types of intermolecular interactions or between intra- and intermolecular interactions. The SCS-MP2D and, to a lesser extent, ωB97M-V models exhibit smaller errors and rely less on error cancellation. Implications for crystal structure prediction of flexible compounds are discussed. Finally, the one-body and two-body DLPNO-CCSD(T) energies taken from these conformational polymorphs establish the CP1b and CP2b benchmark datasets that could be useful for testing quantum chemistry models in challenging real-world systems with complex interplay between intra- and intermolecular interactions, a number of which are significantly impacted by delocalization error.

5.
Chemphyschem ; 22(10): 1008-1017, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33604988

RESUMO

The ability to theoretically predict accurate NMR chemical shifts in solids is increasingly important due to the role such shifts play in selecting among proposed model structures. Herein, two theoretical methods are evaluated for their ability to assign 15 N shifts from guanosine dihydrate to one of the two independent molecules present in the lattice. The NMR data consist of 15 N shift tensors from 10 resonances. Analysis using periodic boundary or fragment methods consider a benchmark dataset to estimate errors and predict uncertainties of 5.6 and 6.2 ppm, respectively. Despite this high accuracy, only one of the five sites were confidently assigned to a specific molecule of the asymmetric unit. This limitation is not due to negligible differences in experimental data, as most sites exhibit differences of >6.0 ppm between pairs of resonances representing a given position. Instead, the theoretical methods are insufficiently accurate to make assignments at most positions.

6.
J Chem Phys ; 154(13): 134109, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832233

RESUMO

The ability to predict not only what organic crystal structures might occur but also the thermodynamic conditions under which they are the most stable would be extremely useful for discovering and designing new organic materials. The present study takes a step in that direction by predicting the temperature- and pressure-dependent phase boundary between the α and ß polymorphs of resorcinol using density functional theory (DFT) and the quasi-harmonic approximation. To circumvent the major computational bottleneck associated with computing a well-converged phonon density of states via the supercell approach, a recently developed approximation is employed, which combines a supercell phonon density of states from dispersion-corrected third-order density functional tight binding [DFTB3-D3(BJ)] with frequency corrections derived from a smaller B86bPBE-XDM functional DFT phonon calculation on the crystallographic unit cell. This mixed DFT/DFTB quasi-harmonic approach predicts the lattice constants and unit cell volumes to within 1%-2% at lower pressures. It predicts the thermodynamic phase boundary in almost perfect agreement with the experiment, although this excellent agreement does reflect fortuitous cancellation of errors between the enthalpy and entropy of transition.

7.
J Comput Chem ; 41(26): 2251-2265, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32748418

RESUMO

Ab initio nuclear magnetic resonance chemical shift prediction provides an important tool for interpreting and assigning experimental spectra, but it becomes computationally prohibitive in large systems. The computational costs can be reduced considerably by fragmentation of the large system into a series of contributions from many smaller subsystems. However, the presence of charged functional groups and the need to partition the system across covalent bonds create complications in biomolecules that typically require the use of large fragments and careful descriptions of the electrostatic environment. The present work shows how a model that combines chemical shielding contributions from non-overlapping monomer and dimer fragments embedded in a polarizable continuum model provides a simple, easy-to-implement, and computationally inexpensive approach for predicting chemical shifts in complex systems. The model's performance proves rather insensitive to the continuum dielectric constant, making the selection of the optimal embedding dielectric less critical. The PCM-embedded fragment model is demonstrated to perform well across systems ranging from molecular crystals to proteins.


Assuntos
Modelos Químicos , Eletricidade Estática , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Proteínas/química
8.
J Chem Phys ; 153(22): 224105, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317313

RESUMO

Phonon contributions to organic crystal structures and thermochemical properties can be significant, but computing a well-converged phonon density of states with lattice dynamics and periodic density functional theory (DFT) is often computationally expensive due to the need for large supercells. Using semi-empirical methods like density functional tight binding (DFTB) instead of DFT can reduce the computational costs dramatically, albeit with noticeable reductions in accuracy. This work proposes approximating the phonon density of states via a relatively inexpensive DFTB supercell treatment of the phonon dispersion that is then corrected by shifting the individual phonon modes according to the difference between the DFT and DFTB phonon frequencies at the Γ-point. The acoustic modes are then computed at the DFT level from the elastic constants. In several small-molecule crystal test cases, this combined approach reproduces DFT thermochemistry with kJ/mol accuracy and 1-2 orders of magnitude less computational effort. Finally, this approach is applied to computing the free energy differences between the five crystal polymorphs of oxalyl dihydrazide.

9.
Phys Chem Chem Phys ; 21(27): 14799-14810, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31225538

RESUMO

Knowledge of molecular crystal sublimation equilibrium data is vital in many industrial processes, but this data can be difficult to measure experimentally for low-volatility species. Theoretical prediction of sublimation pressures could provide a useful supplement to experiment, but the exponential temperature dependence of sublimation (or any saturated vapor) pressure curve makes this challenging. An uncertainty of only a few percent in the sublimation enthalpy or entropy can propagate to an error in the sublimation pressure exceeding several orders of magnitude for a given temperature interval. Despite this fundamental difficulty, this paper performs some of the first ab initio predictions of sublimation pressure curves. Four simple molecular crystals (ethane, methanol, benzene, and imidazole) have been selected for a case study showing the currently achievable accuracy of quantum chemistry calculations. Fragment-based ab initio techniques and the quasi-harmonic approximation are used for calculations of cohesive and phonon properties of the crystals, while the vapor phase is treated by the ideal gas model. Ab initio sublimation pressure curves for model compounds are compared against their experimental counterparts. The computational uncertainties are estimated, weak points of the computational methodology are identified, and further improvements are proposed.

10.
Phys Chem Chem Phys ; 21(27): 14992-15000, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31237586

RESUMO

A fast, straightforward method for computing NMR chemical shieldings of crystalline solids is proposed. The method combines the advantages of both conventional approaches: periodic calculations using plane-wave basis sets and molecular computational approaches. The periodic calculations capture the periodic nature of crystalline solids, but the computational level of the electronic structure calculation is limited to general-gradient-approximation (GGA) density functionals. It is demonstrated that a correction to the GGA result calculated on an isolated molecule at a higher level of theory significantly improves the correlations between experimental and calculated chemical shifts while adding almost no additional computational cost. Corrections calculated with a hybrid density functional improved the accuracy of 13C, 15N and 17O chemical shift predictions significantly and allowed identifying errors in previously published experimental data. Applications of the approach to crystalline isocytosine, methacrylamide, and testosterone are presented.

11.
J Chem Phys ; 150(15): 151103, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005093

RESUMO

Classical polarizable force fields effectively incorporate the dynamic response of the electronic charge distributions into molecular dynamics simulations, but they do so at a significant increase in computational cost compared to simpler models. Here, we demonstrate how one can improve the stability of a polarizable force field molecular dynamics simulation or accelerate the evaluation of self-consistent polarization via a simple extension of the predictor in the always stable predictor-corrector method. Specifically, increasing the number of prior steps used in the predictor from 6 to 16 reduces the energy drift by an order of magnitude. Alternatively, for a given level of energy drift, the induced dipoles can be obtained ∼20% faster due to the reduced number of self-consistent field iterations required to maintain energetic stability. The extended-history predictor is straightforward to implement and involves minimal computational overhead.

12.
Faraday Discuss ; 211(0): 181-207, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30027972

RESUMO

Quasi-harmonic approaches provide an economical route to modeling the temperature dependence of molecular crystal structures and properties. Several studies have demonstrated good performance of these models, at least for rigid molecules, when using fragment-based approaches with correlated wavefunction techniques. Many others have found success employing dispersion-corrected density functional theory (DFT). Here, a hierarchy of models in which the energies, geometries, and phonons are computed either with correlated methods or DFT are examined to identify which combinations produce useful predictions for properties such as the molar volume, enthalpy, and entropy as a function of temperature. The results demonstrate that refining DFT geometries and phonons with single-point energies based on dispersion-corrected second-order Møller-Plesset perturbation theory can provide clear improvements in the molar volumes and enthalpies compared to those obtained from DFT alone. Predicted entropies, which are governed by vibrational contributions, benefit less clearly from the hybrid schemes. Using these hybrid techniques, the room-temperature thermochemistry of acetaminophen (paracetamol) is predicted to address the discrepancy between two experimental sublimation enthalpy measurements.

13.
Inorg Chem ; 57(21): 13386-13396, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30289694

RESUMO

Small changes in steric bulk at the terminus of bis-iminopyridine ligands can effect large changes in the spin state of self-assembled Fe(II)-iminopyridine cage complexes. If the added bulk is properly matched with ligands that are either sufficiently flexible to allow twisted octahedral geometries at the Fe centers or can assemble with unusual mer configurations at the metals, room temperature high spin Fe(II) cages can be synthesized. These complexes maintain their high spin state in solution at low temperatures and have been characterized by X-ray crystallographic and computational methods. The high spin M2L3 meso-helicate and M4L6 cage complexes display longer N-Fe bond distances and larger interligand N-Fe-N bond angles than their diamagnetic counterparts, and these structural changes invert the ligand selectivity in narcissistic self-sorting and accelerate subcomponent exchange rates. The paramagnetic cages can be easily converted to diamagnetic cages by subcomponent exchange under mild conditions, and the intermediates of the exchange process can be visualized in situ by NMR analysis.

14.
Inorg Chem ; 57(7): 4155-4163, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29561595

RESUMO

A strained, "springloaded" Fe2L3 iminopyridine mesocate shows highly variable reactivity upon postassembly reaction with competitive diamines. The strained assembly is reactive toward transimination in minutes at ambient temperature and allows observation of kinetically trapped intermediates in the self-assembly pathway. When diamines are used that can only form less favored cage products upon full equilibration, trapped ML3 fragments with pendant, "hanging" NH2 groups are selectively formed instead. Slight variations in diamine structure have large effects on the product outcome: less rigid diamines convert the mesocate to more favored self-assembled cage complexes under mild conditions and allow observation of heterocomplex intermediates in the displacement pathway. The mesocate allows control of equilibrium processes and direction of product outcomes via small, iterative changes in added subcomponent structure and provides a method of accessing metal-ligand cage structures not normally observed in multicomponent Fe-iminopyridine self-assembly.

15.
Chem Rev ; 116(9): 5567-613, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27008426

RESUMO

Interest in molecular crystals has grown thanks to their relevance to pharmaceuticals, organic semiconductor materials, foods, and many other applications. Electronic structure methods have become an increasingly important tool for modeling molecular crystals and polymorphism. This article reviews electronic structure techniques used to model molecular crystals, including periodic density functional theory, periodic second-order Møller-Plesset perturbation theory, fragment-based electronic structure methods, and diffusion Monte Carlo. It also discusses the use of these models for predicting a variety of crystal properties that are relevant to the study of polymorphism, including lattice energies, structures, crystal structure prediction, polymorphism, phase diagrams, vibrational spectroscopies, and nuclear magnetic resonance spectroscopy. Finally, tools for analyzing crystal structures and intermolecular interactions are briefly discussed.


Assuntos
Modelos Moleculares , Aspirina/química , Benzeno/química , Dióxido de Carbono/química , Cristalização , Espectroscopia de Ressonância Magnética , Método de Monte Carlo , Oxalatos/química , Espectrofotometria Infravermelho , Análise Espectral Raman
16.
Solid State Nucl Magn Reson ; 96: 10-18, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30273904

RESUMO

Standard nuclear magnetic resonance (NMR) spectroscopy experiments measure isotropic chemical shifts, but measuring the chemical shielding anisotropy (CSA) tensor can provide additional insights into solid state chemical structures. Interpreting the principal components of these tensors is facilitated by first-principles chemical shielding tensor predictions. Here, the ability to predict molecular crystal CSA tensor components for 13C and 15N nuclei with fragment-based electronic structure techniques is explored. Similar to what has been found previously for isotropic chemical shifts, the benchmarking demonstrates that fragment-based techniques can accurately reproduce CSA tensor components. The use of hybrid density functionals like PBE0 or B3LYP provide higher accuracy than generalized gradient approximation functionals like PBE. Unlike for planewave density functional techniques, hybrid density functionals can be employed routinely with modest computational cost in fragment approaches. Finally, good consistency between the regression parameters used to map either isotropic shieldings or CSA tensor components is demonstrated, providing further evidence for the quality of the models and highlighting that models trained for isotropic shifts can also be applied to CSA tensor components.

17.
Angew Chem Int Ed Engl ; 57(38): 12365-12369, 2018 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-29740926

RESUMO

Molecular dipoles present important, but underutilized, methods for guiding electron transfer (ET) processes. While dipoles generate fields of Gigavolts per meter in their vicinity, reported differences between rates of ET along versus against dipoles are often small or undetectable. Herein we show unprecedentedly large dipole effects on ET. Depending on their orientation, dipoles either ensure picosecond ET, or turn ET completely off. Furthermore, favorable dipole orientation makes ET possible even in lipophilic medium, which appears counterintuitive for non-charged donor-acceptor systems. Our analysis reveals that dipoles can substantially alter the ET driving force for low solvent polarity, which accounts for these unique trends. This discovery opens doors for guiding forward ET processes while suppressing undesired backward electron transduction, which is one of the holy grails of photophysics and energy science.

18.
Acc Chem Res ; 49(11): 2501-2508, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27754668

RESUMO

Molecular crystals occur widely in pharmaceuticals, foods, explosives, organic semiconductors, and many other applications. Thanks to substantial progress in electronic structure modeling of molecular crystals, attention is now shifting from basic crystal structure prediction and lattice energy modeling toward the accurate prediction of experimentally observable properties at finite temperatures and pressures. This Account discusses how fragment-based electronic structure methods can be used to model a variety of experimentally relevant molecular crystal properties. First, it describes the coupling of fragment electronic structure models with quasi-harmonic techniques for modeling the thermal expansion of molecular crystals, and what effects this expansion has on thermochemical and mechanical properties. Excellent agreement with experiment is demonstrated for the molar volume, sublimation enthalpy, entropy, and free energy, and the bulk modulus of phase I carbon dioxide when large basis second-order Møller-Plesset perturbation theory (MP2) or coupled cluster theories (CCSD(T)) are used. In addition, physical insight is offered into how neglect of thermal expansion affects these properties. Zero-point vibrational motion leads to an appreciable expansion in the molar volume; in carbon dioxide, it accounts for around 30% of the overall volume expansion between the electronic structure energy minimum and the molar volume at the sublimation point. In addition, because thermal expansion typically weakens the intermolecular interactions, neglecting thermal expansion artificially stabilizes the solid and causes the sublimation enthalpy to be too large at higher temperatures. Thermal expansion also frequently weakens the lower-frequency lattice phonon modes; neglecting thermal expansion causes the entropy of sublimation to be overestimated. Interestingly, the sublimation free energy is less significantly affected by neglecting thermal expansion because the systematic errors in the enthalpy and entropy cancel somewhat. Second, because solid state nuclear magnetic resonance (NMR) plays an increasingly important role in molecular crystal studies, this Account discusses how fragment methods can be used to achieve higher-accuracy chemical shifts in molecular crystals. Whereas widely used plane wave density functional theory models are largely restricted to generalized gradient approximation (GGA) functionals like PBE in practice, fragment methods allow the routine use of hybrid density functionals with only modest increases in computational cost. In extensive molecular crystal benchmarks, hybrid functionals like PBE0 predict chemical shifts with 20-30% higher accuracy than GGAs, particularly for 1H, 13C, and 15N nuclei. Due to their higher sensitivity to polarization effects, 17O chemical shifts prove slightly harder to predict with fragment methods. Nevertheless, the fragment model results are still competitive with those from GIPAW. The improved accuracy achievable with fragment approaches and hybrid density functionals increases discrimination between different potential assignments of individual shifts or crystal structures, which is critical in NMR crystallography applications. This higher accuracy and greater discrimination are highlighted in application to the solid state NMR of different acetaminophen and testosterone crystal forms.


Assuntos
Cristalografia/métodos , Espectroscopia de Ressonância Magnética/métodos , Termodinâmica , Acetaminofen/química , Modelos Químicos , Modelos Moleculares , Teoria Quântica , Temperatura , Testosterona/química
19.
Chemphyschem ; 18(16): 2225-2232, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28589651

RESUMO

NMR studies measuring chemical shift tensors are increasingly being employed to assign structure in difficult-to-crystallize solids. For small organic molecules, such studies usually focus on 13 C sites, but proteins and peptides are more commonly described using 15 N amide sites. An important and often neglected consideration when measuring shift tensors is the evaluation of their accuracy against benchmark standards, where available. Here we measure 15 N tensors in the dipeptide glycylglycine at natural abundance using the slow-spinning FIREMAT method with SPINAL-64 decoupling. The accuracy of these 15 N tensors is evaluated by comparing to benchmark single crystal NMR 15 N measurements and found to be statistically indistinguishable. These FIREMAT experimental results are further used to evaluate the accuracy of theoretical predictions of tensors from four different density functional theory (DFT) methods that include lattice effects. The best theoretical approach provides a root mean square (rms) difference of ±3.9 ppm and is obtained from a fragment-based method and the PBE0 density functional.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Peptídeos/química , Modelos Moleculares , Conformação Proteica , Teoria Quântica
20.
Phys Chem Chem Phys ; 19(44): 29940-29953, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-29090305

RESUMO

To investigate the performance of quasi-harmonic electronic structure methods for modeling molecular crystals at finite temperatures and pressures, thermodynamic properties are calculated for the low-temperature α polymorph of crystalline methanol. Both density functional theory (DFT) and ab initio wavefunction techniques up to coupled cluster theory with singles, doubles, and perturbative triples (CCSD(T)) are combined with the quasi-harmonic approximation to predict energies, structures, and properties. The accuracy, reliability, and uncertainties of the individual quantum-chemical methods are assessed via detailed comparison of calculated and experimental data on structural properties (density) and thermodynamic properties (isobaric heat capacity). Performance of individual methods is also studied in context of the hierarchy of the quantum-chemical methods. The results indicate that while some properties such as the sublimation enthalpy and thermal expansivity can be modeled fairly well, other properties such as the molar volume and isobaric heat capacities are harder to predict reliably. The errors among the energies, structures, and phonons are closely coupled, and most accurate predictions here appear to arise from fortuitous error compensation among the different contributions. This study highlights how sensitive molecular crystal property predictions can be to the underlying model approximations and the significant challenges inherent in first-principles predictions of solid state structures and thermochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA