Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Cell ; 159(3): 662-75, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25417113

RESUMO

Advancing our understanding of embryonic development is heavily dependent on identification of novel pathways or regulators. Although genome-wide techniques such as RNA sequencing are ideally suited for discovering novel candidate genes, they are unable to yield spatially resolved information in embryos or tissues. Microscopy-based approaches, using in situ hybridization, for example, can provide spatial information about gene expression, but are limited to analyzing one or a few genes at a time. Here, we present a method where we combine traditional histological techniques with low-input RNA sequencing and mathematical image reconstruction to generate a high-resolution genome-wide 3D atlas of gene expression in the zebrafish embryo at three developmental stages. Importantly, our technique enables searching for genes that are expressed in specific spatial patterns without manual image annotation. We envision broad applicability of RNA tomography as an accurate and sensitive approach for spatially resolved transcriptomics in whole embryos and dissected organs.


Assuntos
Embrião não Mamífero/metabolismo , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Tomografia/métodos , Peixe-Zebra/embriologia , Animais , Imageamento Tridimensional
2.
Genome Res ; 33(8): 1424-1437, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37726147

RESUMO

In contrast to other mammals, the spiny mouse (Acomys) regenerates skin and ear tissue, which includes hair follicles, glands, and cartilage, in a scar-free manner. Ear punch regeneration is asymmetric with only the proximal wound side participating in regeneration. Here, we show that cues originating from the proximal side are required for normal regeneration and use spatially resolved transcriptomics (tomo-seq) to understand the molecular and cellular events underlying this process. Analyzing gene expression across the ear and comparing expression modules between proximal and distal wound sides, we identify asymmetric gene expression patterns and pinpoint regenerative processes in space and time. Moreover, using a comparative approach with nonregenerative rodents (Mus, Meriones), we strengthen a hypothesis in which particularities in the injury-induced immune response may be one of the crucial determinants for why spiny mice regenerate whereas their relatives do not. Our data are available in SpinyMine, an easy-to-use and expandable web-based tool for exploring Acomys regeneration-associated gene expression.


Assuntos
Murinae , Cicatrização , Animais , Cicatrização/genética , Murinae/genética , Transcriptoma , Regeneração/genética , Pele , Mamíferos/genética
3.
Cell ; 136(5): 913-25, 2009 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19269368

RESUMO

In the mouse neocortex, neural progenitor cells generate both differentiating neurons and daughter cells that maintain progenitor fate. Here, we show that the TRIM-NHL protein TRIM32 regulates protein degradation and microRNA activity to control the balance between those two daughter cell types. In both horizontally and vertically dividing progenitors, TRIM32 becomes polarized in mitosis and is concentrated in one of the two daughter cells. TRIM32 overexpression induces neuronal differentiation while inhibition of TRIM32 causes both daughter cells to retain progenitor cell fate. TRIM32 ubiquitinates and degrades the transcription factor c-Myc but also binds Argonaute-1 and thereby increases the activity of specific microRNAs. We show that Let-7 is one of the TRIM32 targets and is required and sufficient for neuronal differentiation. TRIM32 is the mouse ortholog of Drosophila Brat and Mei-P26 and might be part of a protein family that regulates the balance between differentiation and proliferation in stem cell lineages.


Assuntos
Diferenciação Celular , Proliferação de Células , MicroRNAs/metabolismo , Neurônios/metabolismo , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Camundongos , Neurogênese , Neurônios/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Células-Tronco/citologia
4.
Cell ; 139(1): 135-48, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19804759

RESUMO

We have studied the function of a conserved germline-specific nucleotidyltransferase protein, CDE-1, in RNAi and chromosome segregation in C. elegans. CDE-1 localizes specifically to mitotic chromosomes in embryos. This localization requires the RdRP EGO-1, which physically interacts with CDE-1, and the Argonaute protein CSR-1. We found that CDE-1 is required for the uridylation of CSR-1 bound siRNAs, and that in the absence of CDE-1 these siRNAs accumulate to inappropriate levels, accompanied by defects in both meiotic and mitotic chromosome segregation. Elevated siRNA levels are associated with erroneous gene silencing, most likely through the inappropriate loading of CSR-1 siRNAs into other Argonaute proteins. We propose a model in which CDE-1 restricts specific EGO-1-generated siRNAs to the CSR-1 mediated, chromosome associated RNAi pathway, thus separating it from other endogenous RNAi pathways. The conserved nature of CDE-1 suggests that similar sorting mechanisms may operate in other animals, including mammals.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/análise , Proteínas de Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/análise , Proteínas de Ciclo Celular/genética , Meiose , Metáfase , Mitose , Interferência de RNA , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Uridina/metabolismo
5.
Blood ; 136(7): 831-844, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32457985

RESUMO

The defined location of a stem cell within a niche regulates its fate, behavior, and molecular identity via a complex extrinsic regulation that is far from being fully elucidated. To explore the molecular characteristics and key components of the aortic microenvironment, where the first hematopoietic stem cells are generated during development, we performed genome-wide RNA tomography sequencing on zebrafish, chicken, mouse, and human embryos. The resulting anterior-posterior and dorsal-ventral transcriptional maps provided a powerful resource for exploring genes and regulatory pathways active in the aortic microenvironment. By performing interspecies comparative RNA sequencing analyses and functional assays, we explored the complexity of the aortic microenvironment landscape and the fine-tuning of various factors interacting to control hematopoietic stem cell generation, both in time and space in vivo, including the ligand-receptor couple ADM-RAMP2 and SVEP1. Understanding the regulatory function of the local environment will pave the way for improved stem cell production in vitro and clinical cell therapy.


Assuntos
Aorta/embriologia , Células-Tronco Hematopoéticas/citologia , RNA/análise , Nicho de Células-Tronco/genética , Tomografia , Animais , Animais Geneticamente Modificados , Aorta/citologia , Rastreamento de Células/métodos , Embrião de Galinha , Embrião de Mamíferos , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Camundongos , RNA/genética , Análise de Sequência de RNA/métodos , Análise de Célula Única , Especificidade da Espécie , Tomografia/métodos , Tomografia/veterinária , Peixe-Zebra/embriologia , Peixe-Zebra/genética
6.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499445

RESUMO

In a free-living flatworm, Macrostomum lignano, an S-phase kinase-associated protein 1 (SKP1) homologous gene was identified as enriched in proliferating cells, suggesting that it can function in the regulation of stem cells or germline cells since these are the only two types of proliferating cells in flatworms. SKP1 is a conserved protein that plays a role in ubiquitination processes as a part of the Skp1-Cullin 1-F-box (SCF) ubiquitin ligase complex. However, the exact role of Mlig-SKP1 in M. lignano was not established. Here, we demonstrate that Mlig-SKP1 is neither involved in stem cell regulation during homeostasis, nor in regeneration, but is required for spermatogenesis. Mlig-SKP1(RNAi) animals have increased testes size and decreased fertility as a result of the aberrant maturation of sperm cells. Our findings reinforce the role of ubiquitination pathways in germ cell regulation and demonstrate the conserved role of SKP1 in spermatogenesis.


Assuntos
Platelmintos , Animais , Masculino , Platelmintos/genética , Sêmen/metabolismo , Células Germinativas/metabolismo , Células-Tronco/metabolismo , Ubiquitinação , Proteínas Ligases SKP Culina F-Box/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/metabolismo
7.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-34769334

RESUMO

Members of the fetal-gene-program may act as regulatory components to impede deleterious events occurring with cardiac remodeling, and constitute potential novel therapeutic heart failure (HF) targets. Mitochondrial energy derangements occur both during early fetal development and in patients with HF. Here we aim to elucidate the role of DIO2, a member of the fetal-gene-program, in pluripotent stem cell (PSC)-derived human cardiomyocytes and on mitochondrial dynamics and energetics, specifically. RNA sequencing and pathway enrichment analysis was performed on mouse cardiac tissue at different time points during development, adult age, and ischemia-induced HF. To determine the function of DIO2 in cardiomyocytes, a stable human hPSC-line with a DIO2 knockdown was made using a short harpin sequence. Firstly, we showed the selenoprotein, type II deiodinase (DIO2): the enzyme responsible for the tissue-specific conversion of inactive (T4) into active thyroid hormone (T3), to be a member of the fetal-gene-program. Secondly, silencing DIO2 resulted in an increased reactive oxygen species, impaired activation of the mitochondrial unfolded protein response, severely impaired mitochondrial respiration and reduced cellular viability. Microscopical 3D reconstruction of the mitochondrial network displayed substantial mitochondrial fragmentation. Summarizing, we identified DIO2 to be a member of the fetal-gene-program and as a key regulator of mitochondrial performance in human cardiomyocytes. Our results suggest a key position of human DIO2 as a regulator of mitochondrial function in human cardiomyocytes.


Assuntos
Insuficiência Cardíaca/fisiopatologia , Iodeto Peroxidase/metabolismo , Mitocôndrias/fisiologia , Miócitos Cardíacos/fisiologia , Células-Tronco Pluripotentes/citologia , Resposta a Proteínas não Dobradas , Animais , Humanos , Iodeto Peroxidase/genética , Camundongos , Miócitos Cardíacos/citologia , Células-Tronco Pluripotentes/metabolismo , Iodotironina Desiodinase Tipo II
8.
Nature ; 510(7503): 109-14, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24847885

RESUMO

The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.


Assuntos
Ctenóforos/genética , Evolução Molecular , Genoma/genética , Sistema Nervoso , Animais , Ctenóforos/classificação , Ctenóforos/imunologia , Ctenóforos/fisiologia , Genes Controladores do Desenvolvimento , Genes Homeobox , Mesoderma/metabolismo , Metabolômica , MicroRNAs , Dados de Sequência Molecular , Músculos/fisiologia , Sistema Nervoso/metabolismo , Neurônios/metabolismo , Neurotransmissores , Filogenia , Transcriptoma/genética
9.
Dev Biol ; 433(2): 448-460, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-28757111

RESUMO

Temporal and spatial characterization of gene expression is a prerequisite for the understanding of cell-, tissue-, and organ-differentiation. In a multifaceted approach to investigate gene expression in the tail plate of the free-living marine flatworm Macrostomum lignano, we performed a posterior-region-specific in situ hybridization screen, RNA sequencing (RNA-seq) of regenerating animals, and functional analyses of selected tail-specific genes. The in situ screen revealed transcripts expressed in the antrum, cement glands, adhesive organs, prostate glands, rhabdite glands, and other tissues. Next we used RNA-seq to characterize temporal expression in the regenerating tail plate revealing a time restricted onset of both adhesive organs and copulatory apparatus regeneration. In addition, we identified three novel previously unannotated genes solely expressed in the regenerating stylet. RNA interference showed that these genes are required for the formation of not only the stylet but the whole male copulatory apparatus. RNAi treated animals lacked the stylet, vesicula granulorum, seminal vesicle, false seminal vesicle, and prostate glands, while the other tissues of the tail plate, such as adhesive organs regenerated normally. In summary, our findings provide a large resource of expression data during homeostasis and regeneration of the morphologically complex tail regeneration and pave the way for a better understanding of organogenesis in M. lignano.


Assuntos
Regulação da Expressão Gênica , Genes de Helmintos , Proteínas de Helminto/genética , Platelmintos/fisiologia , Regeneração/genética , Cauda/fisiologia , Animais , Proteínas de Helminto/biossíntese , Organismos Hermafroditas , Hibridização In Situ , Microvilosidades , Especificidade de Órgãos , Platelmintos/genética , Interferência de RNA , RNA de Helmintos/biossíntese , RNA de Helmintos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Regeneração/fisiologia , Transcriptoma , Cicatrização/genética
10.
Mol Ecol ; 28(9): 2321-2341, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30891857

RESUMO

Phenotypic plasticity can enable organisms to produce optimal phenotypes in multiple environments. A crucial life history trait that is often highly plastic is sex allocation, which in simultaneous hermaphrodites describes the relative investment into the male versus female sex functions. Theory predicts-and morphological evidence supports-that greater investment into the male function is favoured with increasing group size, due to the increasing importance of sperm competition for male reproductive success. Here, we performed a genome-wide gene expression assay to test for such sex allocation plasticity in a model simultaneous hermaphrodite, the free-living flatworm Macrostomum lignano. Based on RNA-Seq data from 16 biological replicates spanning four different group size treatments, we demonstrate that at least 10% of the >75,000 investigated transcripts in M. lignano are differentially expressed according to the social environment, rising to >30% of putative gonad-specific transcripts (spermatogenesis and oogenesis candidates) and tail-specific transcripts (seminal fluid candidates). This transcriptional response closely corresponds to the expected shift away from female and towards male reproductive investment with increasing sperm competition level. Using whole-mount in situ hybridization, we then confirm that many plastic transcripts exhibit the expected organ-specific expression, and RNA interference of selected testis- and ovary-specific candidates establishes that these indeed function in gametogenesis pathways. We conclude that a large proportion of sex-specific transcripts in M. lignano are differentially expressed according to the prevailing ecological conditions and that these are functionally relevant to key reproductive phenotypes. Our study thus begins to bridge organismal and molecular perspectives on sex allocation plasticity.


Assuntos
Regulação da Expressão Gênica , Organismos Hermafroditas/genética , Platelmintos/fisiologia , Animais , Feminino , Organismos Hermafroditas/fisiologia , Masculino , Oogênese/genética , Ovário/fisiologia , Platelmintos/genética , Interferência de RNA , Análise de Sequência de RNA , Razão de Masculinidade , Espermatogênese/genética , Testículo/fisiologia , Transcriptoma
11.
Nucleic Acids Res ; 44(3): 1036-51, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26429969

RESUMO

Nucleosomal DNA is thought to be generally inaccessible to DNA-binding factors, such as micrococcal nuclease (MNase). Here, we digest Drosophila chromatin with high and low concentrations of MNase to reveal two distinct nucleosome types: MNase-sensitive and MNase-resistant. MNase-resistant nucleosomes assemble on sequences depleted of A/T and enriched in G/C-containing dinucleotides, whereas MNase-sensitive nucleosomes form on A/T-rich sequences found at transcription start and termination sites, enhancers and DNase I hypersensitive sites. Estimates of nucleosome formation energies indicate that MNase-sensitive nucleosomes tend to be less stable than MNase-resistant ones. Strikingly, a decrease in cell growth temperature of about 10°C makes MNase-sensitive nucleosomes less accessible, suggesting that observed variations in MNase sensitivity are related to either thermal fluctuations of chromatin fibers or the activity of enzymatic machinery. In the vicinity of active genes and DNase I hypersensitive sites nucleosomes are organized into periodic arrays, likely due to 'phasing' off potential barriers formed by DNA-bound factors or by nucleosomes anchored to their positions through external interactions. The latter idea is substantiated by our biophysical model of nucleosome positioning and energetics, which predicts that nucleosomes immediately downstream of transcription start sites are anchored and recapitulates nucleosome phasing at active genes significantly better than sequence-dependent models.


Assuntos
Cromatina/metabolismo , Drosophila melanogaster/genética , Perfilação da Expressão Gênica , Genoma , Nucleossomos/metabolismo , Animais , Imunoprecipitação da Cromatina , Drosophila melanogaster/embriologia
12.
Nucleic Acids Res ; 44(1): 152-63, 2016 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-26384414

RESUMO

Increasing amounts of data support a role for guanine quadruplex (G4) DNA and RNA structures in various cellular processes. We stained different organisms with monoclonal antibody 1H6 specific for G4 DNA. Strikingly, immuno-electron microscopy showed exquisite specificity for heterochromatin. Polytene chromosomes from Drosophila salivary glands showed bands that co-localized with heterochromatin proteins HP1 and the SNF2 domain-containing protein SUUR. Staining was retained in SUUR knock-out mutants but lost upon overexpression of SUUR. Somatic cells in Macrostomum lignano were strongly labeled, but pluripotent stem cells labeled weakly. Similarly, germline stem cells in Drosophila ovaries were weakly labeled compared to most other cells. The unexpected presence of G4 structures in heterochromatin and the difference in G4 staining between somatic cells and stem cells with germline DNA in ciliates, flatworms, flies and mammals point to a conserved role for G4 structures in nuclear organization and cellular differentiation.


Assuntos
Quadruplex G , Guanina , Heterocromatina/química , Heterocromatina/genética , Animais , Cilióforos , Drosophila , Células Germinativas/metabolismo , Histonas/metabolismo , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/ultraestrutura , Platelmintos , Cromossomos Politênicos/química , Cromossomos Politênicos/genética , Ratos
13.
Nat Rev Genet ; 12(12): 846-60, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22094948

RESUMO

In the past decade, microRNAs (miRNAs) have been uncovered as key regulators of gene expression at the post-transcriptional level. The ancient origin of miRNAs, their dramatic expansion in bilaterian animals and their function in providing robustness to transcriptional programmes suggest that miRNAs are instrumental in the evolution of organismal complexity. Advances in understanding miRNA biology, combined with the increasing availability of diverse sequenced genomes, have begun to reveal the molecular mechanisms that underlie the evolution of miRNAs and their targets. Insights are also emerging into how the evolution of miRNA-containing regulatory networks has contributed to organismal complexity.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica , Variação Genética , MicroRNAs/genética , Animais , Sequência de Bases , Filogenia
14.
BMC Genomics ; 17(1): 853, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27806710

RESUMO

BACKGROUND: Volvox carteri (V. carteri) is a multicellular green alga used as model system for the evolution of multicellularity. So far, the contribution of small RNA pathways to these phenomena is not understood. Thus, we have sequenced V. carteri Argonaute 3 (VcAGO3)-associated small RNAs from different developmental stages. RESULTS: Using this functional approach, we define the Volvox microRNA (miRNA) repertoire and show that miRNAs are not conserved in the closely related unicellular alga Chlamydomonas reinhardtii. Furthermore, we find that miRNAs are differentially expressed during different life stages of V. carteri. In addition to miRNAs, transposon-associated small RNAs or phased siRNA loci, which are common in higher land plants, are highly abundant in Volvox as well. Transposons not only give rise to miRNAs and other small RNAs, they are also targets of small RNAs. CONCLUSION: Our analyses reveal a surprisingly complex small RNA network in Volvox as elaborate as in higher land plants. At least the identified VcAGO3-associated miRNAs are not conserved in C. reinhardtii suggesting fast evolution of small RNA systems. Thus, distinct small RNAs may contribute to multicellularity and also division of labor in reproductive and somatic cells.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Pequeno RNA não Traduzido/genética , Volvox/genética , Proteínas Argonautas/metabolismo , Sequência de Bases , Sítios de Ligação , Biologia Computacional/métodos , Elementos de DNA Transponíveis , Perfilação da Expressão Gênica , MicroRNAs/genética , Anotação de Sequência Molecular , Motivos de Nucleotídeos , Ligação Proteica , Reprodutibilidade dos Testes , Transcriptoma
15.
EMBO J ; 31(16): 3422-30, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22850670

RESUMO

In recent years, the Piwi pathway has been shown to regulate the silencing of mobile genetic elements. However, we know little about how Piwi pathways impose silencing and even less about trans-generational stability of Piwi-induced silencing. We demonstrate that the Caenorhabditis elegans Piwi protein PRG-1 can initiate an extremely stable form of gene silencing on a transgenic, single-copy target. This type of silencing is faithfully maintained over tens of generations in the absence of a functional Piwi pathway. Interestingly, RNAi can also trigger permanent gene silencing of a single-copy transgene and the phenomenon will be collectively referred to as RNA-induced epigenetic silencing (RNAe). RNAe can act in trans and is dependent on endogenous RNAi factors. The involvement of factors known to act in nuclear RNAi and the fact that RNAe is accompanied by repressive chromatin marks indicate that RNAe includes a transcriptional silencing component. Our results demonstrate that, at least in C. elegans, the Piwi pathway can impose a state of gene silencing that borders on 'permanently silent'. Such a property may be more widely conserved among Piwi pathways in different animals.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimologia , Caenorhabditis elegans/fisiologia , Inativação Gênica , Animais , Animais Geneticamente Modificados , Perfilação da Expressão Gênica , Modelos Biológicos
16.
Mol Cell ; 31(1): 79-90, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18571451

RESUMO

The Piwi proteins of the Argonaute superfamily are required for normal germline development in Drosophila, zebrafish, and mice and associate with 24-30 nucleotide RNAs termed piRNAs. We identify a class of 21 nucleotide RNAs, previously named 21U-RNAs, as the piRNAs of C. elegans. Piwi and piRNA expression is restricted to the male and female germline and independent of many proteins in other small-RNA pathways, including DCR-1. We show that Piwi is specifically required to silence Tc3, but not other Tc/mariner DNA transposons. Tc3 excision rates in the germline are increased at least 100-fold in piwi mutants as compared to wild-type. We find no evidence for a Ping-Pong model for piRNA amplification in C. elegans. Instead, we demonstrate that Piwi acts upstream of an endogenous siRNA pathway in Tc3 silencing. These data might suggest a link between piRNA and siRNA function.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Elementos de DNA Transponíveis/genética , Células Germinativas/metabolismo , Proteínas/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Proteínas Argonautas , Caenorhabditis elegans/genética , Proteínas de Drosophila , Feminino , Inativação Gênica , Genes de Helmintos , Células Germinativas/crescimento & desenvolvimento , Masculino , Proteínas/genética , RNA de Helmintos/metabolismo , Complexo de Inativação Induzido por RNA , Transposases/metabolismo
17.
Biofouling ; 32(9): 1115-1129, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27661452

RESUMO

The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to underwater surfaces. Using transcriptome sequencing and a basal disc-specific RNA-seq combined with in situ hybridisation a highly specific set of candidate adhesive genes was identified. A de novo transcriptome assembly of 55,849 transcripts (>200 bp) was generated using paired-end and single reads from Illumina libraries constructed from different polyp conditions. Differential transcriptomics and spatial gene expression analysis by in situ hybridisation allowed the identification of 40 transcripts exclusively expressed in the ectodermal basal disc cells. Comparisons after mass spectrometry analysis of the adhesive secretion showed a total of 21 transcripts to be basal disc specific and eventually secreted through basal disc cells. This is the first study to survey adhesion-related genes in Hydra. The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra.

18.
EMBO J ; 30(16): 3298-308, 2011 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-21743441

RESUMO

Piwi proteins function in an RNAi-like pathway that silences transposons. Piwi-associated RNAs, also known as piRNAs, act as a guide to identify Piwi targets. The tudor domain-containing protein Tdrd1 has been linked to this pathway but its function has thus far remained unclear. We show that zebrafish Tdrd1 is required for efficient Piwi-pathway activity and proper nuage formation. Furthermore, we find that Tdrd1 binds both zebrafish Piwi proteins, Ziwi and Zili, and reveals sequence specificity in the interaction between Tdrd1 tudor domains and symmetrically dimethylated arginines (sDMAs) in Zili. Finally, we show that Tdrd1 complexes contain piRNAs and RNA molecules that are longer than piRNAs. We name these longer transcripts Tdrd1-associated transcripts (TATs). TATs likely represent cleaved Piwi pathway targets and may serve as piRNA biogenesis intermediates. Altogether, our data suggest that Tdrd1 acts as a molecular scaffold for Piwi proteins, bound through specific tudor domain-sDMA interactions, piRNAs and piRNA targets.


Assuntos
Chaperonas Moleculares/fisiologia , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/metabolismo , Animais , Arginina/análogos & derivados , Arginina/metabolismo , Elementos de DNA Transponíveis/genética , Feminino , Substâncias Macromoleculares , Masculino , Oócitos/metabolismo , Oócitos/ultraestrutura , Ovário/metabolismo , Mapeamento de Interação de Proteínas , Interferência de RNA , Proteínas de Ligação a RNA/química , Frações Subcelulares/metabolismo , Testículo/metabolismo , Transcrição Gênica , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/metabolismo
19.
RNA ; 19(3): 345-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23335638

RESUMO

Transposable elements (TEs) are mobile genetic elements that can have many deleterious effects on the fitness of their host. The germline-specific PIWI pathway guards the genome against TEs, deriving its specificity from sequence complementarity between PIWI-bound small RNAs (piRNAs) and the TEs. The piRNAs are derived from so-called piRNA clusters. Recent studies have demonstrated that the piRNA repertoire can be adjusted to accommodate recent TE invasions by capturing invading TEs in piRNA loci. Thus far, no information concerning piRNA divergence is available from vertebrates. We present piRNA analyses of two relatively divergent zebrafish strains. We find that significant differences in the piRNA populations have accumulated, most notably among active class I TEs. This divergence can be split into differences in piRNA abundance per element and differences in sense/antisense polarity ratios. In crosses between animals of the different strains, many of these differences are resolved in the progeny. However, some differences remain, often leaning to the maternally contributed piRNA population. These differences can be detected at least two generations later. Our data illustrate, for the first time, the fluidity of piRNA populations in vertebrates and how the established diversity is transmitted to future generations.


Assuntos
Epigênese Genética , RNA Interferente Pequeno/metabolismo , Peixe-Zebra/genética , Zigoto/metabolismo , Animais , Cruzamentos Genéticos , Elementos de DNA Transponíveis , Feminino , Masculino , RNA Interferente Pequeno/química , Peixe-Zebra/metabolismo
20.
RNA ; 19(12): 1711-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24129493

RESUMO

MicroRNAs (miRNAs) have been widely studied in order to elucidate their biological functions. MicroRNA microarrays or miRNA overexpression libraries generated by synthesis and cloning of individual miRNAs have been used to study their different roles. In this work, we have developed a novel methodology to express mature miRNAs and other small RNAs from a double convergent RNA polymerase III promoter. We show that the generated miRNAs function similarly to those processed from primary transcripts or pri-miRNAs. This system allowed us to produce a lentiviral library expressing the whole population of small RNAs present in a metastatic cell line. A functional screening using this library led to the identification of hsa-miR-30b and hsa-miR-30c as negative regulators of cell death induced by loss of attachment (anoikis). Importantly, we demonstrated that the acquisition of anoikis resistance via these miRNAs is achieved through down-regulation of caspase 3 expression. Moreover, overexpression of these miRNAs resulted in a decrease of other types of caspase 3-dependent cell death and enhanced the survival of MCF10A acinar cells in morphogenesis assays, suggesting a putative role as oncomirs. In summary, this novel methodology provides a powerful and effective way for identifying novel small RNAs involved in a particular biological process.


Assuntos
Anoikis/genética , Caspase 3/genética , MicroRNAs/genética , Regiões 3' não Traduzidas , Sequência de Bases , Sítios de Ligação , Caspase 3/metabolismo , Técnicas de Cultura de Células , Forma Celular , Repressão Enzimática , Feminino , Expressão Gênica , Biblioteca Gênica , Células HCT116 , Células HEK293 , Humanos , Glândulas Mamárias Humanas/citologia , MicroRNAs/metabolismo , Morfogênese , Interferência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA