Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-29942284

RESUMO

Chronic kidney disease-mineral and bone disorder (CKD-MBD) is a systemic disorder of mineral and bone metabolism caused by CKD. Impaired bone mineralization together with increased bony secretion of fibroblast growth factor-23 (FGF23) are hallmarks of CKD-MBD. We recently showed that FGF23 suppresses the expression of tissue nonspecific alkaline phosphatase (TNAP) in bone cells by a Klotho-independent, FGF receptor-3-mediated signaling axis, leading to the accumulation of the mineralization inhibitor pyrophosphate. Therefore, we hypothesized that excessive FGF23 secretion may locally impair bone mineralization in CKD-MBD. To test this hypothesis, we induced CKD by 5/6 nephrectomy in 3-month-old wild-type (WT) mice and Fgf23-/-/VDRΔ/Δ (Fgf23/VDR) compound mutant mice maintained on a diet enriched with calcium, phosphate, and lactose. Eight weeks postsurgery, WT CKD mice were characterized by reduced bone mineral density at the axial and appendicular skeleton, hyperphosphatemia, secondary hyperparathyroidism, increased serum intact Fgf23, and impaired bone mineralization as evidenced by bone histomorphometry. Laser capture microdissection in bone cryosections showed that both osteoblasts and osteocytes contributed to the CKD-induced increase in Fgf23 mRNA abundance. In line with our hypothesis, osteoblastic and osteocytic activity of alkaline phosphatase was reduced, and bone pyrophosphate concentration was ~2.5-fold higher in CKD mice, relative to Sham controls. In Fgf23/VDR compound mice lacking Fgf23, 5/6-Nx induced secondary hyperparathyroidism and bone loss. However, 5/6-Nx failed to suppress TNAP activity, and bone pyrophosphate concentrations remained unchanged in Fgf23/VDR CKD mice. Collectively, our data suggest that elevated Fgf23 production in bone contributes to the mineralization defect in CKD-MBD by auto-/paracrine suppression of TNAP and subsequent accumulation of pyrophosphate in bone. Hence, our study has identified a novel mechanism involved in the pathogenesis of CKD-MBD.

2.
J Mol Med (Berl) ; 96(6): 559-573, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29736604

RESUMO

The RANK (receptor activator of nuclear factor κB)/RANKL (RANK ligand)/OPG (osteoprotegerin) axis is activated after myocardial infarction (MI), but its pathophysiological role is not well understood. Here, we investigated how global and cell compartment-selective inhibition of RANKL affects cardiac function and remodeling after MI in mice. Global RANKL inhibition was achieved by treatment of human RANKL knock-in (huRANKL-KI) mice with the monoclonal antibody AMG161. huRANKL-KI mice express a chimeric RANKL protein wherein part of the RANKL molecule is humanized. AMG161 inhibits human and chimeric but not murine RANKL. To dissect the pathophysiological role of RANKL derived from hematopoietic and mesenchymal cells, we selectively exchanged the hematopoietic cell compartment by lethal irradiation and across-genotype bone marrow transplantation between wild-type and huRANKL-KI mice, exploiting the specificity of AMG161. After permanent coronary artery ligation, mice were injected with AMG161 or an isotype control antibody over 4 weeks post-MI. MI increased RANKL expression mainly in cardiomyocytes and scar-infiltrating cells 4 weeks after MI. Only inhibition of RANKL derived from hematopoietic cellular sources, but not global or mesenchymal RANKL inhibition, improved post-infarct survival and cardiac function. Mechanistically, hematopoietic RANKL inhibition reduced expression of the pro-inflammatory cytokine IL-1ß in the cardiac cellular infiltrate. In conclusion, inhibition of RANKL derived from hematopoietic cellular sources is beneficial to maintain post-ischemic cardiac function by reduction of pro-inflammatory cytokine production. KEY MESSAGES: Experimental myocardial infarction (MI) augments cardiac RANKL expression in mice. RANKL expression is increased in cardiomyocytes and scar-infiltrating cells after MI. Global or mesenchymal cell RANKL inhibition has no influence on cardiac function after MI. Inhibition of RANKL derived from hematopoietic cells improves heart function post-MI. Hematopoietic RANKL inhibition reduces pro-inflammatory cytokines in scar-infiltrating cells.


Assuntos
Células-Tronco Hematopoéticas , Ligante RANK/antagonistas & inibidores , Animais , Citocinas , Masculino , Células-Tronco Mesenquimais , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/terapia , Miócitos Cardíacos , Osteoprotegerina , Receptor Ativador de Fator Nuclear kappa-B , Traumatismo por Reperfusão
3.
J Vis Exp ; (63): e3663, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22617624

RESUMO

Preclinical in vivo research models to investigate pathobiological and pathophysiological processes in the development of intimal hyperplasia after vessel stenting are crucial for translational approaches (1,2). The commonly used animal models include mice, rats, rabbits, and pigs (3-5). However, the translation of these models into clinical settings remains difficult, since those biological processes are already studied in animal vessels but never performed before in human research models (6,7). In this video we demonstrate a new humanized model to overcome this translational gap. The shown procedure is reproducible, easy, and fast to perform and is suitable to study the development of intimal hyperplasia and the applicability of diverse stents. This video shows how to perform the stent technique in human vessels followed by transplantation into immunodeficient rats, and identifies the origin of proliferating cells as human.


Assuntos
Oclusão de Enxerto Vascular/etiologia , Artéria Torácica Interna/transplante , Stents , Enxerto Vascular/métodos , Animais , Processos de Crescimento Celular/fisiologia , Oclusão de Enxerto Vascular/patologia , Humanos , Artéria Torácica Interna/citologia , Ratos , Ratos Nus , Transplante Heterólogo
4.
J Bone Miner Res ; 24(1): 22-32, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18767932

RESUMO

Cell proliferation and PTH secretion in the parathyroid gland are known to be regulated by vitamin D and extracellular calcium. Here, we examined the vitamin D-independent effects of correction of extracellular calcium in an adult-onset secondary hyperparathyroidism (sHPT) model, using mice with a nonfunctioning vitamin D receptor (VDR). Wildtype and homozygous VDR mutant mice were kept on a rescue diet (RD) containing 2% calcium (Ca), 1.25% phosphorus (P), and 20% lactose until they were 4 mo or 1 yr of age. Subsequently, 4-mo-old mice were switched to a challenge diet (CD) containing the following: 0.5% Ca, 0.4% P, and 0% lactose. After 2 mo on the CD, groups of VDR mutant mice were either fed CD, a normal mouse chow with 0.9% Ca, 0.7% P, and 0% lactose, or the RD for another 3 mo. Feeding the RD protected VDR mutants against sHPT over 1 yr, showing that vitamin D is not essential for long-term control of the function and proliferation of parathyroid cells. When 4-mo-old VDR mutants were switched from the RD to the CD for 2 mo, they developed severe sHPT associated with hypertrophy and hyperplasia of parathyroid glands and profound bone loss. Subsequent feeding of the RD during a 3-mo therapy phase fully corrected sHPT, reduced chief cell proliferation, and reduced maximum parathyroid gland area by 25% by cell atrophy. There was no evidence of RD-induced chief cell apoptosis. We conclude that signaling by the calcium-sensing receptor regulates chief cell function and size in the absence of signaling through the VDR.


Assuntos
Cálcio/metabolismo , Hiperparatireoidismo Secundário/tratamento farmacológico , Hiperparatireoidismo Secundário/metabolismo , Vitamina D/metabolismo , Animais , Apoptose , Cálcio/uso terapêutico , Proliferação de Células , Modelos Animais de Doenças , Feminino , Hipertrofia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Glândulas Paratireoides/metabolismo , Transdução de Sinais
5.
Atherosclerosis ; 200(1): 126-34, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18295768

RESUMO

BACKGROUND: We here describe the pharmacological characteristic, in vivo efficacy, and in vitro mechanisms of a polymer-free leflunomide eluting stent in comparison to its rapamycin-coated equivalent. METHODS: Stents were coated with 40 mM solutions of leflunomide (L) or rapamycin (R) or were left uncoated (BM). Neointima formation was assessed 6 weeks after implantation into Sprague Dawley rats by optical coherence tomographies (OCT) and histopathology. In vitro proliferation assays were performed using isolated endothelial and smooth-muscle-cells from Sprague Dawley rats to investigate the cell-specific pharmacokinetic effect of leflunomide and rapamycin. RESULTS: HPLC-based drug release kinetics revealed a similar profile with 90% of the drug being released after 12.1+/-0.2 (L) and 13.0+/-0.2 days (R). After 6 weeks, OCTs showed that in-stent luminal obliteration was less for the coated stents (L:12.0+/-9.4%, R:13.3+/-13.1%) when compared to identical bare metal stents (BM:26.4+/-4.7%; p

Assuntos
Stents Farmacológicos , Inibidores Enzimáticos/farmacologia , Isoxazóis/farmacologia , Túnica Íntima/efeitos dos fármacos , Túnica Média/efeitos dos fármacos , Animais , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Inibidores Enzimáticos/farmacocinética , Humanos , Isoxazóis/farmacocinética , Leflunomida , Miócitos de Músculo Liso/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacocinética , Sirolimo/farmacologia , Tomografia de Coerência Óptica , Túnica Íntima/patologia , Túnica Média/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA