Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 14: 66, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27506200

RESUMO

BACKGROUND: Affinity purification followed by mass spectrometry (AP/MS) is a widely used approach to identify protein interactions and complexes. In multicellular organisms, the accurate identification of protein complexes by AP/MS is complicated by the potential heterogeneity of complexes in different tissues. Here, we present an in vivo biotinylation-based approach for the tissue-specific purification of protein complexes from Caenorhabditis elegans. Tissue-specific biotinylation is achieved by the expression in select tissues of the bacterial biotin ligase BirA, which biotinylates proteins tagged with the Avi peptide. RESULTS: We generated N- and C-terminal tags combining GFP with the Avi peptide sequence, as well as four BirA driver lines expressing BirA ubiquitously and specifically in the seam and hyp7 epidermal cells, intestine, or neurons. We validated the ability of our approach to identify bona fide protein interactions by identifying the known LGL-1 interaction partners PAR-6 and PKC-3. Purification of the Discs large protein DLG-1 identified several candidate interaction partners, including the AAA-type ATPase ATAD-3 and the uncharacterized protein MAPH-1.1. We have identified the domains that mediate the DLG-1/ATAD-3 interaction, and show that this interaction contributes to C. elegans development. MAPH-1.1 co-purified specifically with DLG-1 purified from neurons, and shared limited homology with the microtubule-associated protein MAP1A, a known neuronal interaction partner of mammalian DLG4/PSD95. A CRISPR/Cas9-engineered GFP::MAPH-1.1 fusion was broadly expressed and co-localized with microtubules. CONCLUSIONS: The method we present here is able to purify protein complexes from specific tissues. We uncovered a series of DLG-1 interactors, and conclude that ATAD-3 is a biologically relevant interaction partner of DLG-1. Finally, we conclude that MAPH-1.1 is a microtubule-associated protein of the MAP1 family and a candidate neuron-specific interaction partner of DLG-1.


Assuntos
Proteínas de Caenorhabditis elegans/isolamento & purificação , Caenorhabditis elegans/metabolismo , Guanilato Quinases/metabolismo , Especificidade de Órgãos , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Animais , Biotinilação , Proteínas de Caenorhabditis elegans/metabolismo , Imunofluorescência , Complexos Multiproteicos/isolamento & purificação , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Reprodutibilidade dos Testes
2.
Mol Biol Cell ; 24(14): 2201-15, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23699393

RESUMO

The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα-GPR-LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα-GPR-LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.


Assuntos
Actinas/genética , Caenorhabditis elegans/genética , Retículo Endoplasmático/genética , Regulação da Expressão Gênica no Desenvolvimento , Fuso Acromático/genética , Actinas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Embrião não Mamífero , Retículo Endoplasmático/metabolismo , Inibidores de Dissociação do Nucleotídeo Guanina/genética , Inibidores de Dissociação do Nucleotídeo Guanina/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Meiose/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Ligação Proteica , Transdução de Sinais , Fuso Acromático/metabolismo , Técnicas do Sistema de Duplo-Híbrido
3.
Nat Cell Biol ; 11(3): 269-77, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19219036

RESUMO

The spindle apparatus dictates the plane of cell cleavage, which is critical in the choice between symmetric or asymmetric division. Spindle positioning is controlled by an evolutionarily conserved pathway, which involves LIN-5/GPR-1/2/Galpha in Caenorhabditis elegans, Mud/Pins/Galpha in Drosophila and NuMA/LGN/Galpha in humans. GPR-1/2 and Galpha localize LIN-5 to the cell cortex, which engages dynein and controls the cleavage plane during early mitotic divisions in C. elegans. Here we identify ASPM-1 (abnormal spindle-like, microcephaly-associated) as a novel LIN-5 binding partner. ASPM-1, together with calmodulin (CMD-1), promotes meiotic spindle organization and the accumulation of LIN-5 at meiotic and mitotic spindle poles. Spindle rotation during maternal meiosis is independent of GPR-1/2 and Galpha, yet requires LIN-5, ASPM-1, CMD-1 and dynein. Our data support the existence of two distinct LIN-5 complexes that determine localized dynein function: LIN-5/GPR-1/2/Galpha at the cortex, and LIN-5/ASPM-1/CMD-1 at spindle poles. These functional interactions may be conserved in mammals, with implications for primary microcephaly.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citologia , Calmodulina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Dineínas/metabolismo , Meiose , Fuso Acromático/metabolismo , Animais , Caenorhabditis elegans/metabolismo , Dineínas do Citoplasma , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/metabolismo , Mitose , Ligação Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/metabolismo , Rotação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA