Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(15): e2317274121, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38579010

RESUMO

Here, we describe the identification of an antibiotic class acting via LpxH, a clinically unexploited target in lipopolysaccharide synthesis. The lipopolysaccharide synthesis pathway is essential in most Gram-negative bacteria and there is no analogous pathway in humans. Based on a series of phenotypic screens, we identified a hit targeting this pathway that had activity on efflux-defective strains of Escherichia coli. We recognized common structural elements between this hit and a previously published inhibitor, also with activity against efflux-deficient bacteria. With the help of X-ray structures, this information was used to design inhibitors with activity on efflux-proficient, wild-type strains. Optimization of properties such as solubility, metabolic stability and serum protein binding resulted in compounds having potent in vivo efficacy against bloodstream infections caused by the critical Gram-negative pathogens E. coli and Klebsiella pneumoniae. Other favorable properties of the series include a lack of pre-existing resistance in clinical isolates, and no loss of activity against strains expressing extended-spectrum-ß-lactamase, metallo-ß-lactamase, or carbapenemase-resistance genes. Further development of this class of antibiotics could make an important contribution to the ongoing struggle against antibiotic resistance.


Assuntos
Antibacterianos , Lipopolissacarídeos , Humanos , Antibacterianos/química , Escherichia coli/metabolismo , Bactérias Gram-Negativas/metabolismo , beta-Lactamases/genética , Testes de Sensibilidade Microbiana
2.
J Biol Chem ; 288(25): 18260-70, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23661699

RESUMO

Mycobacterium tuberculosis, the bacterial causative agent of tuberculosis, currently affects millions of people. The emergence of drug-resistant strains makes development of new antibiotics targeting the bacterium a global health priority. Pantothenate kinase, a key enzyme in the universal biosynthesis of the essential cofactor CoA, was targeted in this study to find new tuberculosis drugs. The biochemical characterizations of two new classes of compounds that inhibit pantothenate kinase from M. tuberculosis are described, along with crystal structures of their enzyme-inhibitor complexes. These represent the first crystal structures of this enzyme with engineered inhibitors. Both classes of compounds bind in the active site of the enzyme, overlapping with the binding sites of the natural substrate and product, pantothenate and phosphopantothenate, respectively. One class of compounds also interferes with binding of the cofactor ATP. The complexes were crystallized in two crystal forms, one of which is in a new space group for this enzyme and diffracts to the highest resolution reported for any pantothenate kinase structure. These two crystal forms allowed, for the first time, modeling of the cofactor-binding loop in both open and closed conformations. The structures also show a binding mode of ATP different from that previously reported for the M. tuberculosis enzyme but similar to that in the pantothenate kinases of other organisms.


Assuntos
Proteínas de Bactérias/química , Inibidores Enzimáticos/química , Mycobacterium tuberculosis/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocatálise/efeitos dos fármacos , Cristalografia por Raios X , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Modelos Moleculares , Conformação Molecular , Dados de Sequência Molecular , Ácido Pantotênico/análogos & derivados , Ácido Pantotênico/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
3.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 2): 134-43, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22281742

RESUMO

A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize the essential isoprenoid precursor isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway that is found in humans. As part of a structure-based drug-discovery program against tuberculosis, DXR, the enzyme that carries out the second step in the MEP pathway, has been investigated. This enzyme is the target for the antibiotic fosmidomycin and its active acetyl derivative FR-900098. The structure of DXR from Mycobacterium tuberculosis in complex with FR-900098, manganese and the NADPH cofactor has been solved and refined. This is a new crystal form that diffracts to a higher resolution than any other DXR complex reported to date. Comparisons with other ternary complexes show that the conformation is that of the enzyme in an active state: the active-site flap is well defined and the cofactor-binding domain has a conformation that brings the NADPH into the active site in a manner suitable for catalysis. The substrate-binding site is highly conserved in a number of pathogens that use this pathway, so any new inhibitor that is designed for the M. tuberculosis enzyme is likely to exhibit broad-spectrum activity.


Assuntos
Aldose-Cetose Isomerases/química , Aldose-Cetose Isomerases/metabolismo , Antibacterianos/farmacologia , Fosfomicina/análogos & derivados , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases/química , Oxirredutases/metabolismo , Sequência de Aminoácidos , Antibacterianos/química , Eritritol/análogos & derivados , Eritritol/metabolismo , Fosfomicina/química , Fosfomicina/farmacologia , Manganês/química , Manganês/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium tuberculosis/química , NADP/química , NADP/metabolismo , Ligação Proteica , Alinhamento de Sequência , Fosfatos Açúcares/metabolismo
4.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 5): 403-14, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21543842

RESUMO

A number of pathogens, including the causative agents of tuberculosis and malaria, synthesize isopentenyl diphosphate via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway rather than the classical mevalonate pathway found in humans. As part of a structure-based drug-discovery program against tuberculosis, IspD, the enzyme that carries out the third step in the MEP pathway, was targeted. Constructs of both the Mycobacterium smegmatis and the Mycobacterium tuberculosis enzymes that were suitable for structural and inhibitor-screening studies were engineered. Two crystal structures of the M. smegmatis enzyme were produced, one in complex with CTP and the other in complex with CMP. In addition, the M. tuberculosis enzyme was crystallized in complex with CTP. Here, the structure determination and crystallographic refinement of these crystal forms and the enzymatic characterization of the M. tuberculosis enzyme construct are reported. A comparison with known IspD structures allowed the definition of the structurally conserved core of the enzyme. It indicates potential flexibility in the enzyme and in particular in areas close to the active site. These well behaved constructs provide tools for future target-based screening of potential inhibitors. The conserved nature of the extended active site suggests that any new inhibitor will potentially exhibit broad-spectrum activity.


Assuntos
Proteínas de Bactérias/química , Eritritol/análogos & derivados , Mycobacterium smegmatis/enzimologia , Mycobacterium tuberculosis/enzimologia , Fosfatos Açúcares/metabolismo , Tuberculose/enzimologia , Sequência de Aminoácidos , Antituberculosos/farmacologia , Proteínas de Bactérias/metabolismo , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Eritritol/metabolismo , Hemiterpenos/metabolismo , Humanos , Dados de Sequência Molecular , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Compostos Organofosforados/metabolismo , Alinhamento de Sequência , Tuberculose/tratamento farmacológico
5.
Artigo em Inglês | MEDLINE | ID: mdl-21821908

RESUMO

Advances in automation have facilitated the widespread adoption of high-throughput vapour-diffusion methods for initial crystallization screening. However, for many proteins, screening thousands of crystallization conditions fails to yield crystals of sufficient quality for structural characterization. Here, the rates of crystal identification for thaumatin, catalase and myoglobin using microfluidic Crystal Former devices and sitting-drop vapour-diffusion plates are compared. It is shown that the Crystal Former results in a greater number of identified initial crystallization conditions compared with vapour diffusion. Furthermore, crystals of thaumatin and lysozyme obtained in the Crystal Former were used directly for structure determination both in situ and upon harvesting and cryocooling. On the basis of these results, a crystallization strategy is proposed that uses multiple methods with distinct kinetic trajectories through the protein phase diagram to increase the output of crystallization pipelines.


Assuntos
Técnicas Analíticas Microfluídicas/instrumentação , Automação Laboratorial , Catalase/análise , Cristalização , Marantaceae/química , Técnicas Analíticas Microfluídicas/métodos , Modelos Moleculares , Mioglobina/análise , Proteínas de Plantas/análise , Estrutura Terciária de Proteína
6.
J Appl Crystallogr ; 53(Pt 6): 1414-1415, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33304219

RESUMO

Lahey-Rudolph and co-workers [J. Appl. Cryst. (2020), 53, 1169-1180] have reported a rapid and sensitive method to screen for crystals in cellulo - a welcome addition to the structural biology toolbox.

7.
Sci Rep ; 10(1): 4950, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170142

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

8.
Sci Rep ; 9(1): 15424, 2019 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-31659219

RESUMO

The bacterial ribosome is an important drug target for antibiotics that can inhibit different stages of protein synthesis. Among the various classes of compounds that impair translation there are, however, no known small-molecule inhibitors that specifically target ribosomal release factors (RFs). The class I RFs are essential for correct termination of translation and they differ considerably between bacteria and eukaryotes, making them potential targets for inhibiting bacterial protein synthesis. We carried out virtual screening of a large compound library against 3D structures of free and ribosome-bound RFs in order to search for small molecules that could potentially inhibit termination by binding to the RFs. Here, we report identification of two such compounds which are found both to bind free RFs in solution and to inhibit peptide release on the ribosome, without affecting peptide bond formation.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Fatores de Terminação de Peptídeos/química , Ribossomos/química , Thermus thermophilus/química , Antibacterianos/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Terminação Traducional da Cadeia Peptídica/efeitos dos fármacos , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Fatores de Terminação de Peptídeos/metabolismo , Ribossomos/metabolismo , Thermus thermophilus/metabolismo
9.
FEBS J ; 274(14): 3695-3703, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17608716

RESUMO

Brassica juncea chitinase is an endo-acting, pathogenesis-related protein that is classified into glycoside hydrolase family 19, with highest homology (50-60%) in its catalytic domain to class I plant chitinases. Here we report X-ray structures of the chitinase catalytic domain from wild-type (apo, as well as with chloride ions bound) and a Glu234Ala mutant enzyme, solved by molecular replacement and refined at 1.53, 1.8 and 1.7 A resolution, respectively. Confirming our earlier mutagenesis studies, the active-site residues are identified as Glu212 and Glu234. Glu212 is believed to be the catalytic acid in the reaction, whereas Glu234 is thought to have a dual role, both activating a water molecule in its attack on the anomeric carbon, and stabilizing the charged intermediate. The molecules in the various structures differ significantly in the conformation of a number of loops that border the active-site cleft. The differences suggest an opening and closing of the enzyme during the catalytic cycle. Chitin is expected to dock first near Glu212, which will protonate it. Conformational changes then bring Glu234 closer, allowing it to assist in the following steps. These observations provide important insights into catalysis in family 19 chitinases.


Assuntos
Brassica/enzimologia , Quitinases/química , Quitinases/metabolismo , Sítios de Ligação , Brassica/genética , Quitinases/classificação , Quitinases/genética , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
10.
Methods Mol Biol ; 363: 131-51, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17272840

RESUMO

Crystallization of biological macromolecules is becoming increasingly automated. However, for various reasons, many laboratories still perform at least some aspects of the work manually. A typical crystallization project entails two distinct steps: screening and optimization. The aim of the initial phase is to screen the many parameters affecting crystallization, and as broadly as possible. If any promising conditions are found, these are optimized with other protocols. This chapter describes procedures for manual screening by the vapor diffusion and microbatch methods in 96- and 24-well plate formats. For optimization, several protocols are presented, including grid and additive screens, seeding, and manipulation of the drop kinetics. The scoring of crystallization results and methods for distinguishing protein and salt crystals are also discussed in this chapter.


Assuntos
Cristalização/métodos , Substâncias Macromoleculares/química , Automação , Cristalografia por Raios X , Laboratórios , Modelos Químicos , Proteínas/química
11.
J Mol Biol ; 351(5): 1048-56, 2005 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-16051262

RESUMO

Epoxide hydrolases are vital to many organisms by virtue of their roles in detoxification, metabolism and processing of signaling molecules. The Mycobacterium tuberculosis genome encodes an unusually large number of epoxide hydrolases, suggesting that they might be of particular importance to these bacteria. We report here the first structure of an epoxide hydrolase from M.tuberculosis, solved to a resolution of 2.5 A using single-wavelength anomalous dispersion (SAD) from a selenomethionine-substituted protein. The enzyme features a deep active-site pocket created by the packing of three helices onto a curved six-stranded beta-sheet. This structure is similar to a previously described limonene-1,2-epoxide hydrolase from Rhodococcus erythropolis and unlike the alpha/beta-hydrolase fold typical of mammalian epoxide hydrolases (EH). A number of changes in the mycobacterial enzyme create a wider and deeper substrate-binding pocket than is found in its Rhodococcus homologue. Interestingly, each structure contains a different type of endogenous ligand of unknown origin bound in its active site. As a consequence of its wider substrate-binding pocket, the mycobacterial EH is capable of hydrolyzing long or bulky lipophilic epoxides such as 10,11-epoxystearic acid and cholesterol 5,6-oxide at appreciable rates, suggesting that similar compound(s) will serve as its physiological substrate(s).


Assuntos
Epóxido Hidrolases/química , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Ácido Aspártico/química , Sítios de Ligação , Colesterol/análogos & derivados , Colesterol/química , Clonagem Molecular , Cristalografia por Raios X , Cicloexenos , Bases de Dados de Proteínas , Escherichia coli/metabolismo , Genoma Bacteriano , Cinética , Ligantes , Limoneno , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Especificidade por Substrato , Terpenos/química
12.
ChemMedChem ; 11(18): 2024-36, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27487410

RESUMO

Blocking the 2-C-methyl-d-erythrithol-4-phosphate pathway for isoprenoid biosynthesis offers new ways to inhibit the growth of Plasmodium spp. Fosmidomycin [(3-(N-hydroxyformamido)propyl)phosphonic acid, 1] and its acetyl homologue FR-900098 [(3-(N-hydroxyacetamido)propyl)phosphonic acid, 2] potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this biosynthetic pathway. Arylpropyl substituents were introduced at the ß-position of the hydroxamate analogue of 2 to study changes in lipophilicity, as well as electronic and steric properties. The potency of several new compounds on the P. falciparum enzyme approaches that of 1 and 2. Activities against the enzyme and parasite correlate well, supporting the mode of action. Seven X-ray structures show that all of the new arylpropyl substituents displace a key tryptophan residue of the active-site flap, which had made favorable interactions with 1 and 2. Plasticity of the flap allows substituents to be accommodated in many ways; in most cases, the flap is largely disordered. Compounds can be separated into two classes based on whether the substituent on the aromatic ring is at the meta or para position. Generally, meta-substituted compounds are better inhibitors, and in both classes, smaller size is linked to better potency.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Fosfomicina/análogos & derivados , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Aldose-Cetose Isomerases/metabolismo , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
13.
Biochim Biophys Acta ; 1649(1): 40-50, 2003 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-12818189

RESUMO

We describe the 1.6 A crystal structure of the fatty-acid-binding protein EgFABP1 from the parasitic platyhelminth Echinococcus granulosus. E. granulosus causes hydatid disease, which is a major zoonosis. EgFABP1 has been implicated in the acquisition, storage, and transport of lipids, and may be important to the organism since it is incapable of synthesising most of its lipids de novo. Moreover, EgFABP1 is a promising candidate for a vaccine against hydatid disease. The crystal structure reveals that EgFABP1 has the expected 10-stranded beta-barrel fold typical of the family of intracellular lipid-binding proteins, and that it is structurally most similar to P2 myelin protein. We describe the comparison of the crystal structure of EgFABP1 with these proteins and with an older homology model for EgFABP1. The electron density reveals the presence of a bound ligand inside the cavity, which we have interpreted as palmitic acid. The carboxylate group of the fatty acid interacts with the protein's P2 motif, consisting of a conserved triad R em leader R-x-Y. The hydrophobic tail of the ligand assumes a fairly flat, U-shaped conformation and has relatively few interactions with the protein.We discuss some of the structural implications of the crystal structure of EgFABP1 for related platyhelminthic FABPs.


Assuntos
Proteínas de Transporte/química , Echinococcus/química , Proteínas de Helminto/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/metabolismo , Cristalografia por Raios X , Echinococcus/metabolismo , Elétrons , Proteínas de Ligação a Ácido Graxo , Proteínas de Helminto/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Metionina/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Ácido Palmítico/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos , Serina/química , Homologia Estrutural de Proteína
14.
J Mol Biol ; 335(3): 799-809, 2004 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-14687575

RESUMO

Ribose-5-phosphate isomerases (EC 5.3.1.6) inter-convert ribose-5-phosphate and ribulose-5-phosphate. This reaction allows the synthesis of ribose from other sugars, as well a means for salvage of carbohydrates after nucleotide breakdown. Two unrelated types of enzyme are known to catalyze the isomerization. The most common one, RpiA, is present in almost all organisms. The second type, RpiB, is found in many bacterial species.Here, we demonstrate that the RpiB from Mycobacterium tuberculosis (Rv2465c) has catalytic properties very similar to those previously reported for the Escherichia coli RpiB enzyme. Further, we report the structure of the mycobacterial enzyme, solved by molecular replacement and refined to 1.88A resolution. Comparison with the E.coli structure shows that there are important differences in the two active sites, including a change in the position and nature of the catalytic base. Sequence comparisons reveal that the M.tuberculosis and E.coli RpiB enzymes are in fact representative of two distinct sub-families. The mycobacterial enzyme represents a type found only in actinobacteria, while the enzyme from E.coli is typical of that seen in many other bacterial proteomes. Both RpiBs are very different from RpiA in structure as well as in the construction of the active site. Docking studies allow additional insights into the reactions of all three enzymes, and show that many features of the mechanism are preserved despite the different catalytic components.


Assuntos
Aldose-Cetose Isomerases/química , Mycobacterium tuberculosis/enzimologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Estrutura Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
15.
J Med Chem ; 58(7): 2988-3001, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25781377

RESUMO

Blocking the 2-C-methyl-d-erythrithol-4-phosphate (MEP) pathway for isoprenoid biosynthesis offers interesting prospects for inhibiting Plasmodium or Mycobacterium spp. growth. Fosmidomycin (1) and its homologue FR900098 (2) potently inhibit 1-deoxy-d-xylulose-5-phosphate reductoisomerase (Dxr), a key enzyme in this pathway. Here we introduced aryl or aralkyl substituents at the ß-position of the hydroxamate analogue of 2. While direct addition of a ß-aryl moiety resulted in poor inhibition, longer linkers between the carbon backbone and the phenyl ring were generally associated with better binding to the enzymes. X-ray structures of the parasite Dxr-inhibitor complexes show that the "longer" compounds generate a substantially different flap structure, in which a key tryptophan residue is displaced, and the aromatic group of the ligand lies between the tryptophan and the hydroxamate's methyl group. Although the most promising new Dxr inhibitors lack activity against Escherichia coli and Mycobacterium smegmatis, they proved to be highly potent inhibitors of Plasmodium falciparum in vitro growth.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Aldose-Cetose Isomerases/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Fosfomicina/análogos & derivados , Aldose-Cetose Isomerases/genética , Aldose-Cetose Isomerases/metabolismo , Antimaláricos/química , Antimaláricos/farmacologia , Técnicas de Química Sintética , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Escherichia coli/efeitos dos fármacos , Fosfomicina/química , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Modelos Moleculares , Terapia de Alvo Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Conformação Proteica , Relação Estrutura-Atividade
16.
Acta Crystallogr F Struct Biol Commun ; 70(Pt 9): 1117-26, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25195878

RESUMO

Protein crystals obtained in initial screens typically require optimization before they are of X-ray diffraction quality. Seeding is one such optimization method. In classical seeding experiments, the seed crystals are put into new, albeit similar, conditions. The past decade has seen the emergence of an alternative seeding strategy: microseed matrix screening (MMS). In this strategy, the seed crystals are transferred into conditions unrelated to the seed source. Examples of MMS applications from in-house projects and the literature include the generation of multiple crystal forms and different space groups, better diffracting crystals and crystallization of previously uncrystallizable targets. MMS can be implemented robotically, making it a viable option for drug-discovery programs. In conclusion, MMS is a simple, time- and cost-efficient optimization method that is applicable to many recalcitrant crystallization problems.


Assuntos
Proteínas/química , Cristalização , Cristalografia por Raios X , Modelos Moleculares
17.
J Med Chem ; 56(15): 6190-9, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23819803

RESUMO

The antimalarial compound fosmidomycin targets DXR, the enzyme that catalyzes the first committed step in the MEP pathway, producing the essential isoprenoid precursors, isopentenyl diphosphate and dimethylallyl diphosphate. The MEP pathway is used by a number of pathogens, including Mycobacterium tuberculosis and apicomplexan parasites, and differs from the classical mevalonate pathway that is essential in humans. Using a structure-based approach, we designed a number of analogues of fosmidomycin, including a series that are substituted in both the Cα and the hydroxamate positions. The latter proved to be a stable framework for the design of inhibitors that extend from the polar and cramped (and so not easily druggable) substrate-binding site and can, for the first time, bridge the substrate and cofactor binding sites. A number of these compounds are more potent than fosmidomycin in terms of killing Plasmodium falciparum in an in vitro assay; the best has an IC50 of 40 nM.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antimaláricos/síntese química , Fosfomicina/análogos & derivados , Aldose-Cetose Isomerases/química , Antimaláricos/química , Antimaláricos/farmacologia , Cristalografia por Raios X , Escherichia coli/enzimologia , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/química , Ácidos Hidroxâmicos/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/enzimologia , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
18.
Open Biol ; 2(1): 110026, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22645655

RESUMO

The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a novel drug target for tuberculosis treatment and has low homology with the orthologous human enzyme. Here, we report on the structural and kinetic characterization of the transketolase from M. tuberculosis (TBTKT), a homodimer whose monomers each comprise 700 amino acids. We show that TBTKT catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate. An invariant residue of the TKT consensus sequence required for thiamine cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected, and the 2.5 Å resolution structure of full-length TBTKT provides an explanation for this. Key structural differences between the human and mycobacterial TKT enzymes that impact both substrate and cofactor recognition and binding were uncovered. These changes explain the kinetic differences between TBTKT and its human counterpart, and their differential inhibition by small molecules. The availability of a detailed structural model of TBTKT will enable differences between human and M. tuberculosis TKT structures to be exploited to design selective inhibitors with potential antitubercular activity.


Assuntos
Proteínas de Bactérias/química , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Transcetolase/química , Humanos , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
19.
J Med Chem ; 54(14): 4964-76, 2011 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-21678907

RESUMO

The natural antibiotic fosmidomycin acts via inhibition of 1-deoxy-d-xylulose 5-phosphate reductoisomerase (DXR), an essential enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. Fosmidomycin is active on Mycobacterium tuberculosis DXR (MtDXR), but it lacks antibacterial activity probably because of poor uptake. α-Aryl substituted fosmidomycin analogues have more favorable physicochemical properties and are also more active in inhibiting malaria parasite growth. We have solved crystal structures of MtDXR in complex with 3,4-dichlorophenyl substituted fosmidomycin analogues; these show important differences compared to our previously described forsmidomycin-DXR complex. Our best inhibitor has an IC(50) = 0.15 µM on MtDXR but still lacked activity in a mycobacterial growth assay (MIC > 32 µg/mL). The combined results, however, provide insights into how DXR accommodates the new inhibitors and serve as an excellent starting point for the design of other novel and more potent inhibitors, particularly against pathogens where uptake is less of a problem, such as the malaria parasite.


Assuntos
Aldose-Cetose Isomerases/antagonistas & inibidores , Antituberculosos/síntese química , Fosfomicina/análogos & derivados , Complexos Multienzimáticos/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Oxirredutases/antagonistas & inibidores , Aldose-Cetose Isomerases/química , Antituberculosos/química , Antituberculosos/farmacologia , Domínio Catalítico , Cristalografia por Raios X , Desenho de Fármacos , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Modelos Moleculares , Complexos Multienzimáticos/química , Mycobacterium tuberculosis/efeitos dos fármacos , Oxirredutases/química , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade
20.
J Mol Biol ; 376(1): 109-19, 2008 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-18155238

RESUMO

In nature, lipases (EC 3.1.1.3) catalyze the hydrolysis of triglycerides to form glycerol and fatty acids. Under the appropriate conditions, the reaction is reversible, and so biotechnological applications commonly make use of their capacity for esterification as well as for hydrolysis of a wide variety of compounds. In the present paper, we report the X-ray structure of lipase A from Candida antarctica, solved by single isomorphous replacement with anomalous scattering, and refined to 2.2-A resolution. The structure is the first from a novel family of lipases. Contrary to previous predictions, the fold includes a well-defined lid as well as a classic alpha/beta hydrolase domain. The catalytic triad is identified as Ser184, Asp334 and His366, which follow the sequential order considered to be characteristic of lipases; the serine lies within a typical nucleophilic elbow. Computer docking studies, as well as comparisons to related structures, place the carboxylate group of a fatty acid product near the serine nucleophile, with the long lipid tail closely following the path through the lid that is marked by a fortuitously bound molecule of polyethylene glycol. For an ester substrate to bind in an equivalent fashion, loop movements near Phe431 will be required, suggesting the primary focus of the conformational changes required for interfacial activation. Such movements will provide virtually unlimited access to solvent for the alcohol moiety of an ester substrate. The structure thus provides a basis for understanding the enzyme's preference for acyl moieties with long, straight tails, and for its highly promiscuous acceptance of widely different alcohol and amine moieties. An unconventional oxyanion hole is observed in the present structure, although the situation may change during interfacial activation.


Assuntos
Candida/enzimologia , Proteínas Fúngicas/química , Lipase/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA