Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Annu Rev Biochem ; 84: 843-64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25494301

RESUMO

The twin-arginine translocation (Tat) system, found in prokaryotes, chloroplasts, and some mitochondria, allows folded proteins to be moved across membranes. How this transport is achieved without significant ion leakage is an intriguing mechanistic question. Tat transport is mediated by complexes formed from small integral membrane proteins from just two protein families. Atomic-resolution structures have recently been determined for representatives of both these protein families, providing the first molecular-level glimpse of the Tat machinery. I review our current understanding of the mechanism of Tat transport in light of these new structural data.


Assuntos
Transporte Proteico , Sistema de Translocação de Argininas Geminadas/metabolismo , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Células Procarióticas/metabolismo , Força Próton-Motriz , Sistema de Translocação de Argininas Geminadas/química
2.
Nature ; 564(7734): 77-82, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30405243

RESUMO

The type 9 secretion system (T9SS) is the protein export pathway of bacteria of the Gram-negative Fibrobacteres-Chlorobi-Bacteroidetes superphylum and is an essential determinant of pathogenicity in severe periodontal disease. The central element of the T9SS is a so-far uncharacterized protein-conducting translocon located in the bacterial outer membrane. Here, using cryo-electron microscopy, we provide structural evidence that the translocon is the T9SS protein SprA. SprA forms an extremely large (36-strand) single polypeptide transmembrane ß-barrel. The barrel pore is capped on the extracellular end, but has a lateral opening to the external membrane surface. Structures of SprA bound to different components of the T9SS show that partner proteins control access to the lateral opening and to the periplasmic end of the pore. Our results identify a protein transporter with a distinctive architecture that uses an alternating access mechanism in which the two ends of the protein-conducting channel are open at different times.


Assuntos
Sistemas de Secreção Bacterianos/metabolismo , Sistemas de Secreção Bacterianos/ultraestrutura , Microscopia Crioeletrônica , Flavobacterium , Sistemas de Secreção Bacterianos/química , Sistemas de Secreção Bacterianos/genética , Flavobacterium/química , Flavobacterium/genética , Flavobacterium/metabolismo , Flavobacterium/ultraestrutura , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Transporte Proteico
3.
Mol Microbiol ; 118(6): 637-651, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36151601

RESUMO

The twin-arginine protein translocation (Tat) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of chloroplasts. The Tat translocation site is transiently assembled by the recruitment of multiple TatA proteins to a substrate-activated TatBC receptor complex in a process requiring the protonmotive force. The ephemeral nature of the Tat translocation site has so far precluded its isolation. We now report that detergent solubilization of membranes during active transport allows the recovery of receptor complexes that are associated with elevated levels of TatA. We apply this biochemical analysis in combination with live cell fluorescence imaging to Tat systems trapped in the assembled state. We resolve sub-steps in the Tat translocation cycle and infer that TatA assembly precedes the functional interaction of TatA with a polar cluster site on TatC. We observe that dissipation of the protonmotive force releases TatA oligomers from the assembled translocation site demonstrating that the stability of the TatA oligomer does not depend on binding to the receptor complex and implying that the TatA oligomer is assembled at the periphery of the receptor complex. This work provides new insight into the Tat transport cycle and advances efforts to isolate the active Tat translocon.


Assuntos
Proteínas de Escherichia coli , Humanos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Transporte Proteico/fisiologia , Translocação Genética
4.
Nature ; 611(7934): 40-41, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36261716
5.
Mol Microbiol ; 116(2): 416-426, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33772889

RESUMO

In the process of natural transformation bacteria import extracellular DNA molecules for integration into their genome. One strand of the incoming DNA molecule is degraded, whereas the remaining strand is transported across the cytoplasmic membrane. The DNA transport channel is provided by the protein ComEC. Many ComEC proteins have an extracellular C-terminal domain (CTD) with homology to the metallo-ß-lactamase fold. Here we show that this CTD binds Mn2+ ions and exhibits Mn2+ -dependent phosphodiesterase and nuclease activities. Inactivation of the enzymatic activity of the CTD severely inhibits natural transformation in Bacillus subtilis. These data suggest that the ComEC CTD is a nuclease responsible for degrading the nontransforming DNA strand during natural transformation and that this process is important for efficient DNA import.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico Ativo/fisiologia , Desoxirribonucleases/metabolismo , Complexos Multienzimáticos/metabolismo , Transformação Bacteriana/genética , Proteínas de Bactérias/genética , Transporte Biológico Ativo/genética , Competência de Transformação por DNA/genética , Complexos Multienzimáticos/genética , Diester Fosfórico Hidrolases/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(10): E1958-E1967, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28223511

RESUMO

The twin-arginine protein translocation (Tat) system mediates transport of folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. The Tat system of Escherichia coli is made up of TatA, TatB, and TatC components. TatBC comprise the substrate receptor complex, and active Tat translocases are formed by the substrate-induced association of TatA oligomers with this receptor. Proteins are targeted to TatBC by signal peptides containing an essential pair of arginine residues. We isolated substitutions, locating to the transmembrane helix of TatB that restored transport activity to Tat signal peptides with inactivating twin arginine substitutions. A subset of these variants also suppressed inactivating substitutions in the signal peptide binding site on TatC. The suppressors did not function by restoring detectable signal peptide binding to the TatBC complex. Instead, site-specific cross-linking experiments indicate that the suppressor substitutions induce conformational change in the complex and movement of the TatB subunit. The TatB F13Y substitution was associated with the strongest suppressing activity, even allowing transport of a Tat substrate lacking a signal peptide. In vivo analysis using a TatA-YFP fusion showed that the TatB F13Y substitution resulted in signal peptide-independent assembly of the Tat translocase. We conclude that Tat signal peptides play roles in substrate targeting and in triggering assembly of the active translocase.


Assuntos
Arginina/química , Proteínas de Escherichia coli/química , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/química , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Moleculares , Mutação , Ligação Proteica , Conformação Proteica em alfa-Hélice , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Especificidade por Substrato
7.
Biochemistry ; 57(10): 1663-1671, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29460615

RESUMO

The twin arginine translocation (Tat) system moves folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of plant chloroplasts. Signal peptide-bearing substrates of the Tat pathway (precursor proteins) are recognized at the membrane by the TatBC receptor complex. The only established preparation of the TatBC complex uses the detergent digitonin, rendering it unsuitable for biophysical analysis. Here we show that the detergent glyco-diosgenin (GDN) can be used in place of digitonin to isolate homogeneous TatBC complexes that bind precursor proteins with physiological specificity. We use this new preparation to quantitatively characterize TatBC-precursor interactions in a fully defined system. Additionally, we show that the GDN-solubilized TatBC complex co-purifies with substantial quantities of phospholipids.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Cromatografia de Fase Reversa , Detergentes/química , Diosgenina/química , Proteínas de Escherichia coli/isolamento & purificação , Espectrometria de Massas , Proteínas de Membrana Transportadoras/isolamento & purificação , Eletroforese em Gel de Poliacrilamida Nativa , Ressonância de Plasmônio de Superfície
8.
Nature ; 492(7428): 210-4, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23201679

RESUMO

The twin-arginine translocation (Tat) pathway is one of two general protein transport systems found in the prokaryotic cytoplasmic membrane and is conserved in the thylakoid membrane of plant chloroplasts. The defining, and highly unusual, property of the Tat pathway is that it transports folded proteins, a task that must be achieved without allowing appreciable ion leakage across the membrane. The integral membrane TatC protein is the central component of the Tat pathway. TatC captures substrate proteins by binding their signal peptides. TatC then recruits TatA family proteins to form the active translocation complex. Here we report the crystal structure of TatC from the hyperthermophilic bacterium Aquifex aeolicus. This structure provides a molecular description of the core of the Tat translocation system and a framework for understanding the unique Tat transport mechanism.


Assuntos
Bactérias Gram-Negativas/química , Bactérias Gram-Negativas/metabolismo , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Sítios de Ligação , Escherichia coli/genética , Bactérias Gram-Negativas/genética , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
9.
Proc Natl Acad Sci U S A ; 112(52): E7166-75, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26655737

RESUMO

The bacterial Sox (sulfur oxidation) pathway is an important route for the oxidation of inorganic sulfur compounds. Intermediates in the Sox pathway are covalently attached to the heterodimeric carrier protein SoxYZ through conjugation to a cysteine on a protein swinging arm. We have investigated how the carrier protein shuttles intermediates between the enzymes of the Sox pathway using the interaction between SoxYZ and the enzyme SoxB as our model. The carrier protein and enzyme interact only weakly, but we have trapped their complex by using a "suicide enzyme" strategy in which an engineered cysteine in the SoxB active site forms a disulfide bond with the incoming carrier arm cysteine. The structure of this trapped complex, together with calorimetric data, identifies sites of protein-protein interaction both at the entrance to the enzyme active site tunnel and at a second, distal, site. We find that the enzyme distinguishes between the substrate and product forms of the carrier protein through differences in their interaction kinetics and deduce that this behavior arises from substrate-specific stabilization of a conformational change in the enzyme active site. Our analysis also suggests how the carrier arm-bound substrate group is able to outcompete the adjacent C-terminal carboxylate of the carrier arm for binding to the active site metal ions. We infer that similar principles underlie carrier protein interactions with other enzymes of the Sox pathway.


Assuntos
Proteínas de Bactérias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Enxofre/metabolismo , Tiossulfatos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Domínio Catalítico , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Oxirredução , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/química , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/genética , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato , Enxofre/química , Termodinâmica , Tiossulfatos/química
10.
J Biol Chem ; 290(14): 9209-21, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25673696

RESUMO

Thiosulfate dehydrogenase (TsdA) catalyzes the oxidation of two thiosulfate molecules to form tetrathionate and is predicted to use an unusual cysteine-ligated heme as the catalytic cofactor. We have determined the structure of Allochromatium vinosum TsdA to a resolution of 1.3 Å. This structure confirms the active site heme ligation, identifies a thiosulfate binding site within the active site cavity, and reveals an electron transfer route from the catalytic heme, through a second heme group to the external electron acceptor. We provide multiple lines of evidence that the catalytic reaction proceeds through the intermediate formation of a S-thiosulfonate derivative of the heme cysteine ligand: the cysteine is reactive and is accessible to electrophilic attack; cysteine S-thiosulfonate is formed by the addition of thiosulfate or following the reverse reaction with tetrathionate; the S-thiosulfonate modification is removed through catalysis; and alkylating the cysteine blocks activity. Active site amino acid residues required for catalysis were identified by mutagenesis and are inferred to also play a role in stabilizing the S-thiosulfonate intermediate. The enzyme SoxAX, which catalyzes the first step in the bacterial Sox thiosulfate oxidation pathway, is homologous to TsdA and can be inferred to use a related catalytic mechanism.


Assuntos
Proteínas de Bactérias/metabolismo , Cisteína/metabolismo , Citocromos/metabolismo , Tiossulfatos/metabolismo , Sequência de Aminoácidos , Bactérias/metabolismo , Proteínas de Bactérias/química , Sequência de Bases , Citocromos/química , Primers do DNA , Espectrometria de Massas , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Homologia de Sequência de Aminoácidos , Espectrofotometria Ultravioleta
11.
Mol Microbiol ; 98(1): 111-29, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26112072

RESUMO

The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate-bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild-type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue-native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild-type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate-induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Arginina , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Mutação , Periplasma/metabolismo , Fenótipo , Ligação Proteica , Subunidades Proteicas , Transporte Proteico
12.
Proc Natl Acad Sci U S A ; 110(38): E3650-9, 2013 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-24003141

RESUMO

The twin-arginine translocation (Tat) machinery transports folded proteins across the cytoplasmic membrane of bacteria and the thylakoid membrane of chloroplasts. It has been inferred that the Tat translocation site is assembled on demand by substrate-induced association of the protein TatA. We tested this model by imaging YFP-tagged TatA expressed at native levels in living Escherichia coli cells in the presence of low levels of the TatA paralogue TatE. Under these conditions the TatA-YFP fusion supports full physiological Tat transport activity. In agreement with the TatA association model, raising the number of transport-competent substrate proteins within the cell leads to an increase in the number of large TatA complexes present. Formation of these complexes requires both a functional TatBC substrate receptor and the transmembrane proton motive force (PMF). Removing the PMF causes TatA complexes to dissociate, except in strains with impaired Tat transport activity. Based on these observations we propose that TatA assembly reaches a critical point at which oligomerization can be reversed only by substrate transport. In contrast to TatA-YFP, the oligomeric states of TatB-YFP and TatC-YFP fusions are not affected by substrate or the PMF, although TatB-YFP oligomerization does require TatC.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Bactérias , Escherichia coli/metabolismo , Proteínas Luminescentes , Microscopia de Fluorescência , Transporte Proteico/fisiologia , Força Próton-Motriz/fisiologia
13.
Proc Natl Acad Sci U S A ; 110(12): E1092-101, 2013 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-23471988

RESUMO

The twin-arginine translocase (Tat) carries out the remarkable process of translocating fully folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of plant chloroplasts. Tat is required for bacterial pathogenesis and for photosynthesis in plants. TatA, the protein-translocating element of the Tat system, is a small transmembrane protein that assembles into ring-like oligomers of variable size. We have determined a structural model of the Escherichia coli TatA complex in detergent solution by NMR. TatA assembly is mediated entirely by the transmembrane helix. The amphipathic helix extends outwards from the ring of transmembrane helices, permitting assembly of complexes with variable subunit numbers. Transmembrane residue Gln8 points inward, resulting in a short hydrophobic pore in the center of the complex. Simulations of the TatA complex in lipid bilayers indicate that the short transmembrane domain distorts the membrane. This finding suggests that TatA facilitates protein transport by sensitizing the membrane to transient rupture.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/química , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Multimerização Proteica , Transporte Biológico Ativo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plantas/química , Plantas/genética , Plantas/metabolismo , Estrutura Quaternária de Proteína , Tilacoides/química , Tilacoides/genética , Tilacoides/metabolismo
14.
J Biol Chem ; 289(45): 30889-99, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25217636

RESUMO

The PhoD family of extra-cytoplasmic phosphodiesterases are among the most commonly occurring bacterial phosphatases. The exemplars for this family are the PhoD protein of Bacillus subtilis and the phospholipase D of Streptomyces chromofuscus. We present the crystal structure of B. subtilis PhoD. PhoD is most closely related to purple acid phosphatases (PAPs) with both types of enzyme containing a tyrosinate-ligated Fe(3+) ion. However, the PhoD active site diverges from that found in PAPs and uses two Ca(2+) ions instead of the single extra Fe(2+), Mn(2+), or Zn(2+) ion present in PAPs. The PhoD crystals contain a phosphate molecule that coordinates all three active site metal ions and that is proposed to represent a product complex. A C-terminal helix lies over the active site and controls access to the catalytic center. The structure of PhoD defines a new phosphatase active site architecture based on Fe(3+) and Ca(2+) ions.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Diester Fosfórico Hidrolases/química , Sequência de Aminoácidos , Cálcio/química , Domínio Catalítico , Cristalografia por Raios X , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Ferro/química , Ligantes , Metais/química , Dados de Sequência Molecular , Monoéster Fosfórico Hidrolases/química , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Tirosina/química , Zinco/química
15.
Curr Biol ; 34(7): R267-R268, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593766

RESUMO

In this Quick guide, Palmer and Berks introduce the twin-arginine translocation (Tat) systems. Tats are found in a variety of microbes and microbe-derived organelles, and are known to translocate folded substrate proteins across biological membranes.


Assuntos
Proteínas de Escherichia coli , Sistema de Translocação de Argininas Geminadas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Escherichia coli/metabolismo , Sistema de Translocação de Argininas Geminadas/metabolismo , Membrana Celular/metabolismo , Arginina/metabolismo , Transporte Proteico , Sinais Direcionadores de Proteínas , Proteínas de Bactérias/metabolismo
16.
J Mol Biol ; 436(2): 168368, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977298

RESUMO

The cytoplasmic membrane compartmentalises the bacterial cell into cytoplasm and periplasm. Proteins located in this membrane have a defined topology that is established during their biogenesis. However, the accuracy of this fundamental biosynthetic process is unknown. We developed compartment-specific fluorescence labelling methods with up to single-molecule sensitivity. Application of these methods to the single and multi-spanning membrane proteins of the Tat protein transport system revealed rare topogenesis errors. This methodology also detected low level soluble protein mislocalization from the cytoplasm to the periplasm. This study shows that it is possible to uncover rare errors in protein localization by leveraging the high sensitivity of fluorescence methods.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Proteínas de Membrana Transportadoras , Imagem Individual de Molécula , Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/análise , Fluorescência , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/metabolismo , Periplasma/química , Transporte Proteico , Imagem Individual de Molécula/métodos
17.
Nat Microbiol ; 9(4): 1089-1102, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538833

RESUMO

Secretion systems are protein export machines that enable bacteria to exploit their environment through the release of protein effectors. The Type 9 Secretion System (T9SS) is responsible for protein export across the outer membrane (OM) of bacteria of the phylum Bacteroidota. Here we trap the T9SS of Flavobacterium johnsoniae in the process of substrate transport by disrupting the T9SS motor complex. Cryo-EM analysis of purified substrate-bound T9SS translocons reveals an extended translocon structure in which the previously described translocon core is augmented by a periplasmic structure incorporating the proteins SprE, PorD and a homologue of the canonical periplasmic chaperone Skp. Substrate proteins bind to the extracellular loops of a carrier protein within the translocon pore. As transport intermediates accumulate on the translocon when energetic input is removed, we deduce that release of the substrate-carrier protein complex from the translocon is the energy-requiring step in T9SS transport.


Assuntos
Proteínas de Bactérias , Sistemas de Secreção Bacterianos , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Bacterianos/química , Transporte Proteico , Proteínas de Transporte/metabolismo
18.
J Biol Chem ; 287(48): 40350-9, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23060437

RESUMO

BACKGROUND: SoxAX enzymes initiate microbial oxidation of reduced inorganic sulfur compounds. Their catalytic mechanism is unknown. RESULTS: Cyanide displaces the CysS(-) ligand to the active site heme following reduction by S(2)O(4)(2-) but not Eu(II). CONCLUSION: An active site heme ligand becomes labile on exposure to substrate analogs. SIGNIFICANCE: Elucidation of SoxAX mechanism is necessary to understand a widespread pathway for sulfur compound oxidation. SoxAX enzymes couple disulfide bond formation to the reduction of cytochrome c in the first step of the phylogenetically widespread Sox microbial sulfur oxidation pathway. Rhodovulum sulfidophilum SoxAX contains three hemes. An electrochemical cell compatible with magnetic circular dichroism at near infrared wavelengths has been developed to resolve redox and chemical properties of the SoxAX hemes. In combination with potentiometric titrations monitored by electronic absorbance and EPR, this method defines midpoint potentials (E(m)) at pH 7.0 of approximately +210, -340, and -400 mV for the His/Met, His/Cys(-), and active site His/CysS(-)-ligated heme, respectively. Exposing SoxAX to S(2)O(4)(2-), a substrate analog with E(m) ~-450 mV, but not Eu(II) complexed with diethylene triamine pentaacetic acid (E(m) ~-1140 mV), allows cyanide to displace the cysteine persulfide (CysS(-)) ligand to the active site heme. This provides the first evidence for the dissociation of CysS(-) that has been proposed as a key event in SoxAX catalysis.


Assuntos
Proteínas de Bactérias/química , Grupo dos Citocromos c/química , Heme/metabolismo , Oxirredutases/química , Rhodovulum/enzimologia , Enxofre/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Catálise , Domínio Catalítico , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Cinética , Oxirredução , Oxirredutases/genética , Oxirredutases/metabolismo , Rhodovulum/química , Rhodovulum/genética
19.
Mol Microbiol ; 84(6): 1108-23, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22591141

RESUMO

The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. In Escherichia coli three membrane proteins, TatA, TatB and TatC, are essential components of the machinery. TatA from Providencia stuartii is homologous to E. coli TatA but is synthesized as an inactive pre-protein with an N-terminal extension of eight amino acids. Removal of this extension by the rhomboid protease AarA is required to activate P. stuartii TatA. Here we show that P. stuartii TatA can functionally substitute for E. coli TatA provided that the E. coli homologue of AarA, GlpG, is present. The oligomerization state of the P. stuartii TatA pro-protein was compared with that of the proteolytically activated protein and with E. coli TatA. The pro-protein still formed small homo-oligomers but cannot form large TatBC-dependent assemblies. In the absence of TatB, E. coli TatA or the processed form of P. stuartii TatA form a complex with TatC. However, this complex is not observed with the pro-form of P. stuartii TatA. Taken together our results suggest that the P. stuartii TatA pro-protein is inactive because it is unable to interact with TatC and cannot form the large TatA complexes required for transport.


Assuntos
Endopeptidases/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Providencia/enzimologia , Sequência de Aminoácidos , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli , Teste de Complementação Genética , Humanos , Dados de Sequência Molecular , Providencia/citologia , Providencia/crescimento & desenvolvimento , Providencia/metabolismo
20.
Mol Microbiol ; 85(5): 945-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22742417

RESUMO

The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. TatC is the largest and most conserved component of the Tat machinery. It forms a multisubunit complex with TatB and binds the signal peptides of Tat substrates. Here we have taken a random mutagenesis approach to identify substitutions in Escherichia coli TatC that inactivate protein transport. We identify 32 individual amino acid substitutions that abolish or severely compromise TatC activity. The majority of the inactivating substitutions fall within the first two periplasmic loops of TatC. These regions are predicted to have conserved secondary structure and results of extensive amino acid insertion and deletion mutagenesis are consistent with these conserved elements being essential for TatC function. Three inactivating substitutions were identified in the fifth transmembrane helix of TatC. The inactive M205R variant could be suppressed by mutations affecting amino acids in the transmembrane helix of TatB. A physical interaction between TatC helix 5 and the TatB transmembrane helix was confirmed by the formation of a site-specific disulphide bond between TatC M205C and TatB L9C variants. This is the first molecular contact site mapped to single amino acid level between these two proteins.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Membrana Transportadoras/genética , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Estrutura Secundária de Proteína , Transporte Proteico/genética , Transporte Proteico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA