Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 245
Filtrar
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
2.
Cell ; 186(8): 1523-1527, 2023 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-37059060

RESUMO

Our understanding of tumorigenesis and cancer progression as well as clinical therapies for different cancer types have evolved dramatically in recent years. However, even with this progress, there are big challenges for scientists and oncologists to tackle, ranging from unpacking the molecular and cellular mechanisms involved to therapeutics and biomarker development to quality of life in the aftermath of therapy. In this article, we asked researchers to comment on the questions that they think are important to address in the coming years.


Assuntos
Neoplasias , Pesquisadores , Humanos , Carcinogênese , Neoplasias/sangue , Neoplasias/patologia , Neoplasias/terapia , Qualidade de Vida , Pesquisa , Biomarcadores Tumorais/sangue
3.
Cell ; 173(6): 1413-1425.e14, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29754815

RESUMO

BRAF(V600E) mutant melanomas treated with inhibitors of the BRAF and MEK kinases almost invariably develop resistance that is frequently caused by reactivation of the mitogen activated protein kinase (MAPK) pathway. To identify novel treatment options for such patients, we searched for acquired vulnerabilities of MAPK inhibitor-resistant melanomas. We find that resistance to BRAF+MEK inhibitors is associated with increased levels of reactive oxygen species (ROS). Subsequent treatment with the histone deacetylase inhibitor vorinostat suppresses SLC7A11, leading to a lethal increase in the already-elevated levels of ROS in drug-resistant cells. This causes selective apoptotic death of only the drug-resistant tumor cells. Consistently, treatment of BRAF inhibitor-resistant melanoma with vorinostat in mice results in dramatic tumor regression. In a study in patients with advanced BRAF+MEK inhibitor-resistant melanoma, we find that vorinostat can selectively ablate drug-resistant tumor cells, providing clinical proof of concept for the novel therapy identified here.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Melanoma/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Sistema y+ de Transporte de Aminoácidos/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Humanos , MAP Quinase Quinase 1/metabolismo , Sistema de Sinalização das MAP Quinases , Melanoma/genética , Camundongos , Mutação , Transplante de Neoplasias , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/genética , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Cutâneas/genética , Resultado do Tratamento , Vorinostat/farmacologia
4.
Cell ; 168(4): 579-583, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28187281

RESUMO

The spiraling cost of new drugs mandates a fundamentally different approach to keep lifesaving therapies affordable for cancer patients. We call here for the formation of new relationships between academic drug discovery centers and commercial partners, which can accelerate the development of truly transformative drugs at sustainable prices.


Assuntos
Antineoplásicos/economia , Custos de Medicamentos , Neoplasias/tratamento farmacológico , Antineoplásicos/uso terapêutico , Aprovação de Drogas , Custos de Medicamentos/legislação & jurisprudência , Descoberta de Drogas , Custos de Cuidados de Saúde , Humanos , Estados Unidos
5.
Cell ; 165(2): 317-30, 2016 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-27058664

RESUMO

BRAF(V600E) mutant colon cancers (CCs) have a characteristic gene expression signature that is also found in some tumors lacking this mutation. Collectively, they are referred to as "BRAF-like" tumors and represent some 20% of CCs. We used a shRNA-based genetic screen focused on genes upregulated in BRAF(V600E) CCs to identify vulnerabilities of this tumor subtype that might be exploited therapeutically. Here, we identify RANBP2 (also known as NUP358) as essential for survival of BRAF-like, but not for non-BRAF-like, CC cells. Suppression of RANBP2 results in mitotic defects only in BRAF-like CC cells, leading to cell death. Mechanistically, RANBP2 silencing reduces microtubule outgrowth from the kinetochores, thereby inducing spindle perturbations, providing an explanation for the observed mitotic defects. We find that BRAF-like CCs display far greater sensitivity to the microtubule poison vinorelbine both in vitro and in vivo, suggesting that vinorelbine is a potential tailored treatment for BRAF-like CCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Vimblastina/análogos & derivados , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Células Cultivadas , Neoplasias do Colo/classificação , Neoplasias do Colo/tratamento farmacológico , Xenoenxertos , Humanos , Camundongos , Camundongos Nus , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Chaperonas Moleculares/genética , Transplante de Neoplasias , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas Proto-Oncogênicas B-raf/genética , Vimblastina/administração & dosagem , Vimblastina/farmacologia , Vinorelbina
6.
Cell ; 151(3): 465-8, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-23101617

RESUMO

Genotype-directed therapy holds great promise for the treatment of cancer, but crosstalk between signaling pathways often confounds simple genotype-drug response relationships. To deliver on the promise of precision medicine, a coordinated effort is needed to make a comprehensive inventory of the many signaling feedback circuits that exist in cancer cells.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Transdução de Sinais , Antineoplásicos/metabolismo , Interações Medicamentosas , Retroalimentação Fisiológica , Genótipo , Humanos , Neoplasias/classificação
7.
Cell ; 151(5): 937-50, 2012 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-23178117

RESUMO

Inhibitors of the ALK and EGF receptor tyrosine kinases provoke dramatic but short-lived responses in lung cancers harboring EML4-ALK translocations or activating mutations of EGFR, respectively. We used a large-scale RNAi screen to identify MED12, a component of the transcriptional MEDIATOR complex that is mutated in cancers, as a determinant of response to ALK and EGFR inhibitors. MED12 is in part cytoplasmic where it negatively regulates TGF-ßR2 through physical interaction. MED12 suppression therefore results in activation of TGF-ßR signaling, which is both necessary and sufficient for drug resistance. TGF-ß signaling causes MEK/ERK activation, and consequently MED12 suppression also confers resistance to MEK and BRAF inhibitors in other cancers. MED12 loss induces an EMT-like phenotype, which is associated with chemotherapy resistance in colon cancer patients and to gefitinib in lung cancer. Inhibition of TGF-ßR signaling restores drug responsiveness in MED12(KD) cells, suggesting a strategy to treat drug-resistant tumors that have lost MED12.


Assuntos
Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Complexo Mediador/metabolismo , Neoplasias/tratamento farmacológico , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Transição Epitelial-Mesenquimal , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Sistema de Sinalização das MAP Quinases , Complexo Mediador/genética
8.
Nature ; 595(7869): 730-734, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34290403

RESUMO

Hepatocellular carcinoma (HCC)-the most common form of liver cancer-is an aggressive malignancy with few effective treatment options1. Lenvatinib is a small-molecule inhibitor of multiple receptor tyrosine kinases that is used for the treatment of patients with advanced HCC, but this drug has only limited clinical benefit2. Here, using a kinome-centred CRISPR-Cas9 genetic screen, we show that inhibition of epidermal growth factor receptor (EGFR) is synthetic lethal with lenvatinib in liver cancer. The combination of the EGFR inhibitor gefitinib and lenvatinib displays potent anti-proliferative effects in vitro in liver cancer cell lines that express EGFR and in vivo in xenografted liver cancer cell lines, immunocompetent mouse models and patient-derived HCC tumours in mice. Mechanistically, inhibition of fibroblast growth factor receptor (FGFR)  by lenvatinib treatment leads to feedback activation of the EGFR-PAK2-ERK5 signalling axis, which is blocked by EGFR inhibition. Treatment of 12 patients with advanced HCC who were unresponsive to lenvatinib treatment with the combination of lenvatinib plus gefitinib (trial identifier NCT04642547) resulted in meaningful clinical responses. The combination therapy identified here may represent a promising strategy for the approximately 50% of patients with advanced HCC who have high levels of EGFR.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Compostos de Fenilureia/farmacologia , Quinolinas/farmacologia , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Feminino , Gefitinibe/farmacologia , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptores de Fatores de Crescimento de Fibroblastos , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Proc Natl Acad Sci U S A ; 121(9): e2319492121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377196

RESUMO

The Kirsten rat sarcoma viral oncogene homologue KRAS is among the most commonly mutated oncogenes in human cancers, thus representing an attractive target for precision oncology. The approval for clinical use of the first selective inhibitors of G12C mutant KRAS therefore holds great promise for cancer treatment. However, despite initial encouraging clinical results, the overall survival benefit that patients experience following treatment with these inhibitors has been disappointing to date, pointing toward the need to develop more powerful combination therapies. Here, we show that responsiveness to KRASG12C and pan-RAS inhibitors in KRAS-mutant lung and colon cancer cells is limited by feedback activation of the parallel MAP2K4-JNK-JUN pathway. Activation of this pathway leads to elevated expression of receptor tyrosine kinases that reactivate KRAS and its downstream effectors in the presence of drug. We find that the combination of sotorasib, a drug targeting KRASG12C, and the MAP2K4 inhibitor HRX-0233 prevents this feedback activation and is highly synergistic in a panel of KRASG12C-mutant lung and colon cancer cells. Moreover, combining HRX-0233 and sotorasib is well-tolerated and resulted in durable tumor shrinkage in mouse xenografts of human lung cancer cells, suggesting a therapeutic strategy for KRAS-driven cancers.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Pulmonares , Humanos , Animais , Camundongos , Proteínas Proto-Oncogênicas p21(ras)/genética , Medicina de Precisão , Antineoplásicos/farmacologia , Oncogenes , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , MAP Quinase Quinase 4
10.
EMBO Rep ; 25(5): 2220-2238, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38600345

RESUMO

Perturbation of protein phosphorylation represents an attractive approach to cancer treatment. Besides kinase inhibitors, protein phosphatase inhibitors have been shown to have anti-cancer activity. A prime example is the small molecule LB-100, an inhibitor of protein phosphatases 2A/5 (PP2A/PP5), enzymes that affect cellular physiology. LB-100 has proven effective in pre-clinical models in combination with immunotherapy, but the molecular underpinnings of this synergy remain understood poorly. We report here a sensitivity of the mRNA splicing machinery to phosphorylation changes in response to LB-100 in colorectal adenocarcinoma. We observe enrichment for differentially phosphorylated sites within cancer-critical splicing nodes of U2 snRNP, SRSF and hnRNP proteins. Altered phosphorylation endows LB-100-treated colorectal adenocarcinoma cells with differential splicing patterns. In PP2A-inhibited cells, over 1000 events of exon skipping and intron retention affect regulators of genomic integrity. Finally, we show that LB-100-evoked alternative splicing leads to neoantigens that are presented by MHC class 1 at the cell surface. Our findings provide a potential explanation for the pre-clinical and clinical observations that LB-100 sensitizes cancer cells to immune checkpoint blockade.


Assuntos
Neoplasias do Colo , Splicing de RNA , Humanos , Processamento Alternativo/efeitos dos fármacos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Neoplasias do Colo/imunologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Inibidores Enzimáticos/farmacologia , Fosforilação , Proteína Fosfatase 2/metabolismo , Splicing de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Piperazinas/farmacologia
11.
Gastroenterology ; 166(6): 1130-1144.e8, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38262581

RESUMO

BACKGROUND & AIMS: Despite the increasing number of treatment options available for liver cancer, only a small proportion of patients achieve long-term clinical benefits. Here, we aim to develop new therapeutic approaches for liver cancer. METHODS: A compound screen was conducted to identify inhibitors that could synergistically induce senescence when combined with cyclin-dependent kinase (CDK) 4/6 inhibitor. The combination effects of CDK4/6 inhibitor and exportin 1 (XPO1) inhibitor on cellular senescence were investigated in a panel of human liver cancer cell lines and multiple liver cancer models. A senolytic drug screen was performed to identify drugs that selectively killed senescent liver cancer cells. RESULTS: The combination of CDK4/6 inhibitor and XPO1 inhibitor synergistically induces senescence of liver cancer cells in vitro and in vivo. The XPO1 inhibitor acts by causing accumulation of RB1 in the nucleus, leading to decreased E2F signaling and promoting senescence induction by the CDK4/6 inhibitor. Through a senolytic drug screen, cereblon (CRBN)-based proteolysis targeting chimera (PROTAC) ARV-825 was identified as an agent that can selectively kill senescent liver cancer cells. Up-regulation of CRBN was a vulnerability of senescent liver cancer cells, making them sensitive to CRBN-based PROTAC drugs. Mechanistically, we find that ubiquitin specific peptidase 2 (USP2) directly interacts with CRBN, leading to the deubiquitination and stabilization of CRBN in senescent liver cancer cells. CONCLUSIONS: Our study demonstrates a striking synergy in senescence induction of liver cancer cells through the combination of CDK4/6 inhibitor and XPO1 inhibitor. These findings also shed light on the molecular processes underlying the vulnerability of senescent liver cancer cells to CRBN-based PROTAC therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Senescência Celular , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Proteína Exportina 1 , Carioferinas , Neoplasias Hepáticas , Inibidores de Proteínas Quinases , Receptores Citoplasmáticos e Nucleares , Ubiquitina-Proteína Ligases , Humanos , Senescência Celular/efeitos dos fármacos , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Carioferinas/antagonistas & inibidores , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares/antagonistas & inibidores , Receptores Citoplasmáticos e Nucleares/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Proteínas de Ligação a Retinoblastoma/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Sinergismo Farmacológico , Senoterapia/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Transdução de Sinais/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Hidrazinas/farmacologia , Hidrazinas/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Células Hep G2 , Camundongos , Piperazinas , Piridinas , Triazóis
12.
Cell ; 141(1): 13-7, 2010 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-20371338

RESUMO

To stem the spiraling cost of cancer treatment, a concerted effort is urgently needed to develop molecular diagnostics to better identify the patients that respond to expensive targeted therapies. Opportunities and obstacles in the development of such drug response biomarkers are discussed here.


Assuntos
Biomarcadores Farmacológicos/análise , Neoplasias/diagnóstico , Atenção à Saúde/economia , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/economia , Patologia Molecular
14.
Cell ; 142(2): 218-29, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20655465

RESUMO

Retinoic acid (RA) induces differentiation of neuroblastoma cells in vitro and is used with variable success to treat aggressive forms of this disease. This variability in clinical response to RA is enigmatic, as no mutations in components of the RA signaling cascade have been found. Using a large-scale RNAi genetic screen, we identify crosstalk between the tumor suppressor NF1 and retinoic acid-induced differentiation in neuroblastoma. Loss of NF1 activates RAS-MEK signaling, which in turn represses ZNF423, a critical transcriptional coactivator of the retinoic acid receptors. Neuroblastomas with low levels of both NF1 and ZNF423 have extremely poor outcome. We find NF1 mutations in neuroblastoma cell lines and in primary tumors. Inhibition of MEK signaling downstream of NF1 restores responsiveness to RA, suggesting a therapeutic strategy to overcome RA resistance in NF1-deficient neuroblastomas.


Assuntos
Neuroblastoma/diagnóstico , Neurofibromina 1/metabolismo , Tretinoína/metabolismo , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/metabolismo , Humanos , Neuroblastoma/metabolismo , Neurofibromina 1/genética , Prognóstico , Proteínas , Transdução de Sinais , Ativação Transcricional
15.
Nature ; 574(7777): 268-272, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578521

RESUMO

Liver cancer remains difficult to treat, owing to a paucity of drugs that target critical dependencies1,2; broad-spectrum kinase inhibitors such as sorafenib provide only a modest benefit to patients with hepatocellular carcinoma3. The induction of senescence may represent a strategy for the treatment of cancer, especially when combined with a second drug that selectively eliminates senescent cancer cells (senolysis)4,5. Here, using a kinome-focused genetic screen, we show that pharmacological inhibition of the DNA-replication kinase CDC7 induces senescence selectively in liver cancer cells with mutations in TP53. A follow-up chemical screen identified the antidepressant sertraline as an agent that kills hepatocellular carcinoma cells that have been rendered senescent by inhibition of CDC7. Sertraline suppressed mTOR signalling, and selective drugs that target this pathway were highly effective in causing the apoptotic cell death of hepatocellular carcinoma cells treated with a CDC7 inhibitor. The feedback reactivation of mTOR signalling after its inhibition6 is blocked in cells that have been treated with a CDC7 inhibitor, which leads to the sustained inhibition of mTOR and cell death. Using multiple in vivo mouse models of liver cancer, we show that treatment with combined inhibition of of CDC7 and mTOR results in a marked reduction of tumour growth. Our data indicate that exploiting an induced vulnerability could be an effective treatment for liver cancer.


Assuntos
Apoptose/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Terapia de Alvo Molecular , Sertralina/farmacologia , Animais , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Sertralina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética
16.
Angiogenesis ; 26(2): 279-293, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36459240

RESUMO

PURPOSE: Ongoing angiogenesis renders the tumor endothelium unresponsive to inflammatory cytokines and interferes with adhesion of leukocytes, resulting in escape from immunity. This process is referred to as tumor endothelial cell anergy. We aimed to investigate whether anti-angiogenic agents can overcome endothelial cell anergy and provide pro-inflammatory conditions. EXPERIMENTAL DESIGN: Tissues of renal cell carcinoma (RCC) patients treated with VEGF pathway-targeted drugs and control tissues were subject to RNAseq and immunohistochemical profiling of the leukocyte infiltrate. Analysis of adhesion molecule regulation in cultured endothelial cells, in a preclinical model and in human tissues was performed and correlated to leukocyte infiltration. RESULTS: It is shown that treatment of RCC patients with the drugs sunitinib or bevacizumab overcomes tumor endothelial cell anergy. This treatment resulted in an augmented inflammatory state of the tumor, characterized by enhanced infiltration of all major leukocyte subsets, including T cells, regulatory T cells, macrophages of both M1- and M2-like phenotypes and activated dendritic cells. In vitro, exposure of angiogenic endothelial cells to anti-angiogenic drugs normalized ICAM-1 expression. In addition, a panel of tyrosine kinase inhibitors was shown to increase transendothelial migration of both non-adherent and monocytic leukocytes. In primary tumors of RCC patients, ICAM-1 expression was found to be significantly increased in both the sunitinib and bevacizumab-treated groups. Genomic analysis confirmed the correlation between increased immune cell infiltration and ICAM-1 expression upon VEGF-targeted treatment. CONCLUSION: The results support the emerging concept that anti-angiogenic therapy can boost immunity and show how immunotherapy approaches can benefit from combination with anti-angiogenic compounds.


Assuntos
Inibidores da Angiogênese , Carcinoma de Células Renais , Células Endoteliais , Neoplasias Renais , Neovascularização Patológica , Humanos , Bevacizumab/imunologia , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/patologia , Endotélio/efeitos dos fármacos , Endotélio/imunologia , Endotélio/patologia , Molécula 1 de Adesão Intercelular/imunologia , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia , Sunitinibe/imunologia , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/imunologia , Tolerância Imunológica/efeitos dos fármacos , Tolerância Imunológica/imunologia , Invasividade Neoplásica/imunologia , Inflamação/tratamento farmacológico , Inflamação/imunologia , Inflamação/patologia , Inibidores da Angiogênese/imunologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico
17.
Cell ; 135(5): 793-5, 2008 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19041743

RESUMO

Of the myriad alterations in gene copy number found in cancer cells, which alterations are critical for the cancer phenotype? In this issue of Cell, Zender et al. (2008) describe an integrative genomics approach to identify new tumor suppressor genes involved in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/genética , Genes Supressores de Tumor , Neoplasias Hepáticas/genética , Animais , Genômica , Humanos , Camundongos , Interferência de RNA
18.
Br J Cancer ; 124(1): 176-182, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33204026

RESUMO

BACKGROUND: Treatment strategies inhibiting BRAF in combination with EGFR have been developed in patients with BRAFV600E mutant metastatic colorectal cancer, but intrinsic and secondary resistance remains a challenge. We aimed to investigate which genetic alterations cause intrinsic non-response and/or acquired resistance in these patients receiving therapies consisting of a backbone of BRAF and EGFR inhibition. METHODS: This was a cohort study on genetic alterations in patients with BRAFV600E mutant advanced colorectal cancer treated with inhibitors of the MAPK pathway. We examined tumour tissue for genetic alterations at baseline, during treatment and at progression. RESULTS: In total, 37 patients were included in this cohort. Genetic alterations in EGFR and in PIK3CA are associated with non-response. A greater fraction of non-responders (75%) versus responders (46%) had at least one genetic alteration in other genes than TP53, APC or BRAF. Secondary resistance mutations (n = 16 patients) were observed most frequently in the PI3K pathway (n = 6) and in receptor tyrosine kinases (n = 4), leading to increased upstream signalling. CONCLUSIONS: Genetic alterations in the PI3K and upstream receptor tyrosine kinases were mostly associated with intrinsic and acquired resistance. By understanding these alterations, simultaneous or alternating treatments with targeted inhibitors might improve response duration.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Adulto , Idoso , Benzimidazóis/administração & dosagem , Carbamatos/administração & dosagem , Cetuximab/administração & dosagem , Estudos de Coortes , Neoplasias Colorretais/patologia , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Sulfonamidas/administração & dosagem , Tiazóis/administração & dosagem
19.
Oncologist ; 26(4): 290-e545, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33296125

RESUMO

LESSONS LEARNED: Afatinib and selumetinib can be combined in continuous and intermittent dosing schedules, albeit at lower doses than approved for monotherapy. Maximum tolerated dose for continuous and intermittent schedules is afatinib 20 mg once daily and selumetinib 25 mg b.i.d. Because the anticancer activity was limited, further development of this combination is not recommended until better biomarkers for response and resistance are defined. BACKGROUND: Antitumor effects of MEK inhibitors are limited in KRAS-mutated tumors because of feedback activation of upstream epidermal growth factor receptors, which reactivates the MAPK and the phosphoinositide 3-kinase-AKT pathway. Therefore, this phase I trial was initiated with the pan-HER inhibitor afatinib plus the MEK inhibitor selumetinib in patients with KRAS mutant, PIK3CA wild-type tumors. METHODS: Afatinib and selumetinib were administered according to a 3+3 design in continuous and intermittent schedules. The primary objective was safety, and the secondary objective was clinical efficacy. RESULTS: Twenty-six patients were enrolled with colorectal cancer (n = 19), non-small cell lung cancer (NSCLC) (n = 6), and pancreatic cancer (n = 1). Dose-limiting toxicities occurred in six patients, including grade 3 diarrhea, dehydration, decreased appetite, nausea, vomiting, and mucositis. The recommended phase II dose (RP2D) was 20 mg afatinib once daily (QD) and 25 mg selumetinib b.i.d. (21 days on/7 days off) for continuous afatinib dosing and for intermittent dosing with both drugs 5 days on/2 days off. Efficacy was limited with disease stabilization for 221 days in a patient with NSCLC as best response. CONCLUSION: Afatinib and selumetinib can be combined in continuous and intermittent schedules in patients with KRAS mutant tumors. Although target engagement was observed, the clinical efficacy was limited.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Pancreáticas , Afatinib/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Benzimidazóis , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mutação , Neoplasias Pancreáticas/tratamento farmacológico , Fosfatidilinositol 3-Quinases , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas p21(ras)/genética
20.
Gut ; 69(4): 727-736, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31519701

RESUMO

OBJECTIVES: Hepatocellular carcinoma (HCC) is one of the most frequent malignancies and a major leading cause of cancer-related deaths worldwide. Several therapeutic options like sorafenib and regorafenib provide only modest survival benefit to patients with HCC. This study aims to identify novel druggable candidate genes for patients with HCC. DESIGN: A non-biased CRISPR (clustered regularly interspaced short palindromic repeats) loss-of-function genetic screen targeting all known human kinases was performed to identify vulnerabilities of HCC cells. Whole-transcriptome sequencing (RNA-Seq) and bioinformatics analyses were performed to explore the mechanisms of the action of a cyclin-dependent kinase 12 (CDK12) inhibitor in HCC cells. Multiple in vitro and in vivo assays were used to study the synergistic effects of the combination of CDK12 inhibition and sorafenib. RESULTS: We identify CDK12 as critically required for most HCC cell lines. Suppression of CDK12 using short hairpin RNAs (shRNAs) or its inhibition by the covalent small molecule inhibitor THZ531 leads to robust proliferation inhibition. THZ531 preferentially suppresses the expression of DNA repair-related genes and induces strong DNA damage response in HCC cell lines. The combination of THZ531 and sorafenib shows striking synergy by inducing apoptosis or senescence in HCC cells. The synergy between THZ531 and sorafenib may derive from the notion that THZ531 impairs the adaptive responses of HCC cells induced by sorafenib treatment. CONCLUSION: Our data highlight the potential of CDK12 as a drug target for patients with HCC. The striking synergy of THZ531 and sorafenib suggests a potential combination therapy for this difficult to treat cancer.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/patologia , Quinases Ciclina-Dependentes/antagonistas & inibidores , Neoplasias Hepáticas/patologia , Pirimidinas/farmacologia , Sorafenibe/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA