RESUMO
The photopolarimeter instrument on Voyager 2 was used to obtain a map of Jupiter at an effective wavelength of 2400 angstroms. Analysis of a typical north-south swath used to make this map shows strong absorption at high latitudes by a molecular or particulate constituent in the Jovian atmosphere. At 65 degrees north latitude, the absorbing constituent extends to altitudes above the 50-millibar pressure level.
RESUMO
The spatial organization and time dependence of Jupiter's stratospheric temperatures have been measured by observing thermal emission from the 7.8-micrometer CH(4) band. These temperatures, observed through the greater part of a Jovian year, exhibit the influence of seasonal radiative forcing. Distinct bands of high temperature are located at the poles and mid-latitudes, while the equator alternates between warm and cold with a period of approximately 4 years. Substantial longitudinal variability is often observed within the warm mid-latitude bands, and occasionally elsewhere on the planet. This variability includes small, localized structures, as well as large-scale waves with wavelengths longer than approximately 30,000 kilometers. The amplitudes of the waves vary on a time scale of approximately 1 month; structures on a smaller scale may have lifetimes of only days. Waves observed in 1985, 1987, and 1988 propagated with group velocities less than +/-30 meters per second.
RESUMO
The spatial organization and time dependence of Jupiter's temperatures near 250-millibar pressure were measured through a jovian year by imaging thermal emission at 18 micrometers. The temperature field is influenced by seasonal radiative forcing, and its banded organization is closely correlated with the visible cloud field. Evidence was found for a quasi-periodic oscillation of temperatures in the Equatorial Zone, a correlation between tropospheric and stratospheric waves in the North Equatorial Belt, and slowly moving thermal features in the North and South Equatorial Belts. There appears to be no common relation between temporal changes of temperature and changes in the visual albedo of the various axisymmetric bands.