Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Environ Sci Technol ; 58(15): 6595-6604, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38573735

RESUMO

Meaningful interpretation of U isotope measurements relies on unraveling the impact of reduction mechanisms on the isotopic fractionation. Here, the isotope fractionation of hexavalent U [U(VI)] was investigated during its reductive mineralization by magnetite to intermediate pentavalent U [U(V)] and ultimately tetravalent U [U(IV)]. As the reaction proceeded, the remaining aqueous phase U [containing U(VI) and U(V)] systematically carried light isotopes, whereas in the bicarbonate-extracted solution [containing U(VI) and U(V)], the δ238U values varied, especially when C/C0 approached 0. This variation was interpreted as reflecting the variable relative contribution of unreduced U(VI) (δ238U < 0‰) and bicarbonate-extractable U(V) (δ238U > 0‰). The solid remaining after bicarbonate extraction included unextractable U(V) and U(IV), for which the δ238U values consistently followed the same trend that started at 0.3-0.5‰ and decreased to ∼0‰. The impact of PIPES buffer on isotopic fractionation was attributed to the variable abundance of U(V) in the aqueous phase. A few extremely heavy bicarbonate-extracted δ238U values were due to mass-dependent fractionation resulting from several hypothesized mechanisms. The results suggest the preferential accumulation of the heavy isotope in the reduced species and the significant influence of U(V) on the overall isotopic fractionation, providing insight into the U isotope fractionation behavior during its abiotic reduction process.


Assuntos
Óxido Ferroso-Férrico , Urânio , Bicarbonatos , Isótopos , Fracionamento Químico
2.
Environ Sci Technol ; 57(19): 7537-7546, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37133831

RESUMO

The biological reduction of soluble U(VI) complexes to form immobile U(IV) species has been proposed to remediate contaminated sites. It is well established that multiheme c-type cytochromes (MHCs) are key mediators of electron transfer to aqueous phase U(VI) complexes for bacteria such as Shewanella oneidensis MR-1. Recent studies have confirmed that the reduction proceeds via a first electron transfer forming pentavalent U(V) species that readily disproportionate. However, in the presence of the stabilizing aminocarboxylate ligand, dpaea2- (dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine), biologically produced U(V) persisted in aqueous solution at pH 7. We aim to pinpoint the role of MHC in the reduction of U(V)-dpaea and to establish the mechanism of solid-phase U(VI)-dpaea reduction. To that end, we investigated U-dpaea reduction by two deletion mutants of S. oneidensis MR-1-one lacking outer membrane MHCs and the other lacking all outer membrane MHCs and a transmembrane MHC-and by the purified outer membrane MHC, MtrC. Our results suggest that solid-phase U(VI)-dpaea is reduced primarily by outer membrane MHCs. Additionally, MtrC can directly transfer electrons to U(V)-dpaea to form U(IV) species but is not strictly necessary, underscoring the primary involvement of outer membrane MHCs in the reduction of this pentavalent U species but not excluding that of periplasmic MHCs.


Assuntos
Citocromos , Shewanella , Oxirredução , Transporte de Elétrons , Shewanella/química
3.
Environ Sci Technol ; 56(3): 1753-1762, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35061941

RESUMO

Uranium isotopic signatures can be harnessed to monitor the reductive remediation of subsurface contamination or to reconstruct paleo-redox environments. However, the mechanistic underpinnings of the isotope fractionation associated with U reduction remain poorly understood. Here, we present a coprecipitation study, in which hexavalent U (U(VI)) was reduced during the synthesis of magnetite and pentavalent U (U(V)) was the dominant species. The measured δ238U values for unreduced U(VI) (∼-1.0‰), incorporated U (96 ± 2% U(V), ∼-0.1‰), and extracted surface U (mostly U(IV), ∼0.3‰) suggested the preferential accumulation of the heavy isotope in reduced species. Upon exposure of the U-magnetite coprecipitate to air, U(V) was partially reoxidized to U(VI) with no significant change in the δ238U value. In contrast, anoxic amendment of a heavy isotope-doped U(VI) solution resulted in an increase in the δ238U of the incorporated U species over time, suggesting an exchange between incorporated and surface/aqueous U. Overall, the results support the presence of persistent U(V) with a light isotope signature and suggest that the mineral dynamics of iron oxides may allow overprinting of the isotopic signature of incorporated U species. This work furthers the understanding of the isotope fractionation of U associated with iron oxides in both modern and paleo-environments.


Assuntos
Urânio , Óxido Ferroso-Férrico , Ferro , Isótopos , Óxidos , Urânio/análise
4.
Environ Sci Technol ; 55(12): 7959-7969, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038128

RESUMO

Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 µM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.


Assuntos
Urânio , Fracionamento Químico , Isótopos , Ligantes , Oxirredução , Shewanella , Urânio/análise
5.
Environ Sci Technol ; 55(8): 4753-4761, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33705103

RESUMO

Metal-reducing microorganisms such as Shewanella oneidensis MR-1 reduce highly soluble species of hexavalent uranyl (U(VI)) to less mobile tetravalent uranium (U(IV)) compounds. The biologically mediated immobilization of U(VI) is being considered for the remediation of U contamination. However, the mechanistic underpinnings of biological U(VI) reduction remain unresolved. It has become clear that a first electron transfer occurs to form pentavalent (U(V)) intermediates, but it has not been definitively established whether a second one-electron transfer can occur or if disproportionation of U(V) is required. Here, we utilize the unusual properties of dpaea2- ((dpaeaH2═bis(pyridyl-6-methyl-2-carboxylate)-ethylamine)), a ligand forming a stable soluble aqueous complex with U(V), and investigate the reduction of U(VI)-dpaea and U(V)-dpaea by S. oneidensis MR-1. We establish U speciation through time by separating U(VI) from U(IV) by ion exchange chromatography and characterize the reaction end-products using U M4-edge high resolution X-ray absorption near-edge structure (HR-XANES) spectroscopy. We document the reduction of solid phase U(VI)-dpaea to aqueous U(V)-dpaea but, most importantly, demonstrate that of U(V)-dpaea to U(IV). This work establishes the potential for biological reduction of U(V) bound to a stabilizing ligand. Thus, further work is warranted to investigate the possible persistence of U(V)-organic complexes followed by their bioreduction in environmental systems.


Assuntos
Shewanella , Urânio , Biodegradação Ambiental , Ligantes , Oxirredução
6.
J Lipid Res ; 61(11): 1450-1463, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32661017

RESUMO

Bile acids, which are synthesized from cholesterol by the liver, are chemically transformed along the intestinal tract by the gut microbiota, and the products of these transformations signal through host receptors, affecting overall host health. These transformations include bile acid deconjugation, oxidation, and 7α-dehydroxylation. An understanding of the biogeography of bile acid transformations in the gut is critical because deconjugation is a prerequisite for 7α-dehydroxylation and because most gut microorganisms harbor bile acid transformation capacity. Here, we used a coupled metabolomic and metaproteomic approach to probe in vivo activity of the gut microbial community in a gnotobiotic mouse model. Results revealed the involvement of Clostridium scindens in 7α-dehydroxylation, of the genera Muribaculum and Bacteroides in deconjugation, and of six additional organisms in oxidation (the genera Clostridium, Muribaculum, Bacteroides, Bifidobacterium, Acutalibacter, and Akkermansia). Furthermore, the bile acid profile in mice with a more complex microbiota, a dysbiosed microbiota, or no microbiota was considered. For instance, conventional mice harbor a large diversity of bile acids, but treatment with an antibiotic such as clindamycin results in the complete inhibition of 7α-dehydroxylation, underscoring the strong inhibition of organisms that are capable of carrying out this process by this compound. Finally, a comparison of the hepatic bile acid pool size as a function of microbiota revealed that a reduced microbiota affects host signaling but not necessarily bile acid synthesis. In this study, bile acid transformations were mapped to the associated active microorganisms, offering a systematic characterization of the relationship between microbiota and bile acid composition.


Assuntos
Ácidos e Sais Biliares/metabolismo , Microbioma Gastrointestinal , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
7.
Environ Sci Technol ; 54(8): 4840-4846, 2020 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-32167294

RESUMO

Uranium (U) in situ bioremediation has been investigated as a cost-effective strategy to tackle U contamination in the subsurface. While uraninite was believed to be the only product of bioreduction, numerous studies have revealed that noncrystalline U(IV) species (NCU(IV)) are dominant. This finding brings into question the effectiveness of bioremediation because NCU(IV) species are expected to be labile and susceptible to oxidation. Thus, understanding the stability of NCU(IV) in the environment is of crucial importance. Fe(II) minerals (such as FeS) are often associated with U(IV) in bioremediated or naturally reduced sediments. Their impact on the stability of NCU(IV) is not well understood. Here, we show that, at high dissolved oxygen concentrations, FeS accelerates NCU(IV) reoxidation. We hypothesize that either highly reactive ferric minerals or radical S species produced by the oxidation of FeS drive this rapid reoxidation of NCU(IV). Furthermore, we found evidence for the contribution of reactive oxygen species to NCU(IV) reoxidation. This work refines our understanding of the role of iron sulfide minerals in the stability of tetravalent uranium in the presence of oxygen in a field setting such as contaminated sites or uranium-bearing naturally reduced zones.


Assuntos
Compostos de Urânio , Urânio , Biodegradação Ambiental , Compostos Ferrosos , Sedimentos Geológicos , Oxirredução , Espectroscopia por Absorção de Raios X
8.
Environ Sci Technol ; 54(1): 613-620, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31769664

RESUMO

Reductive immobilization of uranium has been explored as a remediation strategy for the U-contaminated subsurface. Via the in situ biostimulation of microbial processes, hexavalent U is reduced to less soluble tetravalent species, which are immobilized within the sediment. Although the mineral uraninite (UO2) was initially considered the dominant product of biological reduction, non-crystalline U(IV) species (NCU(IV)) are found to be abundant in the environment despite their greater susceptibility to oxidation and remobilization. However, it has been recently proposed that, through aging, NCU(IV) might transform into UO2, which would potentially enhance the stability of the reduced U pool. In this study, we performed column experiments to produce NCU(IV) species in natural sediment mimicking the environmental conditions during bioremediation. Bioreduced sediment retrieved from the columns and harboring NCU(IV) was incubated in static microcosms under anoxic conditions to allow the systematic monitoring of U coordination by X-ray absorption spectroscopy (XAS) over 12 months. XAS revealed that, under the investigated conditions, the speciation of U(IV) does not change over time. Thus, because NCU(IV) is the dominant species in the sediment, bioreduced U(IV) species remain vulnerable to oxidation and remobilization in the aqueous phase even after a 12-month aging period.


Assuntos
Compostos de Urânio , Urânio , Biodegradação Ambiental , Oxirredução , Espectroscopia por Absorção de Raios X
9.
Environ Sci Technol ; 54(22): 14343-14351, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33125231

RESUMO

Microbially-mediated methylation of arsenic (As) plays an important role in the As biogeochemical cycle, particularly in rice paddy soils where methylated As, generated microbially, is translocated into rice grains. The presence of the arsenite (As(III)) methyltransferase gene (arsM) in soil microbes has been used as an indication of their capacity for As methylation. Here, we evaluate the ability of seven microorganisms encoding active ArsM enzymes to methylate As. Amongst those, only the aerobic species were efficient methylators. The anaerobic microorganisms presented high resistance to As exposure, presumably through their efficient As(III) efflux, but methylated As poorly. The only exception were methanogens, for which efficient As methylation was seemingly an artifact of membrane disruption. Deletion of an efflux pump gene (acr3) in one of the anaerobes, Clostridium pasteurianum, rendered the strain sensitive to As and capable of more efficiently methylating As. Our results led to the following conclusions: (i) encoding a functional ArsM enzyme does not guarantee that a microorganism will actively drive As methylation in the presence of the metalloid and (ii) there is an inverse relationship between efficient microbial As efflux and its methylation, because the former prevents the intracellular accumulation of As.


Assuntos
Arsênio , Poluentes do Solo , Anaerobiose , Clostridium , Metilação , Microbiologia do Solo
10.
Angew Chem Int Ed Engl ; 59(17): 6756-6759, 2020 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-32017361

RESUMO

Reduction of uranyl(VI) to UV and to UIV is important in uranium environmental migration and remediation processes. The anaerobic reduction of a uranyl UVI complex supported by a picolinate ligand in both organic and aqueous media is presented. The [UVI O2 (dpaea)] complex is readily converted into the cis-boroxide UIV species via diborane-mediated reductive functionalization in organic media. Remarkably, in aqueous media the uranyl(VI) complex is rapidly converted, by Na2 S2 O4 , a reductant relevant for chemical remediation processes, into the stable uranyl(V) analogue, which is then slowly reduced to yield a water-insoluble trinuclear UIV oxo-hydroxo cluster. This report provides the first example of direct conversion of a uranyl(VI) compound into a well-defined molecular UIV species in aqueous conditions.

11.
Environ Microbiol ; 21(10): 3548-3563, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31020759

RESUMO

Iron is essential for most living organisms. In addition, its biogeochemical cycling influences important processes in the geosphere (e.g., the mobilization or immobilization of trace elements and contaminants). The reduction of Fe(III) to Fe(II) can be catalysed microbially, particularly by metal-respiring bacteria utilizing Fe(III) as a terminal electron acceptor. Furthermore, Gram-positive fermentative iron reducers are known to reduce Fe(III) by using it as a sink for excess reducing equivalents, as a form of enhanced fermentation. Here, we use the Gram-positive fermentative bacterium Clostridium acetobutylicum as a model system due to its ability to reduce heavy metals. We investigated the reduction of soluble and solid iron during fermentation. We found that exogenous (resazurin, resorufin, anthraquinone-2,6-disulfonate) as well as endogenous (riboflavin) electron mediators enhance solid iron reduction. In addition, iron reduction buffers the pH, and elicits a shift in the carbon and electron flow to less reduced products relative to fermentation. This study underscores the role fermentative bacteria can play in iron cycling and provides insights into the metabolic profile of coupled fermentation and iron reduction with laboratory experiments and metabolic network modelling.


Assuntos
Bactérias/metabolismo , Clostridium acetobutylicum/metabolismo , Ferro/metabolismo , Fermentação , Oxirredução
12.
Environ Sci Technol ; 53(16): 9361-9369, 2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31356746

RESUMO

Uranium (U) speciation was investigated in anoxically preserved porewater samples of a natural mountain wetland in Gola di Lago, Ticino, Switzerland. U porewater concentrations ranged from less than 1 µg/L to tens of µg/L, challenging the available analytical approaches for U speciation in natural samples. Asymmetrical flow field-flow fractionation coupled with inductively coupled plasma mass spectrometry allowed the characterization of colloid populations and the determination of the size distribution of U species in the porewater. Most of the U was associated with three fractions: <0.3 kDa, likely including dissolved U and very small U colloids; a 1-3 kDa fraction containing humic-like organic compounds, dispersed Fe, and, to a small extent, Fe nanoparticles; and a third fraction (5-50 nm), containing a higher amount of Fe and a lower amount of organic matter and U relative to the 1-3 kDa fraction. The proportion of U associated with the 1-3 kDa colloids varied spatially and seasonally. Using anion exchange resins, we also found that a significant proportion of U occurs in its reduced form, U(IV). Tetravalent U was interpreted as occurring within the colloidal pool of U. This study suggests that U(IV) can occur as small (1-3 kDa), organic-rich, and thus potentially mobile colloidal species in naturally reducing wetland environments.


Assuntos
Urânio , Poluentes Radioativos da Água , Coloides , Oxirredução , Suíça , Áreas Alagadas
13.
Environ Sci Technol ; 53(17): 10208-10217, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31390183

RESUMO

Peat layers within alluvial sediments are considered effective arsenic (As) sinks under reducing conditions due to the binding of As(III) to thiol groups in natural organic matter (NOM) and the formation of As-bearing sulfide phases. However, their possible role as sources of As for anoxic groundwaters remains unexplored. Here, we perform laboratory experiments to provide evidence for the role of a sediment peat layer in releasing As. Our results show that the peat layer, deposited about 8,000 years ago in a paleomangrove environment in the nascent Mekong Delta, could be a source of As to porewater under reducing conditions. X-ray absorption spectroscopy (XAS) analysis of the peat confirmed that As was bound to NOM thiol groups and incorporated into pyrite. Nitrate was detected in peat layer porewater, and flow-through and batch experiments evidenced the release of As from NOM and pyrite in the presence of nitrate. Based on poisoning experiments, we propose that the microbially mediated oxidation of arsenic-rich pyrite and organic matter coupled to nitrate reduction releases arsenic from this peat. Although peat layers have been proposed as As sinks in earlier studies, we show here their potential to release depositional- and/or diagenetically-accumulated As.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Sedimentos Geológicos , Oxirredução , Solo , Espectroscopia por Absorção de Raios X
14.
World J Microbiol Biotechnol ; 35(4): 56, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30900044

RESUMO

Investigation of bacterial chromate tolerance has mostly focused on strains originating from polluted sites. In the present study, we isolated 33 chromate tolerant strains from diverse environments harbouring varying concentrations of chromium (Cr). All of these strains were able to grow on minimal media with at least 2 mM hexavalent chromium (Cr(VI)) and their classification revealed that they belonged to 12 different species and 8 genera, with a majority (n = 20) being affiliated to the Bacillus cereus group. Selected B. cereus group strains were further characterised for their chromate tolerance level and the ability to remove toxic Cr(VI) from solution. A similar level of chromate tolerance was observed in isolates originating from environments harbouring high or low Cr. Reference B. cereus strains exhibited the same Cr(VI) tolerance which indicates that a high chromate tolerance could be an intrinsic group characteristic. Cr(VI) removal varied from 22.9% (strain PCr2a) to 98.5% (strain NCr4). Strains NCr1a and PCr12 exhibited the ability to grow to the greatest extent in Cr(VI) containing media (maximum growth of 65.3% and 64.9% relative to that in the absence of Cr(VI), respectively) accompanied with high chromate removal activity (73.7% and 74.4%, respectively), making them prime candidates for the investigation of chromate tolerance mechanisms in Gram-positive bacteria and Cr(VI) bioremediation applications.


Assuntos
Bactérias/classificação , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Cromatos/toxicidade , Cromo/toxicidade , Tolerância a Medicamentos , Microbiologia do Solo , Poluentes do Solo , Bacillus/classificação , Bacillus/efeitos dos fármacos , Bacillus/isolamento & purificação , Bactérias/genética , Biodegradação Ambiental , Meios de Cultura/química , Microbiologia Ambiental , Sedimentos Geológicos/microbiologia , Testes de Sensibilidade Microbiana , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
15.
Appl Environ Microbiol ; 84(23)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30266727

RESUMO

Chromate is one of the major anthropogenic contaminants on Earth. Leucobacter chromiiresistens is a highly chromate-resistant strain, tolerating chromate concentrations in LB medium of up to 400 mM. In response to chromate stress, L. chromiiresistens forms biofilms, which are held together via extracellular DNA. Inhibition of biofilm formation leads to drastically decreased chromate tolerance. Moreover, chromate is reduced intracellularly to the less-toxic Cr(III). The oxidation status and localization of chromium in cell aggregates were analyzed by energy-dispersive X-ray spectroscopy coupled to scanning transmission electron microscopy and X-ray absorption spectroscopy measurements. Most of the heavy metal is localized as Cr(III) at the cytoplasmic membrane. As a new cellular response to chromate stress, we observed an increased production of the carotenoid lutein. Carotenoid production could increase membrane stability and reduce the concentration of reactive oxygen species. Bioinformatic analysis of the L. chromiiresistens genome revealed several gene clusters that could enable heavy-metal resistance. The extreme chromate tolerance and the unique set of resistance factors suggest the use of L. chromiiresistens as a new model organism to study microbial chromate resistance.IMPORTANCE Chromate is a highly toxic oxyanion. Extensive industrial use and inadequate waste management has caused the toxic pollution of several field sites. Understanding the chromate resistance mechanisms that enable organisms to thrive under these conditions is fundamental to develop (micro)biological strategies and applications aiming at bioremediation of contaminated soils or waters. Potential detoxifying microorganisms are often not sufficient in their resistance characteristics to effectively perform, e.g., chromate reduction or biosorption. In this study, we describe the manifold strategies of L. chromiiresistens to establish an extremely high level of chromate resistance. The multitude of mechanisms conferring it make this organism suitable for consideration as a new model organism to study chromate resistance.


Assuntos
Actinomycetales/metabolismo , Cromatos/metabolismo , Actinomycetales/genética , Biodegradação Ambiental , Membrana Celular/genética , Membrana Celular/metabolismo , Cromo/metabolismo , Oxirredução , Espectroscopia por Absorção de Raios X
16.
Environ Sci Technol ; 52(6): 3431-3439, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29451383

RESUMO

Arsenic contamination in groundwater is pervasive throughout deltaic regions of Southeast Asia and threatens the health of millions. The speciation of As in sediments overlying contaminated aquifers is poorly constrained. Here, we investigate the chemical and mineralogical compositions of sediment cores collected from the Mekong Delta in Vietnam, elucidate the speciation of iron and arsenic, and relate them to the sediment depositional environment. Gradual dissolution of ferric (oxyhydr)oxides with depth is observed down to 7 m, corresponding to the establishment of reducing conditions. Within the reduced sediment, layers originating from marine, coastal or alluvial depositional environments are identified and their age is consistent with a late Holocene transgression in the Mekong Delta. In the organic matter- and sulfur-rich layers, arsenic is present in association with organic matter through thiol-bonding and in the form of arsenian pyrite. The highest arsenic concentration (34-69 ppm) is found in the peat layer at 16 m and suggests the accumulation of arsenic due to the formation of thiol-bound trivalent arsenic (40-55%) and arsenian pyrite (15-30%) in a paleo-mangrove depositional environment (∼8079 yr BP). Where sulfur is limited, siderite is identified, and oxygen- and thiol-bound trivalent arsenic are the predominant forms. It is also worth noting that pentavalent arsenic coordinated to oxygen is ubiquitous in the sediment profile, even in reduced sediment layers. But the identity of the oxygen-bound arsenic species remains unknown. This work shows direct evidence of thiol-bound trivalent arsenic in the Mekong Delta sediments and provides insight to refine the current model of the origin, deposition, and release of arsenic in the alluvial aquifers of the Mekong Delta.


Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Sedimentos Geológicos , Vietnã
17.
Proc Natl Acad Sci U S A ; 112(18): 5619-24, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25902522

RESUMO

Knowledge of paleo-redox conditions in the Earth's history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U), i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth's crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. Additionally, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.


Assuntos
Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Shewanella/metabolismo , Urânio/análise , Biodegradação Ambiental , Ecologia/métodos , Fenômenos Geológicos , Microscopia Eletrônica de Varredura , Oxirredução , Paleontologia/métodos , Reprodutibilidade dos Testes , Urânio/metabolismo , Espectroscopia por Absorção de Raios X
18.
Environ Sci Technol ; 51(18): 10546-10554, 2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28825798

RESUMO

Methylated arsenic (As) species represent a significant fraction of the As accumulating in rice grains, and there are geographic patterns in the abundance of methylated arsenic in rice that are not understood. The microorganisms driving As biomethylation in paddy environments, and thus the soil conditions conducive to the accumulation of methylated arsenic, are unknown. We tested the hypothesis that sulfate-reducing bacteria (SRB) are key drivers of arsenic methylation in metabolically versatile mixed anaerobic enrichments from a Mekong Delta paddy soil. We used molybdate and monofluorophosphate as inhibitors of sulfate reduction to evaluate the contribution of SRB to arsenic biomethylation, and developed degenerate primers for the amplification of arsM genes to identify methylating organisms. Enrichment cultures converted 63% of arsenite into methylated products, with dimethylarsinic acid as the major product. While molybdate inhibited As biomethylation, this effect was unrelated to its inhibition of sulfate reduction and instead inhibited the methylation pathway. Based on arsM sequences and the physiological response of cultures to media conditions, we propose that amino acid fermenting organisms are potential drivers of As methylation in the enrichments. The lack of a demethylating capacity may have contributed to the robust methylation efficiencies in this mixed culture.


Assuntos
Arsênio/química , Oryza , Poluentes do Solo/química , Metilação , Solo
19.
Int J Syst Evol Microbiol ; 66(2): 762-767, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26597812

RESUMO

A genome and physiological comparison was made of the type strains of Desulfotomaculum species belonging to subgroup 1a and of 'Desulfotomaculum reducens' strain MI-1. Phenotypically, 'Desulfotomaculum reducens' strain MI-1 can be distinguished from the other described Desulfotomaculum species of subgroup 1a by its ability to grow with propionate and butyrate. In addition, the strain is able to use a variety of metals as electron acceptors. Metal reduction has not been tested in the other species, but seems likely based on our genome analysis. Phylogenetic 16S rRNA gene sequence analysis and the average nucleotide identity between the genomes of the species of subgroup 1a show that strain MI-1 represents a novel species within the Desulfotomaculum 1a subgroup, Desulfotomaculum reducens sp. nov. The type strain is MI-1T.

20.
Environ Sci Technol ; 50(3): 1403-11, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26695098

RESUMO

The reactivity of disordered, noncrystalline U(IV) species remains poorly characterized despite their prevalence in biostimulated sediments. Because of the lack of crystalline structure, noncrystalline U(IV) may be susceptible to oxidative mobilization under oxic conditions. The present study investigated the mechanism and rate of oxidation of biogenic noncrystalline U(IV) by dissolved oxygen (DO) in the presence of mackinawite (FeS). Previously recognized as an effective reductant and oxygen scavenger, nanoparticulate FeS was evaluated for its role in influencing U release in a flow-through system as a function of pH and carbonate concentration. The results demonstrated that noncrystalline U(IV) was more susceptible to oxidation than uraninite (UO2) in the presence of dissolved carbonate. A rapid release of U occurred immediately after FeS addition without exhibiting a temporary inhibition stage, as was observed during the oxidation of UO2, although FeS still kept DO levels low. X-ray photoelectron spectroscopy (XPS) characterized a transient surface Fe(III) species during the initial FeS oxidation, which was likely responsible for oxidizing noncrystalline U(IV) in addition to oxygen. In the absence of carbonate, however, the release of dissolved U was significantly hindered as a result of U adsorption by FeS oxidation products. This study illustrates the strong interactions between iron sulfide and U(IV) species during redox transformation and implies the lability of biogenic noncrystalline U(IV) species in the subsurface environment when subjected to redox cycling events.


Assuntos
Compostos Ferrosos/química , Urânio/química , Adsorção , Carbonatos/química , Poluentes Ambientais/química , Oxirredução , Oxigênio/química , Espectroscopia Fotoeletrônica , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA