Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J Mol Sci ; 24(10)2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37240083

RESUMO

Amniotic membrane and amniotic fluid derived cells are regarded as a promising stem cell source for developing regenerative medicine techniques, although they have never been tested on male infertility diseases such as varicocele (VAR). The current study aimed to examine the effects of two distinct cell sources, human Amniotic Fluid Mesenchymal Stromal Cells (hAFMSCs) and amniotic epithelial cells (hAECs), on male fertility outcomes in a rat induced VAR model. To explain cell-dependent enhancement of reproductive outcomes in rats transplanted with hAECs and hAFMSCs, insights on testis morphology, endocannabinoid system (ECS) expression and inflammatory tissue response have been carried out alongside cell homing assessment. Both cell types survived 120 days post-transplantation by modulating the ECS main components, promoting proregenerative M2 macrophages (Mφ) recruitment and a favorable anti-inflammatory IL10 expression pattern. Of note, hAECs resulted to be more effective in restoring rat fertility rate by enhancing both structural and immunoresponse mechanisms. Moreover, immunofluorescence analysis revealed that hAECs contributed to CYP11A1 expression after transplantation, whereas hAFMSCs moved towards the expression of Sertoli cell marker, SOX9, confirming a different contribution into the mechanisms leading to testis homeostasis. These findings highlight, for the first time, a distinct role of amniotic membrane and amniotic fluid derived cells in male reproduction, thus proposing innovative targeted stem-based regenerative medicine protocols for remedying high-prevalence male infertility conditions such as VAR.


Assuntos
Infertilidade Masculina , Varicocele , Ratos , Masculino , Humanos , Animais , Células Epiteliais/metabolismo , Varicocele/terapia , Varicocele/metabolismo , Âmnio , Líquido Amniótico , Fertilidade , Infertilidade Masculina/metabolismo , Diferenciação Celular
2.
Int J Mol Sci ; 23(11)2022 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-35682981

RESUMO

The intention of this Special Edition was to collect review and original research articles that illustrate and stimulate the growing efforts to highlight the mechanisms of action of gonadotropins, as well as deepen our understanding of their biological roles in health and disease, aiming at revealing novel therapeutic opportunities in reproductive and regenerative medicine [...].


Assuntos
Gonadotropinas , Reprodução , Reprodução/fisiologia , Fenômenos Fisiológicos Virais
3.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34948315

RESUMO

The development of an adequate blood vessel network is crucial for the accomplishment of ovarian follicle growth and ovulation, which is necessary to support the proliferative and endocrine functions of the follicular cells. Although the Vascular Endothelial Growth Factor (VEGF) through gonadotropins guides ovarian angiogenesis, the role exerted by the switch on of Progesterone (P4) during the periovulatory phase remains to be clarified. The present research aimed to investigate in vivo VEGF-mediated mechanisms by inducing the development of periovulatory follicles using a pharmacologically validated synchronization treatment carried out in presence or absence of P4 receptor antagonist RU486. Spatio-temporal expression profiles of VEGF, FLT1, and FLK1 receptors and the two major MAPK/ERKs and PI3K/AKT downstream pathways were analyzed on granulosa and on theca compartment. For the first time, the results demonstrated that in vivo administration of P4 antagonist RU486 inhibits follicular VEGF receptors' signaling mainly acting on the theca layer by downregulating the activation of ERKs and AKTs. Under the effect of RU486, periovulatory follicles' microarchitecture did not move towards the periovulatory stage. The present evidence provides new insights on P4 in vivo biological effects in driving vascular and tissue remodeling during the periovulatory phase.


Assuntos
Mifepristona/farmacologia , Folículo Ovariano/efeitos dos fármacos , Progesterona/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Feminino , Gonadotropinas/metabolismo , Células da Granulosa/efeitos dos fármacos , Células da Granulosa/metabolismo , Humanos , Folículo Ovariano/metabolismo , Ovário/efeitos dos fármacos , Ovário/metabolismo , Suínos
4.
Molecules ; 25(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664582

RESUMO

Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.


Assuntos
Materiais Biocompatíveis , Células Epiteliais/citologia , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Âmnio/citologia , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Adesão Celular , Diferenciação Celular , Células Cultivadas , Interações Hidrofóbicas e Hidrofílicas , Fenômenos Mecânicos , Ovinos
5.
J Anat ; 226(2): 126-42, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25546075

RESUMO

Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2 months of pregnancy: 14 cm of length) and late fetal (4 months: 40 cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-ß~1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models.


Assuntos
Tendão do Calcâneo , Ovinos , Tendão do Calcâneo/anatomia & histologia , Tendão do Calcâneo/citologia , Tendão do Calcâneo/embriologia , Tendão do Calcâneo/crescimento & desenvolvimento , Tendão do Calcâneo/metabolismo , Animais , Biomarcadores/metabolismo , Western Blotting/veterinária , Conexinas/metabolismo , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica/veterinária , Imuno-Histoquímica/veterinária , Fator de Crescimento Neural/metabolismo , Osteocalcina/metabolismo , Células-Tronco Pluripotentes/metabolismo , Ovinos/embriologia , Ovinos/crescimento & desenvolvimento , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Craniofac Surg ; 26(3): 737-40, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25974782

RESUMO

Sinus augmentation is a routine surgical procedure in dentistry. At present, various animal models are available for the research purpose on this topic. In particular, for the first time, we have performed a morphological study on sheep sinus, using cone beam computed tomography (CBCT), to precisely define the anatomy of the ovine sinus. Then, we compared the sheep and human sinus morphological parameters, in order to uniform the research approach to the sinus augmentation procedures and to standardize this experimental model. Six fresh heads of adult female sheep were studied with CBCT and histologic examination to determine the dimensions and the organization of the ovine maxillary sinus. The comparison of the dimensional values between man and sheep shows evident differences between the two species; CBCT offers detailed information for studying normal maxillary sinus. Human and sheep maxillary sinus show anatomical differences that must be taken into account in experimental procedures.


Assuntos
Modelos Animais , Levantamento do Assoalho do Seio Maxilar/métodos , Pesquisa Translacional Biomédica , Adulto , Animais , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Ovinos
7.
Mater Today Bio ; 25: 101001, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38420144

RESUMO

Tendon diseases pose a significant challenge in regenerative medicine due to the limited healing capacity of this tissue. Successful tendon regeneration requires a combination of angiogenesis, immune response, and tenogenesis processes. An effective tendon engineering (TE) strategy must finely tune this systems' interplay toward homeostasis. This study explores in vitro the paracrine influence of amniotic epithelial stem cells (AECs) engineered on a validated 3D electrospun PLGA scaffolds on HUVECs (angiogenesis), PBMCs/Jurkat (immune response), and AECs (tenogenic stem cell activation). The results revealed the role of scaffold's topology and topography in significantly modulating the paracrine profile of the cells. In detail, AECs basal release of bioactive molecules was boosted in the cells engineered on 3D scaffolds, in particular VEGF-D, b-FGF, RANTES, and PDGF-BB (p < 0.0001 vs. CMCTR). Moreover, biological tests demonstrated 3D scaffolds' proactive role in potentiating AECs' paracrine inhibition on PBMCs proliferation (CM3Dvs. CTR, p < 0.001) and LPS-mediated Jurkat activation with respect to controls (CM3D and CM2Dvs. CTR, p < 0.01 and p < 0.05, respectively), without exerting any in vitro pro-angiogenic role in promoting HUVECs proliferation and tubule formation. Teno-inductive paracrine ability of AECs engineered on 3D scaffolds was assessed on co-cultured ones, which formed tendon-like structures. These latter demonstrated an upregulation of tendon-related genes (SCX, THBS4, COL1, and TNMD) and the expression TNMD and COL1 proteins. Overall, this research underscores the pivotal role of the 3D topology and topography of PLGA tendon mimetic scaffolds in orchestrating effective tendon regeneration through modulating cell behavior and crosstalk between engineered stem cells and different subpopulations in the damaged tendon.

8.
Clin Oral Investig ; 17(7): 1661-75, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23064983

RESUMO

OBJECTIVES: The present research has been performed to evaluate whether a commercial magnesium-enriched hydroxyapatite (MgHA)/collagen-based scaffold engineered with ovine amniotic fluid mesenchymal cells (oAFMC) could improve bone regeneration process in vivo. MATERIALS AND METHODS: Bilateral sinus augmentation was performed on eight adult sheep in order to compare the tissue regeneration process at 45 and 90 days after implantation of the oAFMC-engineered scaffold (Test Group) or of the scaffold alone (Ctr Group). The process of tissue remodeling was analyzed through histological, immunohistochemical, and morphometric analyses by calculating the proliferation index (PI) of oAFMC loaded on the scaffold, the total vascular area (VA), and vascular endothelial growth factor (VEGF) expression levels within the grafted area. RESULTS: MgHA/collagen-based scaffold showed high biocompatibility preserving the survival of oAFMC for 90 days in grafted sinuses. The use of oAFMC increased bone deposition and stimulated a more rapid angiogenic reaction, thus probably supporting the higher cell PI recorded in cell-treated sinuses. A significantly higher VEGF expression (Test vs. Ctr Group; p = 0.0004) and a larger total VA (p = 0.0006) were detected in the Test Group at 45 days after surgery. The PI was significantly higher (p = 0.027) at 45 days and became significantly lower at 90 days (p = 0.0007) in the Test Group sinuses, while the PI recorded in the Ctr Group continued to increase resulting to a significantly higher PI at day 90 (CTR day 45 vs. CTR day 90; p = 0.022). CONCLUSIONS: The osteoinductive effect of a biomimetic commercial scaffold may be significantly improved by the presence of oAFMC. CLINICAL RELEVANCE: The amniotic fluid mesenchymal cell (AFMC) may represent a novel, largely and easily accessible source of mesenchymal stem cells to develop cell-based therapy for maxillofacial surgery.


Assuntos
Líquido Amniótico/citologia , Transplante de Células-Tronco Mesenquimais , Levantamento do Assoalho do Seio Maxilar/métodos , Engenharia Tecidual/métodos , Aloenxertos , Animais , Materiais Biocompatíveis , Regeneração Óssea , Proliferação de Células , Durapatita/farmacologia , Citometria de Fluxo , Imuno-Histoquímica , Magnésio/farmacologia , Modelos Animais , Osteogênese , Carneiro Doméstico , Alicerces Teciduais , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Front Vet Sci ; 10: 1175346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180059

RESUMO

There is high clinical demand for the resolution of tendinopathies, which affect mainly adult individuals and animals. Tendon damage resolution during the adult lifetime is not as effective as in earlier stages where complete restoration of tendon structure and property occurs. However, the molecular mechanisms underlying tendon regeneration remain unknown, limiting the development of targeted therapies. The research aim was to draw a comparative map of molecules that control tenogenesis and to exploit systems biology to model their signaling cascades and physiological paths. Using current literature data on molecular interactions in early tendon development, species-specific data collections were created. Then, computational analysis was used to construct Tendon NETworks in which information flow and molecular links were traced, prioritized, and enriched. Species-specific Tendon NETworks generated a data-driven computational framework based on three operative levels and a stage-dependent set of molecules and interactions (embryo-fetal or prepubertal) responsible, respectively, for signaling differentiation and morphogenesis, shaping tendon transcriptional program and downstream modeling of its fibrillogenesis toward a mature tissue. The computational network enrichment unveiled a more complex hierarchical organization of molecule interactions assigning a central role to neuro and endocrine axes which are novel and only partially explored systems for tenogenesis. Overall, this study emphasizes the value of system biology in linking the currently available disjointed molecular data, by establishing the direction and priority of signaling flows. Simultaneously, computational enrichment was critical in revealing new nodes and pathways to watch out for in promoting biomedical advances in tendon healing and developing targeted therapeutic strategies to improve current clinical interventions.

10.
Front Vet Sci ; 10: 1281040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38179329

RESUMO

Introduction: Tendon disorders present significant challenges in the realm of musculoskeletal diseases, affecting locomotor activity and causing pain. Current treatments often fall short of achieving complete functional recovery of the tendon. It is crucial to explore, in preclinical research, the pathways governing the loss of tissue homeostasis and its regeneration. In this context, this study aimed to establish a correlation between the unbiased locomotor activity pattern of CRL:CD1 (ICR) mice exposed to uni- or bilateral Achilles tendon (AT) experimental injuries and the key histomorphometric parameters that influence tissue microarchitecture recovery. Methods: The study involved the phenotyping of spontaneous and voluntary locomotor activity patterns in male mice using digital ventilated cages (DVC®) with access to running wheels either granted or blocked. The mice underwent non-intrusive 24/7 long-term activity monitoring for the entire study period. This period included 7 days of pre-injury habituation followed by 28 days post-injury. Results and discussion: The results revealed significant variations in activity levels based on the type of tendon injury and access to running wheels. Notably, mice with bilateral lesions and unrestricted wheel access exhibited significantly higher activity after surgery. Extracellular matrix (ECM) remodeling, including COL1 deposition and organization, blood vessel remodeling, and metaplasia, as well as cytological tendon parameters, such as cell alignment and angle deviation were enhanced in surgical (bilateral lesion) and husbandry (free access to wheels) groups. Interestingly, correlation matrix analysis uncovered a strong relationship between locomotion and microarchitecture recovery (cell alignment and angle deviation) during tendon healing. Overall, this study highlights the potential of using mice activity metrics obtained from a home-cage monitoring system to predict tendon microarchitecture recovery at both cellular and ECM levels. This provides a scalable experimental setup to address the challenging topic of tendon regeneration using innovative and animal welfare-compliant strategies.

11.
iScience ; 26(9): 107582, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37680464

RESUMO

Epithelial-mesenchymal transition (EMT) changes cell phenotype by affecting immune properties of amniotic epithelial cells (AECs). The present study shows how the response to lipopolysaccharide of cells collected pre- (eAECs) and post-EMT (mAECs) induces changes in their transcriptomics profile. In fact, eAECs mainly upregulate genes involved in antigen-presenting response, whereas mAECs over-express soluble inflammatory mediator transcripts. Consistently, network analysis identifies CIITA and Nrf2 as main drivers of eAECs and mAECs immune response, respectively. As a consequence, the depletion of CIITA and Nrf2 impairs the ability of eAECs and mAECs to inhibit lymphocyte proliferation or macrophage-dependent IL-6 release, thus confirming their involvement in regulating immune response. Deciphering the mechanisms controlling the immune function of AECs pre- and post-EMT represents a step forward in understanding key physiological events wherein these cells are involved (pregnancy and labor). Moreover, controlling the immunomodulatory properties of eAECs and mAECs may be essential in developing potential strategies for regenerative medicine applications.

12.
Cell Biol Int ; 36(1): 7-19, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21880014

RESUMO

We set out to characterize stemness properties and osteogenic potential of sheep AEC (amniotic epithelial cells). AEC were isolated from 3-month-old fetuses and expanded in vitro for 12 passages. The morphology, surface markers, stemness markers and osteogenic differentiation were inspected after 1, 6 and 12 passages of expansion, with an average doubling time of 24 h. AEC clearly expressed the stemness markers Oct-3/4 (octamer-binding protein-3/4), Nanog, Sox2 and TERT (telomerase reverse transcriptase) and displayed low levels of global DNA methylation. Culture had moderate effects on cell conditions; some adhesion molecules progressively disappeared from the cell surface, and the expression of Sox2 and TERT was slightly reduced while Nanog increased. No changes occurred in the levels of DNA methylation. Cells organized in 3D spheroids were used for IVD (in vitro differentiation). Within these structures the cells developed a complex intercellular organization that involved extensive intercellular coupling despite continuous cell migration. Marked deposition of calcein in the ECM (extracellular matrix), increased ALP (alkaline phosphatase) activity, expression of bone-related genes (osteocalcin) and the matrix mineralization shown by Alizarin Red staining demonstrate that AEC can undergo rapid and extensive osteogenic differentiation. AEC introduced in experimental bone lesions survived in the site of implantation for 45 days and supported consistent bone neoformation, thus showing promising potential applications in osteogenic regenerative medicine.


Assuntos
Âmnio/citologia , Células Epiteliais/citologia , Osteogênese , Fosfatase Alcalina/metabolismo , Animais , Cálcio/metabolismo , Diferenciação Celular , Metilação de DNA , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Proteínas de Homeodomínio/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Osteocalcina/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Ovinos , Telomerase/metabolismo
13.
Biology (Basel) ; 11(5)2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35625409

RESUMO

The challenge of osteoarthritis (OA) is to find a minimally invasive orthobiological therapy to contrast OA progression, on inflammatory and structural fronts. The aim of the present study is to compare the effects of an intra-articular injection of three orthobiological treatments, autologous culture expanded adipose-derived mesenchymal stromal cells (ADSCs), autologous stromal vascular fraction (SVF) and allogenic culture expanded amniotic epithelial stem cells (AECs), in an animal model of OA. OA was induced in 24 sheep by bilateral lateral meniscectomy and, at 3 and 6 months post-treatment, the results were analyzed with macroscopy, histology, histomorphometry, and biochemistry. All the three treatments showed better results than control (injection of NaCl), but SVF and AECs showed superiority over ADSCs, because they induced higher cartilage regeneration and lower inflammation. SVF showed better results than AECs at 3 and 6 months. To conclude, SVF seems to be more favorable than the other biological options, because it is easily obtained and rapidly used after harvesting, with good healing potential. AECs cause no discomfort and could be also considered for the treatment of OA joints.

14.
Cells ; 11(3)2022 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-35159271

RESUMO

Amniotic epithelial stem cells (AECs) are largely studied for their pro-regenerative properties. However, it remains undetermined if low oxygen (O2) levels that AECs experience in vivo can be of value in maintaining their biological properties after isolation. To this aim, the present study has been designed to evaluate the effects of a hypoxia-mimetic agent, cobalt chloride (CoCl2), on AECs' stemness and angiogenic activities. First, a CoCl2 dose-effect was performed to select the concentration able to induce hypoxia, through HIF-1α stabilization, without promoting any cytotoxicity effect assessed through the analysis of cell vitality, proliferation, and apoptotic-related events. Then, the identified CoCl2 dose was evaluated on the expression and angiogenic properties of AECs' stemness markers (OCT-4, NANOG, SOX-2) by analysing VEGF expression, angiogenic chemokines' profiles, and AEC-derived conditioned media activity through an in vitro angiogenic xeno-assay. Results demonstrated that AECs are sensitive to the cytotoxicity effects of CoCl2. The unique concentration leading to HIF-1α stabilization and nuclear translocation was 10 µM, preserving cell viability and proliferation up to 48 h. CoCl2 exposure did not modulate stemness markers in AECs while progressively decreasing VEGF expression. On the contrary, CoCl2 treatment promoted a significant short-term release of angiogenic chemokines in culture media (CM). The enrichment in bio-active factors was confirmed by the ability of CoCl2-derived CM to induce HUVEC growth and the cells' organization in tubule-like structures. These findings demonstrate that an appropriate dose of CoCl2 can be adopted as a hypoxia-mimetic agent in AECs. The short-term, chemical-induced hypoxic condition can be targeted to enhance AECs' pro-angiogenic properties by providing a novel approach for stem cell-free therapy protocols.


Assuntos
Hipóxia , Fator A de Crescimento do Endotélio Vascular , Animais , Cobalto , Meios de Cultivo Condicionados/farmacologia , Células Epiteliais/metabolismo , Oxigênio , Ovinos , Fator A de Crescimento do Endotélio Vascular/metabolismo
15.
Biomedicines ; 10(10)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36289840

RESUMO

Tendon tissue engineering aims to develop effective implantable scaffolds, with ideally the native tissue's characteristics, able to drive tissue regeneration. This research focused on fabricating tendon-like PLGA 3D biomimetic scaffolds with highly aligned fibers and verifying their influence on the biological potential of amniotic epithelial stem cells (AECs), in terms of tenodifferentiation and immunomodulation, with respect to fleeces. The produced 3D scaffolds better resemble native tendon tissue, both macroscopically, microscopically, and biomechanically. From a biological point of view, these constructs were able to instruct AECs genotypically and phenotypically. In fact, cells engineered on 3D scaffolds acquired an elongated tenocyte-like morphology; this was different from control AECs, which retained their polygonal morphology. The boosted AECs tenodifferentiation by 3D scaffolds was confirmed by the upregulation of tendon-related genes (SCX, COL1 and TNMD) and TNMD protein expression. The produced constructs also prompted AECs' immunomodulatory potential, both at the gene and paracrine level. This enhanced immunomodulatory profile was confirmed by a greater stimulatory effect on THP-1-activated macrophages. These biological effects have been related to the mechanotransducer YAP activation evidenced by its nuclear translocation. Overall, these results support the biomimicry of PLGA 3D scaffolds, revealing that not only fiber alignment but also scaffold topology provide an in vitro favorable tenodifferentiative and immunomodulatory microenvironment for AECs that could potentially stimulate tendon regeneration.

16.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053383

RESUMO

Tendon injuries are at the frontier of innovative approaches to public health concerns and sectoral policy objectives. Indeed, these injuries remain difficult to manage due to tendon's poor healing ability ascribable to a hypo-cellularity and low vascularity, leading to the formation of a fibrotic tissue affecting its functionality. Tissue engineering represents a promising solution for the regeneration of damaged tendons with the aim to stimulate tissue regeneration or to produce functional implantable biomaterials. However, any technological advancement must take into consideration the role of the immune system in tissue regeneration and the potential of biomaterial scaffolds to control the immune signaling, creating a pro-regenerative environment. In this context, immunoengineering has emerged as a new discipline, developing innovative strategies for tendon injuries. It aims at designing scaffolds, in combination with engineered bioactive molecules and/or stem cells, able to modulate the interaction between the transplanted biomaterial-scaffold and the host tissue allowing a pro-regenerative immune response, therefore hindering fibrosis occurrence at the injury site and guiding tendon regeneration. Thus, this review is aimed at giving an overview on the role exerted from different tissue engineering actors in leading immunoregeneration by crosstalking with stem and immune cells to generate new paradigms in designing regenerative medicine approaches for tendon injuries.


Assuntos
Imunidade , Regeneração/fisiologia , Tendões/imunologia , Tendões/fisiologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Humanos , Imunomodulação
17.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159244

RESUMO

Tendon disorders represent a very common pathology in today's population, and tendinopathies that account 30% of tendon-related injuries, affect yearly millions of people which in turn cause huge socioeconomic and health repercussions worldwide. Inflammation plays a prominent role in the development of tendon pathologies, and advances in understanding the underlying mechanisms during the inflammatory state have provided additional insights into its potential role in tendon disorders. Different cell compartments, in combination with secreted immune modulators, have shown to control and modulate the inflammatory response during tendinopathies. Stromal compartment represented by tenocytes has shown to display an important role in orchestrating the inflammatory response during tendon injuries due to the interplay they exhibit with the immune-sensing and infiltrating compartments, which belong to resident and recruited immune cells. The use of stem cells or their derived secretomes within the regenerative medicine field might represent synergic new therapeutical approaches that can be used to tune the reaction of immune cells within the damaged tissues. To this end, promising opportunities are headed to the stimulation of macrophages polarization towards anti-inflammatory phenotype together with the recruitment of stem cells, that possess immunomodulatory properties, able to infiltrate within the damaged tissues and improve tendinopathies resolution. Indeed, the comprehension of the interactions between tenocytes or stem cells with the immune cells might considerably modulate the immune reaction solving hence the inflammatory response and preventing fibrotic tissue formation. The purpose of this review is to compare the roles of distinct cell compartments during tendon homeostasis and injury. Furthermore, the role of immune cells in this field, as well as their interactions with stem cells and tenocytes during tendon regeneration, will be discussed to gain insights into new ways for dealing with tendinopathies.


Assuntos
Reconstituição Imune , Tendinopatia , Traumatismos dos Tendões , Humanos , Traumatismos dos Tendões/terapia , Tendões , Tenócitos
18.
Cells ; 10(11)2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34831443

RESUMO

Electrospun poly(lactic-co-glycolic acid) (PLGA) scaffolds with highly aligned fibers (ha-PLGA) represent promising materials in the field of tendon tissue engineering (TE) due to their characteristics in mimicking fibrous extracellular matrix (ECM) of tendon native tissue. Among these properties, scaffold biodegradability must be controlled allowing its replacement by a neo-formed native tendon tissue in a controlled manner. In this study, ha-PLGA were subjected to hydrolytic degradation up to 20 weeks, under di-H2O and PBS conditions according to ISO 10993-13:2010. These were then characterized for their physical, morphological, and mechanical features. In vitro cytotoxicity tests were conducted on ovine amniotic epithelial stem cells (oAECs), up to 7 days, to assess the effect of non-buffered and buffered PLGA by-products at different concentrations on cell viability and their stimuli on oAECs' immunomodulatory properties. The ha-PLGA scaffolds degraded slowly as evidenced by a slight decrease in mass loss (14%) and average molecular weight (35%), with estimated degradation half-time of about 40 weeks under di-H2O. The ultrastructure morphology of the scaffolds showed no significant fiber degradation even after 20 weeks, but alteration of fiber alignment was already evident at week 1. Moreover, mechanical properties decreased throughout the degradation times under wet as well as dry PBS conditions. The influence of acid degradation media on oAECs was dose-dependent, with a considerable effect at 7 days' culture point. This effect was notably reduced by using buffered media. To a certain level, cells were able to compensate the generated inflammation-like microenvironment by upregulating IL-10 gene expression and favoring an anti-inflammatory rather than pro-inflammatory response. These in vitro results are essential to better understand the degradation behavior of ha-PLGA in vivo and the effect of their degradation by-products on affecting cell performance. Indeed, buffering the degradation milieu could represent a promising strategy to balance scaffold degradation. These findings give good hope with reference to the in vivo condition characterized by physiological buffering systems.


Assuntos
Ácidos/química , Âmnio/citologia , Células Epiteliais/citologia , Imunomodulação , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Células-Tronco/citologia , Engenharia Tecidual , Alicerces Teciduais/química , Animais , Forma Celular , Condutividade Elétrica , Concentração de Íons de Hidrogênio , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Peso Molecular , Ovinos
19.
Cells ; 10(8)2021 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-34440930

RESUMO

Recently, the research on stemness and multilineage differentiation mechanisms has greatly increased its value due to the potential therapeutic impact of stem cell-based approaches. Stem cells modulate their self-renewing and differentiation capacities in response to endogenous and/or extrinsic factors that can control stem cell fate. One key factor controlling stem cell phenotype is oxygen (O2). Several pieces of evidence demonstrated that the complexity of reproducing O2 physiological tensions and gradients in culture is responsible for defective stem cell behavior in vitro and after transplantation. This evidence is still worsened by considering that stem cells are conventionally incubated under non-physiological air O2 tension (21%). Therefore, the study of mechanisms and signaling activated at lower O2 tension, such as those existing under native microenvironments (referred to as hypoxia), represent an effective strategy to define if O2 is essential in preserving naïve stemness potential as well as in modulating their differentiation. Starting from this premise, the goal of the present review is to report the status of the art about the link existing between hypoxia and stemness providing insight into the factors/molecules involved, to design targeted strategies that, recapitulating naïve O2 signals, enable towards the therapeutic use of stem cell for tissue engineering and regenerative medicine.


Assuntos
Oxigênio/metabolismo , Células-Tronco/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Humanos
20.
Cells ; 9(4)2020 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-32325674

RESUMO

Amniotic epithelial cells (AEC) have been proposed as promising clinical candidates for regenerative medicine therapies due to their immunomodulatory capacity. In this context, the endocannabinoid system (ECS) has been identified as mediating the immune-stem cell dialogue, even if no information on AEC is available to date. Therefore, this study was designed to assess whether ECS is involved in tuning the constitutive and lipopolysaccharide (LPS)-induced ovine AEC anti-inflammatory and pro-inflammatory interleukin (IL-10, IL-4, and IL-12) profiles. Firstly, interleukins and ECS expressions were studied at different stages of gestation. Then, the role of cannabinoid receptors 1 and 2 (CB1 and CB2) on interleukin expression and release was investigated in middle stage AEC using selective agonists and antagonists. AEC displayed a degradative more than a synthetic endocannabinoid metabolism during the early and middle stages of gestation. At the middle stage, cannabinoid receptors mediated the balance between pro-inflammatory (IL-12) and anti-inflammatory (IL-4 and IL-10) interleukins. The activation of both receptors mediated an overall pro-inflammatory shift-CB1 reduced the anti-inflammatory and CB2 increased the pro-inflammatory interleukin release, particularly after LPS stimulation. Altogether, these data pave the way for the comprehension of AEC mechanisms tuning immune-modulation, crucial for the development of new AEC-based therapy protocols.


Assuntos
Endocanabinoides/metabolismo , Interleucinas/metabolismo , Receptores de Canabinoides/efeitos dos fármacos , Animais , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Ovinos , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA