Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(2): e2304135120, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38147542

RESUMO

Active hydroponic substrates that stimulate on demand the plant growth have not been demonstrated so far. Here, we developed the eSoil, a low-power bioelectronic growth scaffold that can provide electrical stimulation to the plants' root system and growth environment in hydroponics settings. eSoil's active material is an organic mixed ionic electronic conductor while its main structural component is cellulose, the most abundant biopolymer. We demonstrate that barley seedlings that are widely used for fodder grow within the eSoil with the root system integrated within its porous matrix. Simply by polarizing the eSoil, seedling growth is accelerated resulting in increase of dry weight on average by 50% after 15 d of growth. The effect is evident both on root and shoot development and occurs during the growth period after the stimulation. The stimulated plants reduce and assimilate NO3- more efficiently than controls, a finding that may have implications on minimizing fertilizer use. However, more studies are required to provide a mechanistic understanding of the physical and biological processes involved. eSoil opens the pathway for the development of active hydroponic scaffolds that may increase crop yield in a sustainable manner.


Assuntos
Fenômenos Biológicos , Plântula , Plântula/metabolismo , Hidroponia/métodos , Raízes de Plantas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(18): e2218380120, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094114

RESUMO

The nature of mass transport in plants has recently inspired the development of low-cost and sustainable wood-based electronics. Herein, we report a wood electrochemical transistor (WECT) where all three electrodes are fully made of conductive wood (CW). The CW is prepared using a two-step strategy of wood delignification followed by wood amalgamation with a mixed electron-ion conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS). The modified wood has an electrical conductivity of up to 69 Sm-1 induced by the formation of PEDOT:PSS microstructures inside the wood 3D scaffold. CW is then used to fabricate the WECT, which is capable of modulating an electrical current in a porous and thick transistor channel (1 mm) with an on/off ratio of 50. The device shows a good response to gate voltage modulation and exhibits dynamic switching properties similar to those of an organic electrochemical transistor. This wood-based device and the proposed working principle demonstrate the possibility to incorporate active electronic functionality into the wood, suggesting different types of bio-based electronic devices.

3.
Nat Mater ; 22(2): 242-248, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36635590

RESUMO

Biointegrated neuromorphic hardware holds promise for new protocols to record/regulate signalling in biological systems. Making such artificial neural circuits successful requires minimal device/circuit complexity and ion-based operating mechanisms akin to those found in biology. Artificial spiking neurons, based on silicon-based complementary metal-oxide semiconductors or negative differential resistance device circuits, can emulate several neural features but are complicated to fabricate, not biocompatible and lack ion-/chemical-based modulation features. Here we report a biorealistic conductance-based organic electrochemical neuron (c-OECN) using a mixed ion-electron conducting ladder-type polymer with stable ion-tunable antiambipolarity. The latter is used to emulate the activation/inactivation of sodium channels and delayed activation of potassium channels of biological neurons. These c-OECNs can spike at bioplausible frequencies nearing 100 Hz, emulate most critical biological neural features, demonstrate stochastic spiking and enable neurotransmitter-/amino acid-/ion-based spiking modulation, which is then used to stimulate biological nerves in vivo. These combined features are impossible to achieve using previous technologies.


Assuntos
Elétrons , Polímeros , Neurônios/fisiologia , Transdução de Sinais , Semicondutores
4.
Biomacromolecules ; 25(3): 1933-1941, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38324476

RESUMO

Nanocellulose-based membranes have attracted intense attention in bioelectronic devices due to their low cost, flexibility, biocompatibility, degradability, and sustainability. Herein, we demonstrate a flexible ionic diode using a cross-linked bipolar membrane fabricated from positively and negatively charged cellulose nanofibrils (CNFs). The rectified current originates from the asymmetric charge distribution, which can selectively determine the direction of ion transport inside the bipolar membrane. The mechanism of rectification was demonstrated by electrochemical impedance spectroscopy with voltage biases. The rectifying behavior of this kind of ionic diode was studied by using linear sweep voltammetry to obtain current-voltage characteristics and the time dependence of the current. In addition, the performance of cross-linked CNF diodes was investigated while changing parameters such as the thickness of the bipolar membranes, the scanning voltage range, and the scanning rate. A good long-term stability due to the high density cross-linking of the diode was shown in both current-voltage characteristics and the time dependence of current.


Assuntos
Celulose , Íons , Membranas
5.
Chem Rev ; 122(4): 4826-4846, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35050623

RESUMO

The nervous system poses a grand challenge for integration with modern electronics and the subsequent advances in neurobiology, neuroprosthetics, and therapy which would become possible upon such integration. Due to its extreme complexity, multifaceted signaling pathways, and ∼1 kHz operating frequency, modern complementary metal oxide semiconductor (CMOS) based electronics appear to be the only technology platform at hand for such integration. However, conventional CMOS-based electronics rely exclusively on electronic signaling and therefore require an additional technology platform to translate electronic signals into the language of neurobiology. Organic electronics are just such a technology platform, capable of converting electronic addressing into a variety of signals matching the endogenous signaling of the nervous system while simultaneously possessing favorable material similarities with nervous tissue. In this review, we introduce a variety of organic material platforms and signaling modalities specifically designed for this role as "translator", focusing especially on recent implementation in in vivo neuromodulation. We hope that this review serves both as an informational resource and as an encouragement and challenge to the field.


Assuntos
Eletrônica , Semicondutores , Óxidos
6.
Langmuir ; 39(23): 8196-8204, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37267478

RESUMO

Seamless integration between biological systems and electrical components is essential for enabling a twinned biochemical-electrical recording and therapy approach to understand and combat neurological disorders. Employing bioelectronic systems made up of conjugated polymers, which have an innate ability to transport both electronic and ionic charges, provides the possibility of such integration. In particular, translating enzymatically polymerized conductive wires, recently demonstrated in plants and simple organism systems, into mammalian models, is of particular interest for the development of next-generation devices that can monitor and modulate neural signals. As a first step toward achieving this goal, enzyme-mediated polymerization of two thiophene-based monomers is demonstrated on a synthetic lipid bilayer supported on a Au surface. Microgravimetric studies of conducting films polymerized in situ provide insights into their interactions with a lipid bilayer model that mimics the cell membrane. Moreover, the resulting electrical and viscoelastic properties of these self-organizing conducting polymers suggest their potential as materials to form the basis for novel approaches to in vivo neural therapeutics.


Assuntos
Bicamadas Lipídicas , Polímeros , Animais , Polimerização , Membrana Celular , Membranas , Mamíferos
7.
Phys Chem Chem Phys ; 24(32): 19144-19163, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35942679

RESUMO

Efficient transport of both ionic and electronic charges in conjugated polymers (CPs) has enabled a wide range of novel electrochemical devices spanning applications from energy storage to bioelectronic devices. In this Perspective, we provide an overview of the fundamental physical processes which underlie the operation of mixed conducting polymer (MCP) devices. While charge injection and transport have been studied extensively in both ionic and electronic conductors, translating these principles to mixed conducting systems proves challenging due to the complex relationships among the individual materials properties. We break down the process of electrochemical (de)doping, the basic feature exploited in mixed conducting devices, into its key steps, highlighting recent advances in the study of these physical processes in the context of MCPs. Furthermore, we identify remaining challenges in further extending fundamental understanding of MCP-based device operation. Ultimately, a deeper understanding of the elementary processes governing operation in MCPs will drive the advancement in both materials design and device performance.


Assuntos
Eletrônica , Polímeros , Polímeros/química
8.
Nat Mater ; 19(7): 738-744, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32152564

RESUMO

Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor-acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of ∼1013 cm-2. Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics.

9.
Langmuir ; 37(18): 5494-5505, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33929845

RESUMO

Supported lipid bilayers (SLBs) serve important roles as minimalistic models of cellular membranes in multiple diagnostic and pharmaceutical applications as well as in the strive to gain fundamental insights about their complex biological function. To further expand the utility of SLBs, there is a need to go beyond simple lipid compositions to thereby better mimic the complexity of native cell membranes, while simultaneously retaining their compatibility with a versatile range of analytical platforms. To meet this demand, we have in this work explored SLB formation on PEDOT:PSS/silica nanoparticle composite films and mesoporous silica films, both capable of transporting ions to an underlying conducting PEDOT:PSS film. The SLB formation process was evaluated by using the quartz crystal microbalance with dissipation (QCM-D) monitoring, total internal reflection fluorescence (TIRF) microscopy, and fluorescence recovery after photobleaching (FRAP) for membranes made of pure synthetic lipids with or without the reconstituted membrane protein ß-secretase 1 (BACE1) as well as cell-derived native lipid vesicles containing overexpressed BACE1. The mesoporous silica thin film was superior to the PEDOT:PSS/silica nanoparticle composite, providing successful formation of bilayers with high lateral mobility and low defect density even for the most complex native cell membranes.

11.
Proc Natl Acad Sci U S A ; 114(18): 4597-4602, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28420793

RESUMO

The organic electronic ion pump (OEIP) provides flow-free and accurate delivery of small signaling compounds at high spatiotemporal resolution. To date, the application of OEIPs has been limited to delivery of nonaromatic molecules to mammalian systems, particularly for neuroscience applications. However, many long-standing questions in plant biology remain unanswered due to a lack of technology that precisely delivers plant hormones, based on cyclic alkanes or aromatic structures, to regulate plant physiology. Here, we report the employment of OEIPs for the delivery of the plant hormone auxin to induce differential concentration gradients and modulate plant physiology. We fabricated OEIP devices based on a synthesized dendritic polyelectrolyte that enables electrophoretic transport of aromatic substances. Delivery of auxin to transgenic Arabidopsis thaliana seedlings in vivo was monitored in real time via dynamic fluorescent auxin-response reporters and induced physiological responses in roots. Our results provide a starting point for technologies enabling direct, rapid, and dynamic electronic interaction with the biochemical regulation systems of plants.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Eletrônica , Ácidos Indolacéticos/farmacologia , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Bombas de Íon , Fenômenos Fisiológicos Vegetais/genética , Plantas Geneticamente Modificadas/genética , Plântula/genética
12.
Proc Natl Acad Sci U S A ; 114(11): 2807-2812, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242683

RESUMO

Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant's structure acts as a physical template, whereas the plant's biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant's natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization.


Assuntos
Eletrônica , Plantas/química , Polimerização , Humanos , Folhas de Planta/química , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/química , Caules de Planta/crescimento & desenvolvimento , Xilema/química , Xilema/crescimento & desenvolvimento
13.
Small ; 15(43): e1902189, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31513355

RESUMO

Electronic control of biological processes with bioelectronic devices holds promise for sophisticated regulation of physiology, for gaining fundamental understanding of biological systems, providing new therapeutic solutions, and digitally mediating adaptations of organisms to external factors. The organic electronic ion pump (OEIP) provides a unique means for electronically-controlled, flow-free delivery of ions, and biomolecules at cellular scale. Here, a miniaturized OEIP device based on glass capillary fibers (c-OEIP) is implanted in a biological organism. The capillary form factor at the sub-100 µm scale of the device enables it to be implanted in soft tissue, while its hyperbranched polyelectrolyte channel and addressing protocol allows efficient delivery of a large aromatic molecule. In the first example of an implantable bioelectronic device in plants, the c-OEIP readily penetrates the leaf of an intact tobacco plant with no significant wound response (evaluated up to 24 h) and effectively delivers the hormone abscisic acid (ABA) into the leaf apoplast. OEIP-mediated delivery of ABA, the phytohormone that regulates plant's tolerance to stress, induces closure of stomata, the microscopic pores in leaf's epidermis that play a vital role in photosynthesis and transpiration. Efficient and localized ABA delivery reveals previously unreported kinetics of ABA-induced signal propagation.


Assuntos
Ácido Abscísico/farmacologia , Eletrônica , Bombas de Íon/metabolismo , Nicotiana/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos dos fármacos , Nicotiana/efeitos dos fármacos
15.
Proc Natl Acad Sci U S A ; 113(34): 9440-5, 2016 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-27506784

RESUMO

Local control of neuronal activity is central to many therapeutic strategies aiming to treat neurological disorders. Arguably, the best solution would make use of endogenous highly localized and specialized regulatory mechanisms of neuronal activity, and an ideal therapeutic technology should sense activity and deliver endogenous molecules at the same site for the most efficient feedback regulation. Here, we address this challenge with an organic electronic multifunctional device that is capable of chemical stimulation and electrical sensing at the same site, at the single-cell scale. Conducting polymer electrodes recorded epileptiform discharges induced in mouse hippocampal preparation. The inhibitory neurotransmitter, γ-aminobutyric acid (GABA), was then actively delivered through the recording electrodes via organic electronic ion pump technology. GABA delivery stopped epileptiform activity, recorded simultaneously and colocally. This multifunctional "neural pixel" creates a range of opportunities, including implantable therapeutic devices with automated feedback, where locally recorded signals regulate local release of specific therapeutic agents.


Assuntos
Nariz Eletrônico , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Análise de Célula Única/métodos , Ácido gama-Aminobutírico/farmacologia , 4-Aminopiridina/antagonistas & inibidores , 4-Aminopiridina/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/química , Condutividade Elétrica , Eletrodos Implantados , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Epilepsia/fisiopatologia , Desenho de Equipamento , Hipocampo/fisiopatologia , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Técnicas de Cultura de Órgãos , Polímeros/química , Poliestirenos/química , Bloqueadores dos Canais de Potássio/antagonistas & inibidores , Bloqueadores dos Canais de Potássio/farmacologia , Análise de Célula Única/instrumentação , Estimulação Química
16.
Chem Rev ; 116(21): 13009-13041, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27367172

RESUMO

The electronics surrounding us in our daily lives rely almost exclusively on electrons as the dominant charge carrier. In stark contrast, biological systems rarely use electrons but rather use ions and molecules of varying size. Due to the unique combination of both electronic and ionic/molecular conductivity in conducting and semiconducting organic polymers and small molecules, these materials have emerged in recent decades as excellent tools for translating signals between these two realms and, therefore, providing a means to effectively interface biology with conventional electronics-thus, the field of organic bioelectronics. Today, organic bioelectronics defines a generic platform with unprecedented biological recording and regulation tools and is maturing toward applications ranging from life sciences to the clinic. In this Review, we introduce the field, from its early breakthroughs to its current results and future challenges.


Assuntos
Biologia/métodos , Técnicas Biossensoriais , Equipamentos e Provisões Elétricas , Eletrônica/métodos , Biologia/tendências , Sistemas de Liberação de Medicamentos/métodos , Eletrodos , Eletrônica/tendências
17.
Proc Natl Acad Sci U S A ; 112(34): 10599-604, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261305

RESUMO

Efficiency, current throughput, and speed of electronic devices are to a great extent dictated by charge carrier mobility. The classic approach to impart high carrier mobility to polymeric semiconductors has often relied on the assumption that extensive order and crystallinity are needed. Recently, however, this assumption has been challenged, because high mobility has been reported for semiconducting polymers that exhibit a surprisingly low degree of order. Here, we show that semiconducting polymers can be confined into weakly ordered fibers within an inert polymer matrix without affecting their charge transport properties. In these conditions, the semiconducting polymer chains are inhibited from attaining long-range order in the π-stacking or alkyl-stacking directions, as demonstrated from the absence of significant X-ray diffraction intensity corresponding to these crystallographic directions, yet still remain extended along the backbone direction and aggregate on a local length scale. As a result, the polymer films maintain high mobility even at very low concentrations. Our findings provide a simple picture that clarifies the role of local order and connectivity of domains.

18.
Proc Natl Acad Sci U S A ; 111(33): 11943-8, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25002504

RESUMO

Printed electronics are considered for wireless electronic tags and sensors within the future Internet-of-things (IoT) concept. As a consequence of the low charge carrier mobility of present printable organic and inorganic semiconductors, the operational frequency of printed rectifiers is not high enough to enable direct communication and powering between mobile phones and printed e-tags. Here, we report an all-printed diode operating up to 1.6 GHz. The device, based on two stacked layers of Si and NbSi2 particles, is manufactured on a flexible substrate at low temperature and in ambient atmosphere. The high charge carrier mobility of the Si microparticles allows device operation to occur in the charge injection-limited regime. The asymmetry of the oxide layers in the resulting device stack leads to rectification of tunneling current. Printed diodes were combined with antennas and electrochromic displays to form an all-printed e-tag. The harvested signal from a Global System for Mobile Communications mobile phone was used to update the display. Our findings demonstrate a new communication pathway for printed electronics within IoT applications.

19.
Anal Chem ; 88(24): 12330-12338, 2016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-28193067

RESUMO

Biorecognition is a central event in biological processes in the living systems that is also widely exploited in technological and health applications. We demonstrate that the Electrolyte Gated Organic Field Effect Transistor (EGOFET) is an ultrasensitive and specific device that allows us to quantitatively assess the thermodynamics of biomolecular recognition between a human antibody and its antigen, namely, the inflammatory cytokine TNFα at the solid/liquid interface. The EGOFET biosensor exhibits a superexponential response at TNFα concentration below 1 nM with a minimum detection level of 100 pM. The sensitivity of the device depends on the analyte concentration, reaching a maximum in the range of clinically relevant TNFα concentrations when the EGOFET is operated in the subthreshold regime. At concentrations greater than 1 nM the response scales linearly with the concentration. The sensitivity and the dynamic range are both modulated by the gate voltage. These results are explained by establishing the correlation between the sensitivity and the density of states (DOS) of the organic semiconductor. Then, the superexponential response arises from the energy-dependence of the tail of the DOS of the HOMO level. From the gate voltage-dependent response, we extract the binding constant, as well as the changes of the surface charge and the effective capacitance accompanying biorecognition at the electrode surface. Finally, we demonstrate the detection of TNFα in human-plasma derived samples as an example for point-of-care application.


Assuntos
Técnicas Biossensoriais/instrumentação , Transistores Eletrônicos , Fator de Necrose Tumoral alfa/sangue , Capacitância Elétrica , Desenho de Equipamento , Humanos , Dispositivos Lab-On-A-Chip , Semicondutores , Termodinâmica
20.
Nat Mater ; 13(2): 190-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24317188

RESUMO

Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly(3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA