Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Microb Pathog ; 193: 106788, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38986823

RESUMO

The use of antimicrobials in poultry leaves residues in the litter, favoring the emergence of antimicrobial-resistant pathogens and making it a source of contamination. An in vitro 4 × 4 factorial trial was performed to investigate the influence of four treatments, consisting of antimicrobial sub-concentrations, on the transference of IncB/O-plasmid through conjugation in four groups. Each group was composed of one plasmid donor bacterium (Escherichia coli H2332) and a recipient bacterium (Escherichia coli J62 or Salmonella enterica serovars, Enteritidis, Typhimurium, or Heidelberg). Our results showed a little decrease in the conjugation frequency in almost all treatments between the two bacterial species, which varied according to each strain. The MIC test revealed an increase of up to 4096-fold in resistance to beta-lactams in Salmonella serovars after plasmid acquisition. This finding suggests that some genetic apparatus may be involved in increased antimicrobial resistance in Salmonella serovars after the acquisition of primary resistance determinants.


Assuntos
Antibacterianos , Conjugação Genética , Escherichia coli , Testes de Sensibilidade Microbiana , Plasmídeos , Salmonella enterica , beta-Lactamas , Salmonella enterica/efeitos dos fármacos , Salmonella enterica/genética , Plasmídeos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , beta-Lactamas/farmacologia , Antibacterianos/farmacologia
2.
Avian Pathol ; 50(2): 132-137, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33146550

RESUMO

Salmonella Gallinarum (SG) is an avian-restricted pathogen that causes fowl typhoid in poultry. Although it has been reported frequently over many decades in poultry flocks worldwide, the microorganism is more commonly associated with poultry in developing countries, particularly those with high ambient temperatures, where the acute form of the disease results in considerable economic losses. A more detailed investigation of environmental factors that affect the course of disease may assist in identifying effective prevention and control measures. Heat stress is known to impair the immunological response to a variety of pathogens and clearly may be an important contributory factor in the prevalence of disease in countries with warm or hot climates. Thus, the objective of the present study was to evaluate the effects of heat stress on chickens infected with SG. For this, light and semi-heavy commercial laying hens were distributed randomly within four groups as follows: infected and non-infected groups in rooms held at ambient temperature, and infected and non-infected groups under heat stress. Clinical signs, egg production, and mortality were recorded daily. Bacteriological counts in liver and spleen samples were estimated at 2, 5, 7, and 14 days post-infection. The results showed that both SG infection and heat stress had similar effects on egg production and a synergistic effect of the two stressors was observed. The data show an interaction between disease and heat stress which could point towards environmental and biosecurity approaches to resolving the possible 30% fall in production observed in such countries.


Assuntos
Galinhas/fisiologia , Resposta ao Choque Térmico , Doenças das Aves Domésticas/fisiopatologia , Salmonelose Animal/fisiopatologia , Salmonella enterica/fisiologia , Febre Tifoide/veterinária , Animais , Galinhas/microbiologia , Ovos , Feminino , Fígado/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Baço/microbiologia , Febre Tifoide/microbiologia , Febre Tifoide/fisiopatologia
3.
Braz J Microbiol ; 55(1): 711-717, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38191970

RESUMO

Conjugation plays an important role in the dissemination of antimicrobial resistance genes. Besides, this process is influenced by many biotic and abiotic factors, especially temperature. This study aimed to investigate the effect of different conditions of temperature and storage (time and recipient) of poultry meat, intended for the final consumer, affect the plasmid transfer between pathogenic (harboring the IncB/O-plasmid) and non-pathogenic Escherichia coli organisms. The determination of minimal inhibitory concentrations (MIC) of ampicillin, cephalexin, cefotaxime, and ceftazidime was performed before and after the conjugation assay. It was possible to recover transconjugants in the poultry meat at all the treatments, also these bacteria showed a significant increase of the MIC for all antimicrobials tested. Our results show that a non-pathogenic E. coli can acquire an IncB/O-plasmid through a conjugation process in poultry meat, even stored at low temperatures. Once acquired, the resistance genes endanger public health especially when it is about critically and highly important antimicrobials to human medicine.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Animais , Humanos , Escherichia coli/genética , Aves Domésticas , Temperatura , Infecções por Escherichia coli/microbiologia , Plasmídeos/genética , Antibacterianos/farmacologia , Conjugação Genética , Carne/microbiologia
4.
Microorganisms ; 12(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38399716

RESUMO

In recent years, Salmonella enterica subsp. enterica serovar Mbandaka (S. Mbandaka) has been increasingly isolated from laying hens and shell eggs around the world. Moreover, this serovar has been identified as the causative agent of several salmonellosis outbreaks in humans. Surprisingly, little is known about the characteristics of this emerging serovar, and therefore, we investigated antimicrobial resistance, virulence, and prophage genes of six selected Brazilian strains of Salmonella Mbandaka using Whole Genome Sequencing (WGS). Multi-locus sequence typing revealed that the tested strains belong to Sequence Type 413 (ST413), which has been linked to recent multi-country salmonellosis outbreaks in Europe. A total of nine resistance genes were detected, and the most frequent ones were aac(6')-Iaa, sul1, qacE, blaOXA-129, tet(B), and aadA1. A point mutation in ParC at the 57th position (threonine → serine) associated with quinolone resistance was present in all investigated genomes. A 112,960 bp IncHI2A plasmid was mapped in 4/6 strains. This plasmid harboured tetracycline (tetACDR) and mercury (mer) resistance genes, genes contributing to conjugative transfer, and genes involved in plasmid maintenance. Most strains (four/six) carried Salmonella genomic island 1 (SGI1). All S. Mbandaka genomes carried seven pathogenicity islands (SPIs) involved in intracellular survival and virulence: SPIs 1-5, 9, and C63PI. The virulence genes csgC, fimY, tcfA, sscA, (two/six), and ssaS (one/six) were absent in some of the genomes; conversely, fimA, prgH, and mgtC were present in all of them. Five Salmonella bacteriophage sequences (with homology to Escherichia phage phiV10, Enterobacteria phage Fels-2, Enterobacteria phage HK542, Enterobacteria phage ST64T, Salmonella phage SW9) were identified, with protein counts between 31 and 54, genome lengths of 24.7 bp and 47.7 bp, and average GC content of 51.25%. In the phylogenetic analysis, the genomes of strains isolated from poultry in Brazil clustered into well-supported clades with a heterogeneous distribution, primarily associated with strains isolated from humans and food. The phylogenetic relationship of Brazilian S. Mbandaka suggests the presence of strains with high epidemiological significance and the potential to be linked to foodborne outbreaks. Overall, our results show that isolated strains of S. Mbandaka are multidrug-resistant and encode a rather conserved virulence machinery, which is an epidemiological hallmark of Salmonella strains that have successfully disseminated both regionally and globally.

5.
Sci Rep ; 13(1): 595, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631563

RESUMO

Salmonella spp. is one of the major foodborne pathogens responsible for causing economic losses to the poultry industry and bringing consequences for public health as well. Both the pathogen survival ability in the intestinal environment during inflammation as well as their relationship with the host immune system, play a key role during infections in poultry. The objective of this study was to quantify the presence of the macrophages and CD4+/CD8+ cells populations using the immunohistochemistry technique, in commercial lineages of chickens experimentally infected by wild-type and mutant strains of Salmonella Enteritidis and Salmonella Typhimurium lacking ttrA and pduA genes. Salmonella Enteritidis ∆ttrA∆pduA triggered a higher percentage of the stained area than the wild-type, with exception of light laying hens. Salmonella Typhimurium wild-type strain and Salmonella Typhimurium ∆ttrA∆pduA infections lead to a similar pattern in which, at 1 and 14 dpi, the caecal tonsils and ileum of birds showed a more expressive stained area compared to 3 and 7 dpi. In all lineages studied, prominent infiltration of macrophages in comparison with CD4+ and CD8+ cells was observed. Overall, animals infected by the mutant strain displayed a positively stained area higher than the wild-type. Deletions in both ttrA and pduA genes resulted in a more intense infiltration of macrophages and CD4+ and CD8+ cells in the host birds, suggesting no pathogen attenuation, even in different strains of Salmonella.


Assuntos
Galinhas , Doenças das Aves Domésticas , Salmonelose Animal , Salmonella enterica , Animais , Feminino , Imunidade Celular , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Salmonella enterica/genética , Salmonella enteritidis/genética , Salmonelose Animal/imunologia , Salmonella typhimurium/genética , Sorogrupo
6.
Biomaterials ; 293: 121978, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36580719

RESUMO

The incorrect use of conventional drugs for both prevention and control of intestinal infections has contributed to a significant spread of bacterial resistance. In this way, studies that promote their replacement are a priority. In the last decade, the use of antimicrobial peptides (AMP), especially Ctx(Ile21)-Ha AMP, has gained strength, demonstrating efficient antimicrobial activity (AA) against pathogens, including multidrug-resistant bacteria. However, gastrointestinal degradation does not allow its direct oral application. In this research, double-coating systems using alginate microparticles loaded with Ctx(Ile21)-Ha peptide were designed, and in vitro release assays simulating the gastrointestinal tract were evaluated. Also, the AA against Salmonella spp. and Escherichia coli was examined. The results showed the physicochemical stability of Ctx(Ile21)-Ha peptide in the system and its potent antimicrobial activity. In addition, the combination of HPMCAS and chitosan as a gastric protection system can be promising for peptide carriers or other low pH-sensitive molecules, adequately released in the intestine. In conclusion, the coated systems employed in this study can improve the formulation of new foods or biopharmaceutical products for specific application against intestinal pathogens in animal production or, possibly, in the near future, in human health.


Assuntos
Anti-Infecciosos , Quitosana , Animais , Humanos , Quitosana/química , Alginatos/química , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia
7.
Braz J Microbiol ; 53(1): 503-508, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35061241

RESUMO

Genetic profiles of Salmonella Minnesota isolates were analyzed using pulsed-field gel electrophoresis (PFGE). In total, 13 isolates obtained from the broiler industry collected in the states of Minas Gerais (11) and São Paulo (2), as well as five recovered from cases of foodborne infections in humans in the states of Minas Gerais (2), Santa Catarina (1), and Rio Grande do Sul (2), were submitted to PFGE. These 18 S. Minnesota isolates together with other 12 of poultry origin were also subjected to antimicrobial susceptibility testing. The PFGE analysis of 18 strains of S. Minnesota generated a dendrogram that grouped the isolates with 83-90% similarity into four main clusters. Among them, cluster "A" grouped the majority of isolates (13), including two of human origin that showed 90% similarity with a broiler isolate, both recovered in Minas Gerais. The S. Minnesota isolates showed resistance to tetracycline (80%), cefoxitin (80%), ceftazidime (46.7%), nalidixic acid (23.3%), ciprofloxacin (13.3%), and streptomycin (10%). No resistance to gentamicin, chloramphenicol, meropenem, nitrofurantoin, and sulfamethoxazole-trimethoprim was found. Moreover, 23.3% of the evaluated isolates presented multi-resistance profile, all from Minas Gerais. The results highlight the importance of further studies involving S. Minnesota, which is prevalent in the Brazilian broiler flocks and could provoke foodborne infection in humans.


Assuntos
Anti-Infecciosos , Aves Domésticas , Animais , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Brasil , Galinhas , Farmacorresistência Bacteriana/genética , Farmacorresistência Bacteriana Múltipla/genética , Eletroforese em Gel de Campo Pulsado/métodos , Fazendas , Genótipo , Humanos , Testes de Sensibilidade Microbiana , Salmonella/genética
8.
Vaccine ; 39(17): 2408-2415, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33781602

RESUMO

Salmonella Enteritidis (SE) is a major cause of foodborne diseases in humans being frequently related to the consumption of poultry products. Therefore, guaranteeing early immunity to chicks is an important tool to prevent the colonization and infection by this pathogen. The present study evaluated the effectiveness of a candidate recombinant vaccine against SE. Thirty female and five male broiler breeders that were ten weeks-old were divided into 3 groups: unvaccinated (UV), vaccinated with recombinant vaccine candidate (VAC) and vaccinated with commercial bacterin (BAC). Samples of serum and embryonated egg were collected at seven and twelve weeks after the booster dose to quantify the transfer rate of IgY to egg yolks and offspring. Subsequently, forty day-old offspring were divided into two groups (UV and VAC) and challenged on the following day with 107 CFU/chick of SE. Samples of serum, intestine, liver, and cecal content were harvested. Throughout the experiment period, significantly higher levels of IgY were observed in the egg yolk and also in the serum of broiler breeders and offspring of the VAC group in comparison to the UV group. In addition, increased transfer rates of IgY were observed in the VAC group when compared to the BAC group. Furthermore, higher villus-crypt ratios were found out in duodenum, jejunum and ileum at four days post-infection in the offspring from the VAC group. A high challenge dose of SE (107 CFU per chick) was used and despite the stronger humoral immune response provoked by the candidate vaccine, there were no statistical differences in the recovery of viable SE cells from the offspring cecal contents. Therefore, the effect of vaccination to improve intestinal quality may affect the development of the chickens and consequently increase the resistance to lower SE challenge doses.


Assuntos
Doenças das Aves Domésticas , Salmonelose Animal , Vacinas contra Salmonella , Animais , Galinhas , Feminino , Humanos , Masculino , Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella enteritidis , Vacinas Sintéticas
9.
Avian Pathol ; 38(5): 367-75, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19937524

RESUMO

Two experiments were performed to evaluate the protective effect of various vaccination combinations given at 5 and 9 weeks of age against experimental challenge with Salmonella enterica serovar Enteritidis (SE) phage type 4 at 12 weeks of age. In Experiment 1, groups of commercial layers were vaccinated by one of the following programmes: Group 1, two doses of a SE bacterin (Layermune SE); Group 2, one dose of a live Salmonella enterica serovar Gallinarum vaccine (Cevac SG9R) followed by one dose of the SE bacterin; Group 3, one dose of each of two different multivalent inactivated vaccines containing SE cells (Corymune 4K and Corymune 7K; and Group 4, unvaccinated, challenged controls. In Experiment 2, groups of broiler breeders were vaccinated by the same programmes as Groups 1 and 2 above while Group 3 was an unvaccinated, challenged control group. All vaccination programmes and the challenge induced significant (P < 0.05) seroconversion as measured by enzyme-linked immunosorbent assay. Overall, in both experiments, all vaccination schemes were significantly effective in reducing organ (spleen, liver and caeca) colonization by the challenge strain as well as reducing faecal excretion for at least 3 weeks. Vaccinated layers in Groups 1 and 2 and broiler breeders in Group 2 showed the greatest reduction in organ colonization and the least faecal excretion. In Experiment 1, layers vaccinated with multivalent inactivated vaccines containing a SE component (Group 3) were only moderately protected, indicating that such a vaccination programme may be useful in farms with good husbandry and housing conditions and low environmental infectious pressure by Salmonella.


Assuntos
Doenças das Aves Domésticas/prevenção & controle , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella , Salmonella enteritidis/imunologia , Vacinação/veterinária , Animais , Ceco/microbiologia , Galinhas , Modelos Animais de Doenças , Fezes/microbiologia , Feminino , Fígado/microbiologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Baço/microbiologia , Vacinas Combinadas
10.
Trop Anim Health Prod ; 41(8): 1607-14, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19390983

RESUMO

We analyzed ostriches from an equipped farm located in the Brazilian southeast region for the presence of Salmonella spp. This bacterium was investigated in 80 samples of ostrich droppings, 90 eggs, 30 samples of feed and 30 samples of droppings from rodents. Additionally, at slaughter-house this bacterium was investigated in droppings, caecal content, spleen, liver and carcasses from 90 slaughtered ostriches from the studied farm. Also, blood serum of those animals were harvested and submitted to serum plate agglutination using commercial Salmonella Pullorum antigen. No Salmonella spp. was detected in any eggs, caecal content, liver, spleen, carcass and droppings from ostriches and rodents. However, Salmonella Javiana and Salmonella enterica subsp. enterica 4, 12: i:- were isolated from some samples of feed. The serologic test was negative for all samples. Good sanitary farming management and the application of HACCP principles and GMP during the slaughtering process could explain the absence of Salmonella spp. in the tested samples.


Assuntos
Doenças das Aves/microbiologia , Salmonelose Animal/epidemiologia , Salmonella/isolamento & purificação , Matadouros , Ração Animal/microbiologia , Animais , Doenças das Aves/epidemiologia , Brasil/epidemiologia , Fezes/microbiologia , Conteúdo Gastrointestinal/microbiologia , Fígado/microbiologia , Óvulo/microbiologia , Roedores , Salmonella/classificação , Salmonelose Animal/microbiologia , Baço/microbiologia , Struthioniformes
11.
Braz J Microbiol ; 40(3): 495-504, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24031393

RESUMO

Salmonella enterica serovar Gallinarum (SG) is a fowl typhoid agent in chickens and is a severe disease with worldwide economic impact as its mortality may reach up to 80%. It is one of a small group of serovars that typically produces typhoid-like infections in a narrow range of host species and which therefore represents a good model for human typhoid. The survival mechanisms are not considered to be virulent mechanisms but are essential for the life of the bacterium. Mutants of Salmonella Gallinarum containing defective genes, related to cobalamin biosynthesis and which Salmonella spp. has to be produced to survive when it is in an anaerobic environment, were produced in this study. Salmonella Gallinarum is an intracellular parasite. Therefore, this study could provide information about whether vitamin B12 biosynthesis might be essential to its survival in the host. The results showed that the singular deletion in cbiA or cobS genes did not interfere in the life of Salmonella Gallinarum in the host, perhaps because single deletion is not enough to impede vitamin B12 biosynthesis. It was noticed that diluted SG mutants with single deletion produced higher mortality than the wild strain of SG. When double mutation was carried out, the Salmonella Gallinarum mutant was unable to provoke mortality in susceptible chickens. This work showed that B12 biosynthesis is a very important step in the metabolism of Salmonella Gallinarum during the infection of the chickens. Further research on bacterium physiology should be carried out to elucidate the events described in this research and to assess the mutant as a vaccine strain.

12.
Diagn Microbiol Infect Dis ; 95(1): 93-98, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31221507

RESUMO

The number of foodborne gastroenteritis caused by nontyphoidal Salmonella (NTS) worldwide is estimated to be 80.3 million each year. Currently, antimicrobial-resistant NTS disseminated in the animal environment increases the risk of aggravated foodborne outbreaks. Poultry are important source of foodborne NTS infections. This study was conducted to evaluate the phenotypic and genotypic characteristics of 83 NTS isolates from poultry, classified within 36 different serovars. The most prevalent serovar was S. Schwarzengrund (10/83), from which 8/10 were multidrug resistant (MDR). The antimicrobial susceptibility testing showed a total of 18 MDR isolates, from which 8/18 coharbored blaCTX-M-2 and qnrB5. The genes qnrB5, blaCTX-M-2, qnrB2, or blaCMY-2 were also found alone in other MDR isolates. All resistance genes were harbored in large plasmids, ranging from 30 to 270 kb. The pColE replicon was present in 8 MDR isolates; however it was not associated with resistance. ISCR1 and class I integron structures were always associated with blaCTX-M-2.


Assuntos
Farmacorresistência Bacteriana Múltipla/genética , Plasmídeos/genética , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella/genética , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Brasil/epidemiologia , Galinhas , Testes de Sensibilidade Microbiana , Doenças das Aves Domésticas/epidemiologia , Quinolonas/farmacologia , Salmonella/classificação , Salmonella/efeitos dos fármacos , Salmonelose Animal/epidemiologia , Sorogrupo , beta-Lactamases/genética
13.
Braz J Microbiol ; 39(2): 390-6, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24031235

RESUMO

Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must be associated with general hygiene and disinfection practices in poultry husbandry.

14.
Infect Genet Evol ; 60: 66-70, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29427764

RESUMO

The expression of plasmid-mediated quinolone resistance (PMQR) genes confers low-level quinolone and fluoroquinolones resistance alone. However, the association to chromosomal resistance mechanisms determines an expressively higher resistance in Enterobacteriaceae. These mechanisms are horizontally disseminated within plasmids and have contributed to the emergence of bacteria with reduced susceptibility or resistant to therapies worldwide. The epidemiological characterization of PMQR dissemination is highly relevant in the scientific and medical context, to investigate the dissemination within enterobacteria, from different populations, including humans and food-producing animals. In the present study, 200 Enterobacteriaceae isolates were harvested from poultry with cloacal swabs and identified as Escherichia coli (90.5%), Escherichia fergusonii (5.5%), Klebsiella oxytoca (2.5%) and Klebsiella pneumoniae (1.5%). Among isolates evaluated, 46 (23%) harboured PMQR genes including qnrB (43/200), qnrS (2/200) and aac(6')-Ib-cr (1/200). All isolates carrying PMQR genes showed multidrug-resistance phenotype. The 36 E. coli isolates showed 18 different PFGE types. All E. fergusonii isolates showed the same PFGE type. The two Klebsiella oxytoca belonged to two different PFGE types. The phylogenetic groups A, B1, and D were found among the E. coli harboring PMQR genes. Based on the phylogenetic analysis and PFGE, the population structure of E. coli isolates was diverse, even within the same farm. All isolates carrying qnrB and qnrS genes also harboured ColE-like plasmids. The Southern blot hybridization using the S1-PFGE revealed that the qnrB genes were located on low molecular weight plasmids, smaller than 10Kb. Resistance plasmids were sequenced and showed 100% identity with plasmid pPAB19-3. The association of PMQR genes with mobile genetic elements, such as transferable plasmids, favours the selection and dissemination of (fluoro) quinolones resistant bacteria among food-producing animals, and may play an important role in the current increased prevalence of resistant bacteria in different environments reported worldwide.


Assuntos
Farmacorresistência Bacteriana/genética , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/genética , Plasmídeos/genética , Aves Domésticas/microbiologia , Quinolonas/farmacologia , Animais , Antibacterianos/farmacologia , Brasil , Testes de Sensibilidade Microbiana
15.
Diagn Microbiol Infect Dis ; 88(4): 361-364, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28602519

RESUMO

Multidrug-resistance (MDR) has been increasingly reported in Gram-negative bacteria from the intestinal microbiota, environment and food-producing animals. Resistance plasmids able to harbor different transposable elements are capable to mobilize antimicrobial resistance genes and transfer to other bacterial hosts. Plasmids carrying blaCMY are frequently associated with MDR. The present study assessed the presence of plasmid-encoded ampC genes (blacmy, blamox, blafox, blalat, blaact, blamir, bladha, blamor) in commensal E. coli isolated from apparently healthy broiler chickens. Furthermore, we characterized the plasmids and identified those harboring the resistance genes. We isolated 144/200 (72%) of E. coli isolates with resistance to cefotaxime and the resistance gene identified was blaCMY-2. The pulsed-field gel electrophoresis (PFGE) analysis showed high diversity of the genetic profiles. The phylogenetic groups A, B1, B2, and D were identified among E. coli isolates and group D was the most prevalent. The PCR-based replicon typing (PBRT) analysis identified four distinct plasmid incompatibility groups (Inc) in MDR isolates. Moreover, plasmids harboring blaCMY-2, ranged in size from 50kb to 150kb and 51/144 (35%) belonged to IncK, 21/144 (14.5%) to IncB/O, 8/144 (5.5%) to IncA/C, 1/144 (0.5%) to IncI, while 63/144 (44.5%) were not typeable by PBRT. Overall, a high prevalence of blaCMY-2 genes was found in a diverse population of commensal MDR E. coli from poultry in Brazil, harbored into different plasmids.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/isolamento & purificação , Plasmídeos/genética , Aves Domésticas/microbiologia , Animais , Antibacterianos/farmacologia , Brasil , Cefotaxima/farmacologia , Galinhas/microbiologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Tipagem de Sequências Multilocus/métodos , Filogenia , Doenças das Aves Domésticas/tratamento farmacológico , Doenças das Aves Domésticas/microbiologia
16.
Braz J Microbiol ; 48(4): 754-759, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28648636

RESUMO

Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes. SE ΔmotB and SE ΔfliC were recovered in significantly lower numbers from caecal contents in comparison with Salmonella Enteritidis at early stages of infection (3 and 5dpi). The SE ΔmotB strain, which synthesises paralysed flagella, showed poorer intestinal colonisation ability than the non-flagellated SE ΔfliC. Histopathological analyses demonstrated that the flagellated strains induced more intense lymphoid reactivity in liver, ileum and caeca. Thus, in the present study the flagellar structure and motility seemed to play a role in the early stages of the intestinal colonisation by Salmonella Enteritidis in the chicken.


Assuntos
Flagelos/fisiologia , Intestinos/microbiologia , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enteritidis/crescimento & desenvolvimento , Salmonella enteritidis/patogenicidade , Animais , Galinhas , Flagelos/genética , Intestinos/patologia , Doenças das Aves Domésticas/patologia , Salmonelose Animal/patologia , Salmonella enteritidis/genética , Salmonella enteritidis/fisiologia , Virulência
17.
Diagn Microbiol Infect Dis ; 85(4): 444-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27312692

RESUMO

The increasing presence of ESBL-producing bacteria in food-producing animals might impact on public health. In this study, ESBL-producing enterobacteria were investigated in the microbiota of chickens produced in Brazil. We detected blaCTX-M-2, blaCTX-M-8 and blaCTX-M-15 in 13 Escherichia coli isolates, within 9 different PFGE-types. Escherichia fergusonii and Klebsiella pneumoniae were found carrying blaCTX-M-2. Plasmid Inc groups found included repF, FIB, FIC, I1, Y, B/O, A/C, K and HI1. F plasmids were present in 87.5% of the isolates, however, no resistance gene was harbored in this replicon. The pMLST for IncI1 showed ST113 and the novel ST130, ST131 and ST132 harboring blaCTX-M-8. IncK plasmids carried blaCTX-M-2 in one E. coli isolate. Non-typeable plasmids carrying blaCTX-M-2 or blaCTX-M-15 had up to 260kb. blaCTX-M-2 was also associated with class I integron and ISCR1 and blaCTX-M-8 with IS10. Overall, similar resistance elements were disseminated among a diverse population of ESBL-producing enterobacteria.


Assuntos
Infecções por Enterobacteriaceae/veterinária , Escherichia coli/enzimologia , Escherichia coli/genética , Klebsiella pneumoniae/enzimologia , Plasmídeos/análise , Doenças das Aves Domésticas/microbiologia , beta-Lactamases/genética , Animais , Brasil/epidemiologia , Galinhas , Eletroforese em Gel de Campo Pulsado , Infecções por Enterobacteriaceae/epidemiologia , Infecções por Enterobacteriaceae/microbiologia , Escherichia coli/classificação , Escherichia coli/isolamento & purificação , Klebsiella pneumoniae/classificação , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/isolamento & purificação , Tipagem de Sequências Multilocus , Plasmídeos/classificação , Doenças das Aves Domésticas/epidemiologia
18.
J Vet Diagn Invest ; 28(4): 419-22, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27216724

RESUMO

Salmonella enterica subsp. enterica serovar Gallinarum biovar Gallinarum (S Gallinarum) and biovar Pullorum (S Pullorum) are 2 poultry pathogens that cause major economic losses to the poultry industry worldwide. Control of both diseases mainly relies on the adoption of biosecurity programs, and success is dependent on accurate and fast detection. Based on this concept, we developed a duplex PCR assay, targeting 2 chromosomal sequences, which allowed us to precisely identify and differentiate S Gallinarum and S Pullorum field strains. This assay was validated by testing genomic DNA from 40 S Gallinarum and 29 S Pullorum field strains, 87 other Salmonella serovars, and 7 non-Salmonella strains. The serovar identifier region (SIR) primers produced a fragment only in S Gallinarum and S Pullorum strains, whereas the fragment from the ratA coding sequence, which was previously demonstrated to differentiate the 2 biovars, was also amplified from other Salmonella serovars. Our results showed that the combination of both SIR and ratA amplifications could be used to identify as well as to differentiate colonies of S Gallinarum and S Pullorum reliably. Thus, we believe this methodology can be a useful ancillary tool for routine veterinary diagnostic laboratories by providing rapid, accurate results.


Assuntos
Proteínas de Bactérias/genética , Galinhas , Reação em Cadeia da Polimerase/veterinária , Doenças das Aves Domésticas/diagnóstico , Salmonelose Animal/diagnóstico , Salmonella enterica/classificação , Animais , Doenças das Aves Domésticas/microbiologia , Salmonelose Animal/microbiologia , Salmonella enterica/genética , Sorogrupo
19.
Vet Immunol Immunopathol ; 167(1-2): 64-9, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26099807

RESUMO

Lactobacillus-based probiotics (LBP) are used as competitive exclusion to control pathogenic enterobacterial infections and improve the weight gain in broiler chickens. This study assessed the inhibition of Salmonella Enteritidis (SE) infection in one-week-old broiler chicks, using an experimental LBP containing four Lactobacillus strains isolated from chickens (L. acidophilus, L. fermentum, L. reuteri, L. salivarius). The immunomodulatory effects of this treatment were evaluated, through the analysis of cytokines and influx of macrophages, γδ, CD4(+) and CD8(+) T cells in the gut. The intestinal colonization by SE was reduced by 1.8 CFU/g (log10) in chicks treated with LBP (p<0.05). The levels of pro-inflammatory cytokines (IL-1ß, LITAF) were significantly reduced in treated chicks (p<0.05), whilst untreated chicks showed elevated inflammatory stimulus and an increased population of CD8(+) T cells in the intestinal mucosa after challenge (p<0.05). Additionally, the LBP stimulated TLR2 expression in caecal tonsils. The adjuvant property of the Lactobacillus cell wall (LCW) was evaluated, demonstrating good capability to stimulate T helper 2 (Th2) cell proliferation. Pretreatment of chicks with LBP decreased the intestinal colonization by SE, minimizing the tissue lesions and inflammation after challenge and showed a potential use as adjuvant with injectable killed vaccines.


Assuntos
Lactobacillus/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Probióticos/uso terapêutico , Salmonelose Animal/imunologia , Salmonelose Animal/prevenção & controle , Salmonella enteritidis , Adjuvantes Imunológicos/uso terapêutico , Animais , Ceco/imunologia , Ceco/patologia , Parede Celular/imunologia , Galinhas , Doenças das Aves Domésticas/patologia , Salmonelose Animal/patologia , Vacinas contra Salmonella/uso terapêutico , Salmonella enteritidis/imunologia , Salmonella enteritidis/patogenicidade , Células Th2/imunologia , Vacinas de Produtos Inativados/uso terapêutico
20.
Genome Announc ; 2(1)2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24558231

RESUMO

Salmonella enterica subsp. enterica serovar Gallinarum biovar Pullorum is a bird-restricted pathogen which causes pullorum disease. The strain FCAV198 was isolated from a pool of chicken ovaries in Brazil, and its genome may be helpful for studies involving molecular mechanisms related to pathogenesis and other related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA