Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Nature ; 500(7461): 194-8, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23925243

RESUMO

Ninety per cent of marine organic matter burial occurs in continental margin sediments, where a substantial fraction of organic carbon escapes oxidation and enters long-term geologic storage within sedimentary rocks. In such environments, microbial metabolism is limited by the diffusive supply of electron acceptors. One strategy to optimize energy yields in a resource-limited habitat is symbiotic metabolite exchange among microbial associations. Thermodynamic and geochemical considerations indicate that microbial co-metabolisms are likely to play a critical part in sedimentary organic carbon cycling. Yet only one association, between methanotrophic archaea and sulphate-reducing bacteria, has been demonstrated in marine sediments in situ, and little is known of the role of microbial symbiotic interactions in other sedimentary biogeochemical cycles. Here we report in situ molecular and incubation-based evidence for a novel symbiotic consortium between two chemolithotrophic bacteria--anaerobic ammonium-oxidizing (anammox) bacteria and the nitrate-sequestering sulphur-oxidizing Thioploca species--in anoxic sediments of the Soledad basin at the Mexican Pacific margin. A mass balance of benthic solute fluxes and the corresponding nitrogen isotope composition of nitrate and ammonium fluxes indicate that anammox bacteria rely on Thioploca species for the supply of metabolic substrates and account for about 57 ± 21 per cent of the total benthic N2 production. We show that Thioploca-anammox symbiosis intensifies benthic fixed nitrogen losses in anoxic sediments, bypassing diffusion-imposed limitations by efficiently coupling the carbon, nitrogen and sulphur cycles.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Nitrogênio/metabolismo , Thiotrichaceae/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Carbono/metabolismo , Dados de Sequência Molecular , Oxirredução , Oceano Pacífico , Filogenia , Enxofre/metabolismo , Thiotrichaceae/classificação , Thiotrichaceae/genética
2.
Science ; 257(5074): 1242-5, 1992 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-17742757

RESUMO

The flux of manganese from continental margin sediments to the ocean was measured with a free-vehicle, benthic flux chamber in a transect across the continental shelf and upper slope of the California margin. The highest fluxes were observed on the shallow continental shelf. Manganese flux decreased linearly with bottom water oxygen concentration, and the lowest fluxes occurred in the oxygen minimum zone (at a depth of 600 to 1000 meters). Although the flux of manganese from continental shelf sediments can account for the elevated concentrations observed in shallow, coastal waters, the flux from sediments that intersect the oxygen minimum cannot produce the subsurface concentration maximum of dissolved manganese that is observed in the Pacific Ocean.

3.
Geobiology ; 9(5): 411-24, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21777367

RESUMO

Stromatolites are commonly interpreted as evidence of ancient microbial life, yet stromatolite morphogenesis is poorly understood. We apply radiometric tracer and dating techniques, molecular analyses and growth experiments to investigate siliceous stromatolite morphogenesis in Obsidian Pool Prime (OPP), a hot spring in Yellowstone National Park. We examine rates of stromatolite growth and the environmental and/or biologic conditions that affect lamination formation and preservation, both difficult features to constrain in ancient examples. The "main body" of the stromatolite is composed of finely laminated, porous, light-dark couplets of erect (surface normal) and reclining (surface parallel) silicified filamentous bacteria, interrupted by a less-distinct, well-cemented "drape" lamination. Results from dating studies indicate a growth rate of 1-5 cm year(-1) ; however, growth is punctuated. (14)C as a tracer demonstrates that stromatolite cyanobacterial communities fix CO(2) derived from two sources, vent water (radiocarbon dead) and the atmosphere (modern (14)C). The drape facies contained a greater proportion of atmospheric CO(2) and more robust silica cementation (vs. the main body facies), which we interpret as formation when spring level was lower. Systematic changes in lamination style are likely related to environmental forcing and larger scale features (tectonic, climatic). Although the OPP stromatolites are composed of silica and most ancient forms are carbonate, their fine lamination texture requires early lithification. Without early lithification, whether silica or carbonate, it is unlikely that a finely laminated structure representing an ancient microbial mat would be preserved. In OPP, lithification on the nearly diurnal time scale is likely related to temperature control on silica solubility.


Assuntos
Bactérias/crescimento & desenvolvimento , DNA Bacteriano/análise , Biologia de Ecossistemas de Água Doce/métodos , Sedimentos Geológicos/microbiologia , Fontes Termais/microbiologia , Bactérias/classificação , Bactérias/genética , Radioisótopos de Carbono/análise , Césio/análise , Cianobactérias/classificação , Cianobactérias/genética , Cianobactérias/crescimento & desenvolvimento , DNA Bacteriano/genética , Sedimentos Geológicos/química , Fontes Termais/química , Interpretação de Imagem Assistida por Computador , Microscopia Eletrônica de Varredura , Filogenia , Datação Radiométrica , Rádio (Elemento)/análise , Análise de Sequência de DNA , Tório/análise , Wyoming
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA