Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Biol ; 22(7): e3002696, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38959200

RESUMO

Sterile alpha motif domain-containing proteins 9 and 9-like (SAMD9/9L) are associated with life-threatening genetic diseases in humans and are restriction factors of poxviruses. Yet, their cellular function and the extent of their antiviral role are poorly known. Here, we found that interferon-stimulated human SAMD9L restricts HIV-1 in the late phases of replication, at the posttranscriptional and prematuration steps, impacting viral translation and, possibly, endosomal trafficking. Surprisingly, the paralog SAMD9 exerted an opposite effect, enhancing HIV-1. More broadly, we showed that SAMD9L restricts primate lentiviruses, but not a gammaretrovirus (MLV), nor 2 RNA viruses (arenavirus MOPV and rhabdovirus VSV). Using structural modeling and mutagenesis of SAMD9L, we identified a conserved Schlafen-like active site necessary for HIV-1 restriction by human and a rodent SAMD9L. By testing a gain-of-function constitutively active variant from patients with SAMD9L-associated autoinflammatory disease, we determined that SAMD9L pathogenic functions also depend on the Schlafen-like active site. Finally, we found that the constitutively active SAMD9L strongly inhibited HIV, MLV, and, to a lesser extent, MOPV. This suggests that the virus-specific effect of SAMD9L may involve its differential activation/sensing and the virus ability to evade from SAMD9L restriction. Overall, our study identifies SAMD9L as an HIV-1 antiviral factor from the cell autonomous immunity and deciphers host determinants underlying the translational repression. This provides novel links and therapeutic avenues against viral infections and genetic diseases.


Assuntos
HIV-1 , Lentivirus de Primatas , Replicação Viral , Humanos , HIV-1/genética , HIV-1/fisiologia , Animais , Lentivirus de Primatas/genética , Lentivirus de Primatas/metabolismo , Células HEK293 , Biossíntese de Proteínas , Fatores de Restrição Antivirais , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Infecções por HIV/virologia , Infecções por HIV/tratamento farmacológico , Proteínas Supressoras de Tumor
2.
Proc Natl Acad Sci U S A ; 120(20): e2217451120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155854

RESUMO

Bone marrow stromal antigen 2 (BST2)/tetherin is a restriction factor that reduces HIV-1 dissemination by tethering virus at the cell surface. BST2 also acts as a sensor of HIV-1 budding, establishing a cellular antiviral state. The HIV-1 Vpu protein antagonizes BST2 antiviral functions via multiple mechanisms, including the subversion of an LC3C-associated pathway, a key cell intrinsic antimicrobial mechanism. Here, we describe the first step of this viral-induced LC3C-associated process. This process is initiated at the plasma membrane through the recognition and internalization of virus-tethered BST2 by ATG5, an autophagy protein. ATG5 and BST2 assemble as a complex, independently of the viral protein Vpu and ahead of the recruitment of the ATG protein LC3C. The conjugation of ATG5 with ATG12 is dispensable for this interaction. ATG5 recognizes cysteine-linked homodimerized BST2 and specifically engages phosphorylated BST2 tethering viruses at the plasma membrane, in an LC3C-associated pathway. We also found that this LC3C-associated pathway is used by Vpu to attenuate the inflammatory responses mediated by virion retention. Overall, we highlight that by targeting BST2 tethering viruses, ATG5 acts as a signaling scaffold to trigger an LC3C-associated pathway induced by HIV-1 infection.


Assuntos
Antígeno 2 do Estroma da Médula Óssea , Vírus , Antivirais/metabolismo , Membrana Celular/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírus/metabolismo , Humanos
3.
PLoS Pathog ; 18(3): e1010371, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35275978

RESUMO

Innate immunity constitutes the first line of defense against viruses, in which mitochondria play an important role in the induction of the interferon (IFN) response. BHRF1, a multifunctional viral protein expressed during Epstein-Barr virus reactivation, modulates mitochondrial dynamics and disrupts the IFN signaling pathway. Mitochondria are mobile organelles that move through the cytoplasm thanks to the cytoskeleton and in particular the microtubule (MT) network. MTs undergo various post-translational modifications, among them tubulin acetylation. In this study, we demonstrated that BHRF1 induces MT hyperacetylation to escape innate immunity. Indeed, the expression of BHRF1 induces the clustering of shortened mitochondria next to the nucleus. This "mito-aggresome" is organized around the centrosome and its formation is MT-dependent. We also observed that the α-tubulin acetyltransferase ATAT1 interacts with BHRF1. Using ATAT1 knockdown or a non-acetylatable α-tubulin mutant, we demonstrated that this hyperacetylation is necessary for the mito-aggresome formation. Similar results were observed during EBV reactivation. We investigated the mechanism leading to the clustering of mitochondria, and we identified dyneins as motors that are required for mitochondrial clustering. Finally, we demonstrated that BHRF1 needs MT hyperacetylation to block the induction of the IFN response. Moreover, the loss of MT hyperacetylation blocks the localization of autophagosomes close to the mito-aggresome, impeding BHRF1 to initiate mitophagy, which is essential to inhibiting the signaling pathway. Therefore, our results reveal the role of the MT network, and its acetylation level, in the induction of a pro-viral mitophagy.


Assuntos
Infecções por Vírus Epstein-Barr , Imunidade Inata , Proteínas Virais , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/fisiologia , Humanos , Microtúbulos/metabolismo , Mitofagia , Tubulina (Proteína)/metabolismo , Proteínas Virais/metabolismo
4.
Retrovirology ; 20(1): 10, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37254203

RESUMO

BACKGROUND: Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus. RESULTS: In this study, we examined the role of two parameters in HIV-1 LTR promoter activity. We identified DNA topoisomerase1 (TOP1) to be a potent repressor of this promoter and linked this repression to its catalytic domain. Additionally, we confirmed the folding of a Guanine quadruplex (G4) structure in the HIV-1 promoter and its repressive effect. We demonstrated a direct interaction between TOP1 and this G4 structure, providing evidence of a functional relationship between the two repressive elements. Mutations abolishing G4 folding affected TOP1/G4 interaction and hindered G4-dependent inhibition of TOP1 catalytic activity in vitro. As a result, HIV-1 promoter activity was reactivated in a native chromatin environment. Lastly, we noticed an enrichment of predicted G4 sequences in the promoter of TOP1-repressed cellular genes. CONCLUSIONS: Our results demonstrate the formation of a TOP1/G4 complex on the HIV-1 LTR promoter and its repressive effect on the promoter activity. They reveal the existence of a new mechanism of TOP1/G4-dependent transcriptional repression conserved between viral and human genes. This mechanism contrasts with the known property of TOP1 as global transcriptional activator and offers new perspectives for anti-cancer and anti-viral strategies.


Assuntos
HIV-1 , Humanos , HIV-1/genética , Guanina , Fatores de Transcrição/genética , Cromatina , Repetição Terminal Longa de HIV/genética , Transcrição Gênica
5.
Retrovirology ; 19(1): 23, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309692

RESUMO

BACKGROUND: TASOR, a component of the HUSH repressor epigenetic complex, and SAMHD1, a cellular triphosphohydrolase (dNTPase), are both anti-HIV proteins antagonized by HIV-2/SIVsmm Viral protein X. As a result, the same viral protein is able to relieve two different blocks along the viral life cell cycle, one at the level of reverse transcription, by degrading SAMHD1, the other one at the level of proviral expression, by degrading TASOR. Phosphorylation of SAMHD1 at T592 has been shown to downregulate its antiviral activity. The discovery that T819 in TASOR was lying within a SAMHD1 T592-like motif led us to ask whether TASOR is phosphorylated on this residue and whether this post-translational modification could regulate its repressive activity. RESULTS: Using a specific anti-phospho-antibody, we found that TASOR is phosphorylated at T819, especially in cells arrested in early mitosis by nocodazole. We provide evidence that the phosphorylation is conducted by a Cyclin/CDK1 complex, like that of SAMHD1 at T592. While we could not detect TASOR in quiescent CD4 + T cells, TASOR and its phosphorylated form are present in activated primary CD4 + T lymphocytes. In addition, TASOR phosphorylation appears to be independent from TASOR repressive activity. Indeed, on the one hand, nocodazole barely reactivates HIV-1 in the J-Lat A1 HIV-1 latency model despite TASOR T819 phosphorylation. On the other hand, etoposide, a second cell cycle arresting drug, reactivates latent HIV-1, without concomitant TASOR phosphorylation. Furthermore, overexpression of wt TASOR or T819A or T819E similarly represses gene expression driven by an HIV-1-derived LTR promoter. Finally, while TASOR is degraded by HIV-2 Vpx, TASOR phosphorylation is prevented by HIV-1 Vpr, likely as a consequence of HIV-1 Vpr-mediated-G2 arrest. CONCLUSIONS: Altogether, we show that TASOR phosphorylation occurs in vivo on T819. This event does not appear to correlate with TASOR-mediated HIV-1 silencing. We speculate that TASOR phosphorylation is related to a role of TASOR during cell cycle progression.


Assuntos
Infecções por HIV , HIV-1 , Proteínas Monoméricas de Ligação ao GTP , Humanos , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , HIV-1/fisiologia , Fosforilação , Treonina , Nocodazol/metabolismo , Latência Viral , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Nucleares/metabolismo
6.
Retrovirology ; 17(1): 25, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807178

RESUMO

BACKGROUND: Alternative splicing is a key step in Human Immunodeficiency Virus type 1 (HIV-1) replication that is tightly regulated both temporally and spatially. More than 50 different transcripts can be generated from a single HIV-1 unspliced pre-messenger RNA (pre-mRNA) and a balanced proportion of unspliced and spliced transcripts is critical for the production of infectious virions. Understanding the mechanisms involved in the regulation of viral RNA is therefore of potential therapeutic interest. However, monitoring the regulation of alternative splicing events at a transcriptome-wide level during cell infection is challenging. Here we used the long-read cDNA sequencing developed by Oxford Nanopore Technologies (ONT) to explore in a quantitative manner the complexity of the HIV-1 transcriptome regulation in infected primary CD4+ T cells. RESULTS: ONT reads mapping to the viral genome proved sufficiently long to span all possible splice junctions, even distant ones, and to be assigned to a total of 150 exon combinations. Fifty-three viral RNA isoforms, including 14 new ones were further considered for quantification. Relative levels of viral RNAs determined by ONT sequencing showed a high degree of reproducibility, compared favourably to those produced in previous reports and highly correlated with quantitative PCR (qPCR) data. To get further insights into alternative splicing regulation, we then compiled quantifications of splice site (SS) usage and transcript levels to build "splice trees", a quantitative representation of the cascade of events leading to the different viral isoforms. This approach allowed visualizing the complete rewiring of SS usages upon perturbation of SS D2 and its impact on viral isoform levels. Furthermore, we produced the first dynamic picture of the cascade of events occurring between 12 and 24 h of viral infection. In particular, our data highlighted the importance of non-coding exons in viral RNA transcriptome regulation. CONCLUSION: ONT sequencing is a convenient and reliable strategy that enabled us to grasp the dynamic of the early splicing events modulating the viral RNA landscape in HIV-1 infected cells.


Assuntos
Processamento Alternativo/genética , Infecções por HIV/virologia , HIV-1/genética , RNA Viral/genética , Linfócitos T CD4-Positivos/virologia , Regulação Viral da Expressão Gênica , Humanos , Sequenciamento por Nanoporos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Sítios de Splice de RNA , RNA Viral/metabolismo , Transcriptoma , Vírion/genética
7.
J Virol ; 93(11)2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867316

RESUMO

HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in intracellular plasma membrane-connected structures termed virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The cellular restriction factor bone marrow stromal cell antigen 2 (BST2), which prevents HIV-1 dissemination by tethering budding viral particles at the plasma membrane, can be found in VCCs. The HIV-1 accessory protein Vpu counteracts the restriction factor BST2 by downregulating its expression and removing it from viral budding sites. Numerous studies described these Vpu countermeasures in CD4+ T cells or model cell lines, but the interplay between Vpu and BST2 in VCC formation and HIV-1 production in macrophages is less explored. Here, we show that Vpu expression in HIV-1-infected macrophages enhances viral release. This effect is related to Vpu's ability to circumvent BST2 antiviral activity. We show that in absence of Vpu, BST2 is enriched in VCCs and colocalizes with capsid p24, whereas Vpu expression significantly reduces the presence of BST2 in these compartments. Furthermore, our data reveal that BST2 is dispensable for the formation of VCCs and that Vpu expression impacts the volume of these compartments. This Vpu activity partly depends on BST2 expression and requires the integrity of the Vpu transmembrane domain, the dileucine-like motif E59XXXLV64 and phosphoserines 52 and 56 of Vpu. Altogether, these results highlight that Vpu controls the volume of VCCs and promotes HIV-1 release from infected macrophages.IMPORTANCE HIV-1 infection of macrophages leads to the sequestration of newly formed viruses in virus-containing compartments (VCCs), where virions remain infectious and hidden from immune surveillance. The restriction factor BST2, which prevents HIV-1 dissemination by tethering budding viral particles, can be found in VCCs. The HIV-1 Vpu protein counteracts BST2. This study explores the interplay between Vpu and BST2 in the viral protein functions on HIV-1 release and viral particle sequestration in VCCs in macrophages. The results show that Vpu controls the volume of VCCs and favors viral particle release. These Vpu functions partly depend on Vpu's ability to antagonize BST2. This study highlights that the transmembrane domain of Vpu and two motifs of the Vpu cytoplasmic domain are required for these functions. These motifs were notably involved in the control of the volume of VCCs by Vpu but were dispensable for the prevention of the specific accumulation of BST2 in these structures.


Assuntos
Membrana Celular/metabolismo , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Macrófagos/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Antígenos CD/metabolismo , Antígeno 2 do Estroma da Médula Óssea/metabolismo , Citoplasma/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação Viral da Expressão Gênica/genética , Células HEK293 , Proteína do Núcleo p24 do HIV/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia , Soropositividade para HIV , HIV-1/imunologia , HIV-1/metabolismo , HIV-1/patogenicidade , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Humanos , Macrófagos/virologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Vírion/metabolismo , Montagem de Vírus/fisiologia , Liberação de Vírus/fisiologia
8.
J Cell Sci ; 130(9): 1596-1611, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28320822

RESUMO

The cellular protein BST2 (also known as tetherin) acts as a major intrinsic antiviral protein that prevents the release of enveloped viruses by trapping nascent viral particles at the surface of infected cells. Viruses have evolved specific strategies to displace BST2 from viral budding sites in order to promote virus egress. In HIV-1, the accessory protein Vpu counters BST2 antiviral activity and promotes sorting of BST2 for lysosomal degradation. Vpu increases polyubiquitylation of BST2, a post-translation modification required for Vpu-induced BST2 downregulation, through recruitment of the E3 ligase complex SCF adaptors ß-TrCP1 and ß-TrCP2 (two isoforms encoded by BTRC and FBXW11, respectively). Herein, we further investigate the role of the ubiquitylation machinery in the lysosomal sorting of BST2. Using a small siRNA screen, we highlighted two additional regulators of BST2 constitutive ubiquitylation and sorting to the lysosomes: the E3 ubiquitin ligases NEDD4 and MARCH8. Interestingly, Vpu does not hijack the cellular machinery that is constitutively involved in BST2 ubiquitylation to sort BST2 for degradation in the lysosomes but instead promotes the recognition of BST2 by ß-TrCP proteins. Altogether, our results provide further understanding of the mechanisms underlying BST2 turnover in cells.


Assuntos
Antígenos CD/metabolismo , HIV-1/metabolismo , Lisossomos/metabolismo , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Regulação para Baixo , Proteínas Ligadas por GPI/metabolismo , Inativação Gênica , Células HEK293 , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Ligação Proteica , Transporte Proteico , Frações Subcelulares/metabolismo , Ubiquitinação , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo
9.
Nucleic Acids Res ; 45(7): 4158-4173, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28003477

RESUMO

Argonaute (Ago) proteins associate with microRNAs (miRNAs) to form the core of the RNA-induced silencing complex (RISC) that mediates post-transcriptional gene silencing of target mRNAs. As key players in anti-viral defense, Ago proteins are thought to have the ability to interact with human immunodeficiency virus type 1 (HIV-1) RNA. However, the role of this interaction in regulating HIV-1 replication has been debated. Here, we used high throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP) to explore the interaction between Ago2 and HIV-1 RNA in infected cells. By only considering reads of 50 nucleotides length in our analysis, we identified more than 30 distinct binding sites for Ago2 along the viral RNA genome. Using reporter assays, we found four binding sites, located near splice donor sites, capable of repressing Luciferase gene expression in an Ago-dependent manner. Furthermore, inhibition of Ago1 and Ago2 levels in cells expressing HIV-1 led to an increase of viral multiply spliced transcripts and to a strong reduction in the extracellular CAp24 level. Depletion of Dicer did not affect these activities. Our results highlight a new role of Ago proteins in the control of multiply spliced HIV-1 transcript levels and viral production, independently of the miRNA pathway.


Assuntos
Processamento Alternativo , Proteínas Argonautas/metabolismo , HIV-1/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Sítios de Ligação , RNA Helicases DEAD-box/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Genoma Viral , Células HEK293 , HIV-1/fisiologia , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunoprecipitação , Células Jurkat , Precursores de RNA/metabolismo , Sítios de Splice de RNA , RNA Viral/química , Ribonuclease III/metabolismo , Análise de Sequência de RNA , Vírion/fisiologia
10.
EMBO Rep ; 14(4): 364-72, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23478334

RESUMO

The functions of Beclin-1 in macroautophagy, tumorigenesis and cytokinesis are thought to be mediated by its association with the PI3K-III complex. Here, we describe a new role for Beclin-1 in mitotic chromosome congression that is independent of the PI3K-III complex and its role in autophagy. Beclin-1 depletion in HeLa cells leads to a significant reduction of the outer kinetochore proteins CENP-E, CENP-F and ZW10, and, consequently, the cells present severe problems in chromosome congression. Beclin-1 associates with kinetochore microtubules and forms discrete foci near the kinetochores of attached chromosomes. We show that Beclin-1 interacts directly with Zwint-1-a component of the KMN (KNL-1/Mis12/Ndc80) complex-which is essential for kinetochore-microtubule interactions. This suggests that Beclin-1 acts downstream of the KMN complex to influence the recruitment of outer kinetochore proteins and promotes accurate kinetochore anchoring to the spindle during mitosis.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Cromossomos Humanos/metabolismo , Cinetocoros/metabolismo , Proteínas de Membrana/fisiologia , Proteína Beclina-1 , Segregação de Cromossomos , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Microscopia de Fluorescência , Mitose , Proteínas Nucleares/metabolismo , Ligação Proteica , RNA Interferente Pequeno/genética , Imagem com Lapso de Tempo
11.
Nat Commun ; 15(1): 640, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245532

RESUMO

Considerable progress has been made in understanding the molecular host-virus battlefield during SARS-CoV-2 infection. Nevertheless, the assembly and egress of newly formed virions are less understood. To identify host proteins involved in viral morphogenesis, we characterize the proteome of SARS-CoV-2 virions produced from A549-ACE2 and Calu-3 cells, isolated via ultracentrifugation on sucrose cushion or by ACE-2 affinity capture. Bioinformatic analysis unveils 92 SARS-CoV-2 virion-associated host factors, providing a valuable resource to better understand the molecular environment of virion production. We reveal that G3BP1 and G3BP2 (G3BP1/2), two major stress granule nucleators, are embedded within virions and unexpectedly favor virion production. Furthermore, we show that G3BP1/2 participate in the formation of cytoplasmic membrane vesicles, that are likely virion assembly sites, consistent with a proviral role of G3BP1/2 in SARS-CoV-2 dissemination. Altogether, these findings provide new insights into host factors required for SARS-CoV-2 assembly with potential implications for future therapeutic targeting.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Replicação Viral , DNA Helicases/metabolismo , Proteômica , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , COVID-19/metabolismo , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Montagem de Vírus , Vírion/metabolismo
12.
Nat Commun ; 15(1): 4023, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740816

RESUMO

Abscission is the final stage of cytokinesis, which cleaves the intercellular bridge (ICB) connecting two daughter cells. Abscission requires tight control of the recruitment and polymerization of the Endosomal Protein Complex Required for Transport-III (ESCRT-III) components. We explore the role of post-translational modifications in regulating ESCRT dynamics. We discover that SMYD2 methylates the lysine 6 residue of human CHMP2B, a key ESCRT-III component, at the ICB, impacting the dynamic relocation of CHMP2B to sites of abscission. SMYD2 loss-of-function (genetically or pharmacologically) causes CHMP2B hypomethylation, delayed CHMP2B polymerization and delayed abscission. This is phenocopied by CHMP2B lysine 6 mutants that cannot be methylated. Conversely, SMYD2 gain-of-function causes CHMP2B hypermethylation and accelerated abscission, specifically in cells undergoing cytokinetic challenges, thereby bypassing the abscission checkpoint. Additional experiments highlight the importance of CHMP2B methylation beyond cytokinesis, namely during ESCRT-III-mediated HIV-1 budding. We propose that lysine methylation signaling fine-tunes the ESCRT-III machinery to regulate the timing of cytokinetic abscission and other ESCRT-III dependent functions.


Assuntos
Citocinese , Complexos Endossomais de Distribuição Requeridos para Transporte , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Humanos , Metilação , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , HIV-1/metabolismo , HIV-1/genética , HIV-1/fisiologia , Lisina/metabolismo , Processamento de Proteína Pós-Traducional
13.
PLoS Pathog ; 7(2): e1001265, 2011 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-21304933

RESUMO

The Endosomal Sorting Complexes Required for Transport (ESCRT) machinery, a highly conserved set of four hetero-oligomeric protein complexes, is required for multivesicular body formation, sorting ubiquitinylated membrane proteins for lysosomal degradation, cytokinesis and the final stages of assembly of a number of enveloped viruses, including the human immunodeficiency viruses. Here, we show an additional role for the ESCRT machinery in HIV-1 release. BST-2/tetherin is a restriction factor that impedes HIV release by tethering mature virus particles to the plasma membrane. We found that HRS, a key component of the ESCRT-0 complex, promotes efficient release of HIV-1 and that siRNA-mediated HRS depletion induces a BST-2/tetherin phenotype. This activity is related to the ability of the HIV-1 Vpu protein to down-regulate BST-2/tetherin. We found that BST-2/tetherin undergoes constitutive ESCRT-dependent sorting for lysosomal degradation and that this degradation is enhanced by Vpu expression. We demonstrate that Vpu-mediated BST-2/tetherin down-modulation and degradation require HRS (ESCRT-0) function and that knock down of HRS increases cellular levels of BST-2/tetherin and restricts virus release. Furthermore, HRS co-precipitates with Vpu and BST-2. Our results provide further insight into the mechanism by which Vpu counteracts BST-2/tetherin and promotes HIV-1 dissemination, and they highlight an additional role for the ESCRT machinery in virus release.


Assuntos
Antígenos CD/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Proteínas do Vírus da Imunodeficiência Humana/fisiologia , Fosfoproteínas/fisiologia , Proteínas Virais Reguladoras e Acessórias/fisiologia , Antígenos CD/metabolismo , Células Cultivadas , Regulação para Baixo , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , HIV-1/metabolismo , HIV-1/fisiologia , Células HeLa , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Fosfoproteínas/antagonistas & inibidores , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , Transfecção , Carga Viral/efeitos dos fármacos , Proteínas Virais Reguladoras e Acessórias/metabolismo , Vírion/efeitos dos fármacos
14.
PLoS Pathog ; 7(11): e1002347, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22072966

RESUMO

Retroviruses take advantage of cellular trafficking machineries to assemble and release new infectious particles. Rab proteins regulate specific steps in intracellular membrane trafficking by recruiting tethering, docking and fusion factors, as well as the actin- and microtubule-based motor proteins that facilitate vesicle traffic. Using virological tests and RNA interference targeting Rab proteins, we demonstrate that the late endosome-associated Rab7A is required for HIV-1 propagation. Analysis of the late steps of the HIV infection cycle shows that Rab7A regulates Env processing, the incorporation of mature Env glycoproteins into viral particles and HIV-1 infectivity. We also show that siRNA-mediated Rab7A depletion induces a BST2/Tetherin phenotype on HIV-1 release. BST2/Tetherin is a restriction factor that impedes HIV-1 release by tethering mature virus particles to the plasma membrane. Our results suggest that Rab7A contributes to the mechanism by which Vpu counteracts the restriction factor BST2/Tetherin and rescues HIV-1 release. Altogether, our results highlight new roles for a major regulator of the late endocytic pathway, Rab7A, in the late stages of the HIV-1 replication cycle.


Assuntos
Antígenos CD/metabolismo , HIV-1/crescimento & desenvolvimento , Proteínas do Vírus da Imunodeficiência Humana/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Antígenos CD/biossíntese , Membrana Celular/metabolismo , Membrana Celular/virologia , Endossomos/metabolismo , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/metabolismo , Células HEK293 , HIV-1/genética , HIV-1/metabolismo , Células HeLa , Humanos , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Liberação de Vírus , Produtos do Gene env do Vírus da Imunodeficiência Humana/biossíntese , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
15.
Autophagy ; : 1-3, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424095

RESUMO

Understanding how viruses evade innate defenses to efficiently spread in their hosts is crucial in the fight against infections. In our study, we provided new insights on the first step initiating an LC3C (microtubule associated protein 1 light chain 3 gamma)-associated degradative pathway exploited by HIV-1 (human immunodeficiency virus type 1) to overcome the antiviral action of the restriction factor BST2 (bone marrow stromal cell antigen 2)/tetherin. We have uncovered an unsuspected and unconventional function of the autophagy-related protein ATG5 in the recognition and engagement of BST2 molecules trapping viruses at the plasma membrane, and directing them toward this LC3C-associated pathway for degradation. Additionally, we highlighted that HIV-1 uses this LC3C-associated process to attenuate the inflammatory responses triggered by BST2-mediated sensing of viruses.

16.
Traffic ; 11(4): 455-67, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20070608

RESUMO

Macrophages are among the major targets of HIV-1 infection and play a key role in viral pathogenesis. Identification of the cellular cofactors involved in the production of infectious HIV-1 from macrophages is thus crucial. Here, we investigated the role of the cellular cofactor TIP47 in HIV-1 morphogenesis in primary macrophages. Using siRNA approach, we show that TIP47 is essential for HIV-1 infectivity and propagation. TIP47 silencing disrupts Gag and Env colocalization in macrophages. Moreover, mutations in HIV-1 Gag or Env, which abolish interaction with TIP47, impair HIV-1 propagation and infectivity preventing colocalization of Gag and Env, Gag and Env coimmunoprecipitation. Interestingly, disruption of Gag-TIP47 interaction by matrix mutation or TIP47 depletion also causes Gag to localize in scattered dots in the vicinity of the plasma membrane of macrophages. Therefore, TIP47 is required for the encounter between Gag and Env, and thus for the generation of infectious HIV-1 particles from primary macrophages.


Assuntos
Proteínas de Ligação a DNA/metabolismo , HIV-1/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Macrófagos/virologia , Proteínas da Gravidez/metabolismo , Montagem de Vírus , Proteínas de Ligação a DNA/genética , HIV-1/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular/genética , Macrófagos/metabolismo , Mutação , Perilipina-3 , Proteínas da Gravidez/genética , RNA Interferente Pequeno/genética , Proteínas de Transporte Vesicular , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética , Produtos do Gene env do Vírus da Imunodeficiência Humana/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo
18.
Curr Biol ; 31(10): 2203-2213.e5, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33711249

RESUMO

The midbody at the center of the intercellular bridge connecting dividing cells recruits the machinery essential for the final steps of cytokinesis.1-5 Successive abscission on both sides of the midbody generates a free midbody remnant (MBR) that can be inherited and accumulated in many cancer, immortalized, and stem cells, both in culture and in vivo.6-12 Strikingly, this organelle was recently shown to contain information that induces cancer cell proliferation, influences cell polarity, and promotes dorso-ventral axis specification upon interaction with recipient cells.13-16 Yet the mechanisms by which the MBR is captured by either a daughter cell or a distant cell are poorly described.10,14 Here, we report that BST2/tetherin, a well-established restriction factor that blocks the release of numerous enveloped viruses from the surface of infected cells,17-20 plays an analogous role in retaining midbody remnants. We found that BST2 is enriched at the midbody during cytokinesis and localizes at the surface of MBRs in a variety of cells. Knocking out BST2 induces the detachment of MBRs from the cell surface, their accumulation in the extracellular medium, and their transfer to distant cells. Mechanistically, the localization of BST2 at the MBR membrane is both necessary and sufficient for the interaction between MBRs and the cell surface. We thus propose that BST2 tethers post-cytokinetic midbody remnants to the cell surface. This finding reveals new parallels between cytokinesis and viral biology21-26 that unexpectedly extend beyond the ESCRT-dependent abscission step.


Assuntos
Antígenos CD , Antígeno 2 do Estroma da Médula Óssea , Citocinese , Antígenos CD/genética , Antígenos CD/fisiologia , Antígeno 2 do Estroma da Médula Óssea/fisiologia , Membrana Celular , Proteínas Ligadas por GPI/fisiologia , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Organelas
19.
Mol Biol Cell ; 18(8): 3193-203, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17538020

RESUMO

Retroviral assembly is driven by Gag, and nascent viral particles escape cells by recruiting the machinery that forms intralumenal vesicles of multivesicular bodies. In this study, we show that the clathrin adaptor complex AP-1 is involved in retroviral release. The absence of AP-1mu obtained by genetic knock-out or by RNA interference reduces budding of murine leukemia virus (MLV) and HIV-1, leading to a delay of viral propagation in cell culture. In contrast, overexpression of AP-1mu enhances release of HIV-1 Gag. We show that the AP-1 complex facilitates retroviral budding through a direct interaction between the matrix and AP-1mu. Less MLV Gag is found associated with late endosomes in cells lacking AP-1, and our results suggest that AP-1 and AP-3 could function on the same pathway that leads to Gag release. In addition, we find that AP-1 interacts with Tsg101 and Nedd4.1, two cellular proteins known to be involved in HIV-1 and MLV budding. We propose that AP-1 promotes Gag release by transporting it to intracellular sites of active budding, and/or by facilitating its interactions with other cellular partners.


Assuntos
Complexo 1 de Proteínas Adaptadoras/metabolismo , Produtos do Gene gag/metabolismo , HIV-1/fisiologia , Vírus da Leucemia Murina/fisiologia , Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades mu do Complexo de Proteínas Adaptadoras/metabolismo , Animais , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , HIV-1/ultraestrutura , Células HeLa , Humanos , Camundongos , Mutação/genética , Ligação Proteica , Transporte Proteico , Ratos , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Replicação Viral
20.
PLoS Pathog ; 3(7): e104, 2007 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-17676996

RESUMO

Viral protein U (Vpu) of HIV-1 has two known functions in replication of the virus: degradation of its cellular receptor CD4 and enhancement of viral particle release. Vpu binds CD4 and simultaneously recruits the betaTrCP subunit of the SCF(betaTrCP) ubiquitin ligase complex through its constitutively phosphorylated DS52GXXS56 motif. In this process, Vpu was found to escape degradation, while inhibiting the degradation of betaTrCP natural targets such as beta-catenin and IkappaBalpha. We further addressed this Vpu inhibitory function with respect to the degradation of Emi1 and Cdc25A, two betaTrCP substrates involved in cell-cycle progression. In the course of these experiments, we underscored the importance of a novel phosphorylation site in Vpu. We show that, especially in cells arrested in early mitosis, Vpu undergoes phosphorylation of the serine 61 residue, which lies adjacent to the betaTrCP-binding motif. This phosphorylation event triggers Vpu degradation by a betaTrCP-independent process. Mutation of Vpu S61 in the HIV-1 provirus extends the half-life of the protein and significantly increases the release of HIV-1 particles from HeLa cells. However, the S61 determinant of regulated Vpu turnover is highly conserved within HIV-1 isolates. Altogether, our results highlight a mechanism where differential phosphorylation of Vpu determines its fate as an adaptor or as a substrate of distinct ubiquitin ligases. Conservation of the Vpu degradation determinant, despite its negative effect on virion release, argues for a role in overall HIV-1 fitness.


Assuntos
Regulação Viral da Expressão Gênica , HIV-1/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Replicação Viral/fisiologia , Proteínas Contendo Repetições de beta-Transducina/genética , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Chlorocebus aethiops , Proteínas F-Box/metabolismo , HIV-1/patogenicidade , Proteínas do Vírus da Imunodeficiência Humana , Humanos , Dados de Sequência Molecular , Fosforilação , Ubiquitina/metabolismo , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA