Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Molecules ; 28(20)2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37894606

RESUMO

The demand for organic and functional food continues to increase yearly. Among the available functional foods, propolis is a bee product that has various beneficial properties, including antimicrobial, antioxidant, and anti-inflammatory activities. However, it generally is only available in ethanol solution, which has poor bioavailability, as it is relatively insoluble in water. The use of such ethanol extracts is often objectionable because of the alcohol content and because they have a strong and striking taste. Development of alternatives that can efficiently and safely increase solubility in water, and that meet organic production specifications, has been a challenge. To address these concerns, microcapsules were developed using spray-dryer technology from an emulsion based on EPP-AF® propolis and gum arabic (i-CAPS). These propolis-loaded microcapsules were characterized using FT-IR, SEM, TGA, HPLC, and spectrophotometric techniques, along with determination of antimicrobial, antioxidant, antitumor, anti-inflammatory, and antihypercholesterolemic activities, as well as permeability in in vitro models. The production system resulted in microcapsules with a spherical shape and an encapsulation efficiency of 93.7 ± 0.7%. They had IC50s of 2.654 ± 0.062 and 7.342 ± 0.058 µg/mL by FRAP and DPPH antioxidant methods, respectively. The EPP-AF® i-CAPS also had superior antimicrobial activity against Gram-positive bacteria. Antitumor activity was calculated based on the concentration that inhibited 50% of growth of AGS, Caco-2, and MCF-7 cell strains, giving results of 154.0 ± 1.0, 117 ± 1.0, and 271.0 ± 25 µg/mL, respectively. The microcapsule presentation reduced the permeation of cholesterol by 53.7%, demonstrating antihypercholesterolemic activity, and it improved the permeability of p-coumaric acid and artepillin C. The IC50 for NO production in RAW 264.7 cells was 59.0 ± 0.1 µg/mL. These findings demonstrate the potential of this new propolis product as a food and pharmaceutical ingredient, though additional studies are recommended to validate the safety of proposed dosages.


Assuntos
Anti-Infecciosos , Própole , Humanos , Própole/farmacologia , Antioxidantes/farmacologia , Antioxidantes/análise , Cápsulas , Espectroscopia de Infravermelho com Transformada de Fourier , Células CACO-2 , Anti-Infecciosos/farmacologia , Etanol , Água , Anti-Inflamatórios/farmacologia
2.
J Sci Food Agric ; 102(10): 4345-4354, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35066883

RESUMO

BACKGROUND: Propolis, produced by honey bees, is used around the world, displaying several corroborated biological activities. Brazil is one of the leading producers of propolis, with a great diversity of types, each with a characteristically chemical fingerprint influenced by the flora of the local region. The secondary metabolite's composition of propolis strongly impacts its biological properties, and its chemical characterization is of great importance for its quality control. Several chromatographic techniques have been applied to characterize propolis, highlighting the extraction of its volatiles and its analysis through gas chromatography. Fourteen Brazilian propolis samples collected in four states, including brown, green and red propolis types, were chemically characterized using the automated direct thermal desorption-gas chromatography-mass spectrometry (DTD-GC-MS). RESULTS: Red propolis type was characterized by acyclic saturated hydrocarbons, fatty alcohols, terpenes, and phenylpropanoids as nonacosane, α-copaene, ß-amyrin acetate, anethole, and 7-O-methylvestitol. Brown propolis presented hydrocarbons, monoterpenes, and sesquiterpenes, as α-pinene and α-bisabolol. Brazilian green propolis presented polycyclic aromatic hydrocarbons and sesquiterpenes, including 1-methyl-octahydroanthracene, 2,5-dimethyl-γ-oxo-benzenebutanoic acid, nerolidol, and spathulenol. Principal component analysis (PCA) was performed, allowing for clustering brown and red propolis types, indicating a divergence with the chemical composition of the green propolis samples. The hierarchical cluster analysis (HCA) allowed the chemical fingerprint of each propolis type to be differentiated. CONCLUSION: Red propolis was characterized by sesquiterpenes, pterocarpans, and isoflavans; brown propolis was characterized by hydrocarbons, aldehydes, and monoterpenes, while green propolis samples were characterized by the presence of polycyclic aromatic hydrocarbons, sesquiterpenes, and naphthalene derivatives. © 2022 Society of Chemical Industry.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Própole , Sesquiterpenos , Animais , Brasil , Cromatografia Gasosa-Espectrometria de Massas/métodos , Monoterpenos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Própole/química , Sesquiterpenos/análise
3.
Chem Biodivers ; 18(8): e2100307, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34086414

RESUMO

Brazilian green and red propolis stand out as commercial products for different medical applications. In this article, we report the antimicrobial activities of the hydroalcoholic extracts of green (EGP) and red (ERP) propolis, as well as guttiferone E plus xanthochymol (8) and oblongifolin B (9) from red propolis, against multidrug-resistant bacteria (MDRB). We undertook the minimal inhibitory (MIC) and bactericidal (MBC) concentrations, inhibition of biofilm formation (MICB50 ), catalase, coagulase, DNase, lipase, and hemolysin assays, along with molecular docking simulations. ERP was more effective by displaying MIC and MBC values <100 µg mL-1 . Compounds 8 and 9 displayed the lowest MIC values (0.98 to 31.25 µg mL-1 ) against all tested Gram-positive MDRB. They also inhibited the biofilm formation of S. aureus (ATCC 43300 and clinical isolate) and S. epidermidis (ATCC 14990 and clinical isolate), with MICB50 values between 1.56 and 6.25 µg mL-1 . The molecular docking results indicated that 8 and 9 might interact with the catalase's amino acids. Compounds 8 and 9 have great antimicrobial potential.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Própole/química , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Benzofenonas/química , Benzofenonas/isolamento & purificação , Benzofenonas/metabolismo , Benzofenonas/farmacologia , Sítios de Ligação , Biofilmes/efeitos dos fármacos , Brasil , Catalase/química , Catalase/metabolismo , Domínio Catalítico , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Própole/metabolismo , Própole/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia
4.
J Nutr Metab ; 2024: 9590066, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38752013

RESUMO

Background: Growing evidence suggests that bioactive compounds in berry fruits may mitigate inflammation in patients with chronic kidney disease (CKD). Objectives: To evaluate cranberry (Vaccinium macrocarpon) supplementation effects on modulation of transcription factors involved in inflammation and oxidative stress in nondialysis (stages 3 and 4) patients with CKD. Design/Participants. A randomized, double-blind, placebo-controlled study was performed with 30 patients to receive capsules containing cranberry extract (1000 mg/day) or placebo (1000 mg/day of corn starch) for two months. Measurements. The mRNA expression of nuclear factor-erythroid 2-related factor-2 (Nrf2) and nuclear factor-kB (NF-kB) was evaluated in peripheral blood mononuclear cells (PBMCs) by quantitative real-time polymerase chain reaction. Thiobarbituric acid reactive substances (TBARS) were measured in the plasma to assess oxidative stress. Interleukin-6 (IL-6) plasma levels were assessed by enzyme-linked immunosorbent assay and C-reactive protein (CRP) by immunoturbidimetric method. Results: Twenty-five patients completed the study: 12 in the cranberry group (56.7 ± 7.5 years and body mass index (BMI) of 29.6 ± 5.5 kg/m2) and 13 in the placebo group (58.8 ± 5.1 years and BMI 29.8 ± 5.4 kg/m2). There were no differences in NF-kB or Nrf2 mRNA expressions (p = 0.99 and p = 0.89) or TBARS, CRP, and IL-6 plasma levels after cranberry supplementation. Conclusions: The cranberry extract administration (1000 mg/day) did not affect Nrf2 and NF-kB mRNA expression, oxidative stress, or inflammatory markers levels in nondialysis CKD patients. This trial is registered with NCT04377919.

5.
Clin Nutr ESPEN ; 59: 96-106, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38220413

RESUMO

BACKGROUND & AIMS: Turmeric (a source of curcumin) is an excellent food to modulate oxidative stress, inflammation, and gut dysbiosis in patients with chronic kidney disease (CKD). However, no studies report the benefits of curcumin in patients undergoing peritoneal dialysis (PD). This study aims to evaluate the effects of curcuminoid supplementation on oxidative stress, inflammatory markers, and uremic toxins originating from gut microbiota in patients with CKD undergoing PD. METHODS: This longitudinal, randomized, single-blind, placebo-controlled trial evaluated 48 patients who were randomized into two groups: Curcumin (three capsules of 500 mg of Curcuma longa extract, with 98.42 % total curcuminoids) or placebo (three capsules of 500 mg of starch) for twelve weeks. In the peripheral blood mononuclear cells (PBMCs), the transcriptional expression levels of Nrf2, HOX-1 and NF-κB were evaluated by quantitative real-time PCR. Oxidative stress was evaluated by malondialdehyde (MDA) and total Thiol (T-SH). TNF-α and IL-6 plasma levels were measured by ELISA. P-cresyl sulphate plasma level, a uremic toxin, was evaluated by high-performance liquid chromatography (HPLC) with fluorescent detection. RESULTS: Twenty-four patients finished the study: 10 in the curcumin group (57.5 ± 11.6 years) and 14 in the placebo group (56.5 ± 10.0 years). The plasma levels of MDA were reduced after 12 weeks in the curcumin group (p = 0.01), while the placebo group remained unchanged. However, regarding the difference between the groups at the endpoint, no change was observed in MDA. Still, there was a trend to reduce the p-CS plasma levels in the curcumin group compared to the placebo group (p = 0.07). Likewise, the concentrations of protein thiols, mRNA expression of Nrf2, HOX-1, NF-κB, and cytokines plasma levels did not show significant changes. CONCLUSION: Curcuminoid supplementation for twelve weeks attenuates lipid peroxidation and might reduce uremic toxin in patients with CKD undergoing PD. This study was registered on Clinicaltrials.gov as NCT04413266.


Assuntos
Curcumina , Diálise Peritoneal , Insuficiência Renal Crônica , Uremia , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , NF-kappa B/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Leucócitos Mononucleares/metabolismo , Método Simples-Cego , Inflamação , Estresse Oxidativo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/terapia , Diarileptanoides/farmacologia , Diarileptanoides/uso terapêutico , Suplementos Nutricionais , Uremia/tratamento farmacológico
6.
J Ethnopharmacol ; 331: 118294, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38729541

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Sepsis poses one of the biggest public health problems, necessitating the search for new therapeutic alternatives. For centuries, propolis has been widely used in folk medicine to treat various inflammatory and infectious diseases. Given its extensive use, it has excellent potential as an adjuvant treatment for patients with sepsis. OBJECTIVE: This study evaluated prophylactic treatment with standardized propolis extract (EPP-AF®) and followed the prognosis of sepsis induced by ligation and cecal ligation and puncture (CLP). METHODS: Initially, for survival assessment, Swiss mice were separated into five groups: Sham (false operated), control (PBS), ATB (received antibiotic, 8 mg/kg), P10 (received EPP-AF®, 10 mg/kg), and P100 (received EPP-AF®, 100 mg/kg). The animals received PBS, antibiotic, or EPP-AF® by the subcutaneous route 6 h before the CLP procedure. Animal survival was assessed every 12 h for five days when all of them were euthanized. RESULTS: We show that the treatment with EPP-AF® significantly increased the life expectancy of animals with sepsis compared to the control group. Interestingly, prophylactic treatment with EPP-AF® showed no effect on the number of colony-forming units in the peritoneum, blood, or lung. However, there was a decrease in cellular influx in the peritoneum. This alteration was unrelated to the number of bone marrow cells or the differential counting of peripheral blood cells. The coagulogram remained unchanged, including the number of platelets and prothrombin time-activated partial thromboplastin time. However, the inflammatory infiltrate and bleeding in the lung tissue were lower in the animals that received EPP-AF®. CONCLUSION: Thus, it was possible to conclude that prophylactic treatment with EPP-AF® preserved the lung parenchyma, resulting in an increased lifespan of mice with sepsis. It can be a helpful adjuvant in prophylactic treatment with antibiotics in presurgical conditions.


Assuntos
Própole , Sepse , Animais , Própole/farmacologia , Sepse/tratamento farmacológico , Sepse/mortalidade , Camundongos , Masculino , Abelhas , Pneumonia/prevenção & controle , Pneumonia/tratamento farmacológico , Modelos Animais de Doenças , Pulmão/efeitos dos fármacos , Pulmão/patologia
7.
Fungal Genet Biol ; 60: 74-86, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23856128

RESUMO

Candida albicans is the most common fungal pathogen of humans, forming both commensal and opportunistic pathogenic interactions, causing a variety of skin and soft tissue infections in healthy people. In immunocompromised patients C. albicans can result in invasive, systemic infections that are associated with a high incidence of mortality. Propolis is a complex mixture of several resinous substances which are collected from plants by bees. Here, we demonstrated the fungicidal activity of propolis against all three morphogenetic types of C. albicans and that propolis-induced cell death was mediated via metacaspase and Ras signaling. To identify genes that were involved in propolis tolerance, we screened ~800 C. albicans homozygous deletion mutants for decreased tolerance to propolis. Fifty-one mutant strains were identified as being hypersensitive to propolis including seventeen genes involved in cell adhesion, biofilm formation, filamentous growth, phenotypic switching and pathogenesis (HST7, GIN4, VPS34, HOG1, ISW2, SUV3, MDS3, HDA2, KAR3, YHB1, NUP85, CDC10, MNN9, ACE2, FKH2, and SNF5). We validated these results by showing that propolis inhibited the transition from yeast-like to hyphal growth. Propolis was shown to contain compounds that conferred fluorescent properties to C. albicans cells. Moreover, we have shown that a topical pharmaceutical preparation, based upon propolis, was able to control C. albicans infections in a mouse model for vulvovaginal candidiasis. Our results strongly indicate that propolis could be used as a strategy for controlling candidiasis.


Assuntos
Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candidíase Vulvovaginal/tratamento farmacológico , Própole/farmacologia , Animais , Anti-Infecciosos/farmacologia , Candidíase Vulvovaginal/microbiologia , Caspases/metabolismo , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
8.
Front Pharmacol ; 14: 1013376, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843932

RESUMO

Leishmaniasis is a widespread group of neglected vector-borne tropical diseases that possess serious therapeutic limitations. Propolis has been extensively used in traditional medical applications due to its range of biological effects, including activity against infectious agents. Here we evaluated the leishmanicidal and immunomodulatory properties of Brazilian green propolis extract (EPP-AF®) and a gel formulation incorporating EPP-AF®, in both in vitro and in vivo models of Leishmania amazonensis infection. Propolis extract, obtained from a standardized blend following hydroalcoholic extraction, showed the characteristic fingerprint of Brazilian green propolis as confirmed by HPLC/DAD. A carbopol 940 gel formulation was obtained containing propolis glycolic extract at 3.6% w/w. The release profile, assessed using the Franz diffusion cell protocol, demonstrated a gradual and prolonged release of p-coumaric acid and artepillin C from the carbomer gel matrix. Quantification of p-coumaric acid and artepillin C in the gel formulation over time revealed that p-coumaric acid followed the Higuchi model, dependent on the disintegration of the pharmaceutical preparation, while artepillin C followed a zero-order profile with sustained release. In vitro analysis revealed the ability of EPP-AF® to reduce the infection index of infected macrophages (p < 0.05), while also modulating the production of inflammatory biomarkers. Decreases in nitric oxide and prostaglandin E2 levels were observed (p < 0.01), suggesting low iNOS and COX-2 activity. Furthermore, EPP-AF® treatment was found to induce heme oxygenase-1 antioxidant enzyme expression in both uninfected and L. amazonensis-infected cells, as well as inhibit IL-1ß production in infected cells (p < 0.01). ERK-1/2 phosphorylation was positively correlated with TNF-α production (p < 0.05), yet no impact on parasite load was detected. In vivo analysis indicated the effectiveness of topical treatment with EPP-AF® gel alone (p < 0.05 and p < 0.01), or in combination with pentavalent antimony (p < 0.05 and p < 0.001), in the reduction of lesion size in the ears of L. amazonensis-infected BALB/c mice after seven or 3 weeks of treatment, respectively. Taken together, the present results reinforce the leishmanicidal and immunomodulatory effects of Brazilian green propolis, and demonstrate promising potential for the EPP-AF® propolis gel formulation as a candidate for adjuvant therapy in the treatment of Cutaneous Leishmaniasis.

9.
EPMA J ; 14(3): 381-404, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37605655

RESUMO

Royal jelly (RJ) is a bee product produced by young adult worker bees, composed of water, proteins, carbohydrates and lipids, rich in bioactive components with therapeutic properties, such as free fatty acids, mainly 10-hydroxy-trans-2-decenoic acid (10-H2DA) and 10-hydroxydecanoic acid (10-HDA), and major royal jelly proteins (MRJPs), as well as flavonoids, most flavones and flavonols, hormones, vitamins and minerals. In vitro, non-clinical and clinical studies have confirmed its vital role as an antioxidant and anti-inflammatory. This narrative review discusses the possible effects of royal jelly on preventing common complications of non-communicable diseases (NCDs), such as inflammation, oxidative stress and intestinal dysbiosis, from the viewpoint of predictive, preventive and personalised medicine (PPPM/3PM). It is concluded that RJ, predictively, can be used as a non-pharmacological therapy to prevent and mitigate complications related to NCDs, and the treatment must be personalised.

10.
Phytomedicine ; 114: 154731, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36934668

RESUMO

BACKGROUND: Chronic kidney disease (CKD) patients on dialysis display a low-grade systemic inflammatory burden. Nutritional interventions designed to activate the cytoprotective nuclear factor erythroid-2-related factor 2 (Nrf2) and inhibit nuclear factor-kB (NF-κB) have been proposed to mitigate this burden. Several bioactive compounds have been investigated to achieve this, including propolis, a resin produced by Apis mellifera bees. Considering the safety and efficacy of propolis, it could be a strategy to benefit these patients. Still, there are no studies using propolis in patients with CKD on peritoneal dialysis (DP), and clinical studies to support this application are lacking. HYPOTHESIS/PURPOSE: The objective and novelty of the present study are to evaluate the effects of propolis supplementation on inflammatory markers in patients with CKD on PD. STUDY DESIGN: A longitudinal, double-blind, placebo-controlled trial with CKD patients on PD. METHODS: The patients were randomised into two groups: propolis that received four capsules of 100 mg (400 mg/day), containing concentrated and standardised dry EPP-AF® Brazilian green propolis extract) or placebo, four capsules of 100 mg (400 mg/day), of magnesium stearate, silicon dioxide, and microcrystalline cellulose, for two months. Plasma levels of inflammatory cytokines, including tumour necrosis factor (TNF-α) and interleukin-6 (IL-6), were evaluated by ELISA. Quantitative real-time PCR analyses were performed to evaluate the transcriptional expression levels of Nrf2 and NF-κB in peripheral blood mononuclear cells (PBMCs). Plasma malondialdehyde (MDA) levels, a lipid peroxidation marker, was measured as thiobarbituric acid reactive substances (TBARS). Routine biochemical markers, including C-reactive protein (CRP), were analysed using commercial kits. Carotid Intima-Media Thickness (CIMT) was measured with a doppler ultrasonography device. The study was registered on ClinicalTrials.gov under the number NCT04411758. RESULTS: A total of 19 patients completed the study, ten patients in the propolis group (54 ± 1.0 years, five men, 7.2  (5.1) months on PD) and 9 in the placebo group (47.5 ± 15.2 years, three men, 10.8  (24.3) months on PD). The plasma levels of TNF-α reduced significantly (p = 0.02), and expression of Nrf2 showed a trend to increase (p = 0.07) after propolis supplementation. CONCLUSION: EPP-AF® Green Propolis extract (400 mg/day) supplementation for two months appears as a potential strategy to mitigate inflammation, reducing TNF-α plasma levels in CKD patients on PD.


Assuntos
Diálise Peritoneal , Própole , Insuficiência Renal Crônica , Animais , Biomarcadores , Brasil , Espessura Intima-Media Carotídea , Método Duplo-Cego , Inflamação/tratamento farmacológico , Leucócitos Mononucleares/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Insuficiência Renal Crônica/tratamento farmacológico , Fator de Necrose Tumoral alfa , Humanos
11.
Complement Ther Clin Pract ; 51: 101732, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36708650

RESUMO

BACKGROUND AND AIMS: Several studies have been performed in vitro and in animals showing that propolis (a resin made by bees) has excellent anti-inflammatory properties, but no study has been performed in patients with chronic kidney disease (CKD) on hemodialysis (HD). The present study aimed to evaluate the effects of propolis supplementation on inflammatory markers in patients with CKD on HD. METHODS: This is a longitudinal, double-blind, placebo-controlled trial with patients randomized into two groups: propolis (4 capsules of 100 mg/day containing concentrated and standardized dry EPP-AF® green propolis extract) or placebo (4 capsules of 100 mg/day containing microcrystalline cellulose, magnesium stearate and colloidal silicon dioxide) for two months. Routine parameters were analyzed using commercial kits. The plasma levels of inflammatory cytokines were evaluated by flow luminometry. RESULTS: Forty-one patients completed the follow-up, 21 patients in the propolis group (45 ± 12 years, 13 women, BMI, 22.8 ± 3.7 kg/m2) and 20 in the placebo group (45.5 ± 14 years, 13 women, BMI, 24.8 ± 6.8 kg/m2). The obtained data revealed that the intervention with propolis significantly reduced the serum levels of tumour necrosis factor α (TNFα) (p = 0.009) as well as had the tendency to reduce the levels of macrophage inflammatory protein-1ß (MIP-1ß) (p = 0.07). There were no significant differences in the placebo group. CONCLUSION: Short-term EPP-AF® propolis dry extract 400 mg/day supplementation seems to mitigate inflammation, reducing the plasma levels of TNFα and MIP-1ß in patients with CKD on HD. This study was registered at clinicaltrials.gov (NCT04411758).


Assuntos
Própole , Insuficiência Renal Crônica , Humanos , Feminino , Própole/farmacologia , Própole/uso terapêutico , Fator de Necrose Tumoral alfa , Quimiocina CCL4/uso terapêutico , Inflamação/tratamento farmacológico , Diálise Renal , Insuficiência Renal Crônica/tratamento farmacológico , Método Duplo-Cego
12.
J Immunol Res ; 2023: 2868707, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621924

RESUMO

Sepsis is an organ dysfunction syndrome associated with high mortality. To date, no effective treatment is available to combat this disease. Punica granatum L. is a potential alternative treatment due to its anti-inflammatory, antimicrobial, and antioxidant properties. Thus, this study aimed to evaluate the effects of a hydroalcoholic crude extract from the peels of P. granatum (HCEPg) in mice with lethal sepsis. Lethal polymicrobial sepsis was induced in female Swiss mice via cecal ligation and puncture (CLP). Initially, the animals were divided into three groups: Sham (false-operated), CLP-control (phosphate-buffered saline), and CLP-HCEPg (single dose, 5 mg/kg, subcutaneous administration). Treatment was initiated immediately after the induction of sepsis, and survival was evaluated every 12 hr for 5 days. Those who survived were euthanized. Serum cytokine levels were measured using a cytometric bead array Mouse Inflammatory Cytokine Kit. The number of colony-forming units, as well as the number of cells in the lymphoid organs and their activation markers, were analyzed. Results showed that treatment with HCEPg increased lifespan and reduced bacterial counts in the peritoneum, bloodstream, and spleen. HCEPg also decreased hydrogen peroxide secretion by phagocytes and augmented serum IL-10 levels, indicating its systemic anti-inflammatory effects. Additionally, treatment with HCEPg attenuated infection-induced lung hemorrhage. Overall, P. granatum extract improved the lifespan of septic mice, possibly due to its antimicrobial, anti-inflammatory, and immunomodulatory effects, thereby regulating bacterial load and translocation, as well as controlling the systemic inflammation induced by sepsis.


Assuntos
Punica granatum , Sepse , Feminino , Animais , Camundongos , Longevidade , Sepse/tratamento farmacológico , Anticorpos , Citocinas
13.
Urol Res ; 40(5): 475-81, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22237410

RESUMO

Copaifera langsdorffii Desf. commonly known as "copaíba", produce a commercially valuable oil-resin that is extensively used in folk medicine for anti-inflammatory, antimicrobial and antiseptic purposes. We have found the hydroalcoholic extract of this plant leaf has the potential to treat urolithiasis, a problem affecting ~7% of the population. To isolate the functional compounds C. langsdorffii leaves were dried, ground, and macerated in a hydroalcoholic solution 7:3 to produce a 16.8% crude extract after solvent elimination. Urolithiasis was induced by introduction of a calcium oxalate pellet (CaOx) into the bladders of adult male Wistar rats. The treated groups received the crude extract by oral gavage at 20 mg/kg body weight daily for 18 days. Extract treatment started 30 days after CaOx seed implantation. To monitor renal function sodium, potassium and creatinine concentrations were analyzed in urine and plasma, and were found to be in the normal range. Analyses of pH, magnesium, phosphate, calcium, uric acid, oxalate and citrate levels were evaluated to determine whether the C. langsdorffii extract may function as a stone formation prevention agent. The HPLC analysis of the extract identified flavonoids quercitrin and afzelin as the major components. Animals treated with C. langsdorffii have increased levels of magnesium and decreased levels of uric acid in urinary excretions. Treated animals have a significant decrease in the mean number of calculi and a reduction in calculi mass. Calculi taken from extract treated animals were more brittle and fragile than calculi from untreated animals. Moreover, breaking calculi from untreated animals required twice the amount of pressure as calculi from treated animals (6.90 ± 3.45 vs. 3.00 ± 1.51). The extract is rich in flavonoid heterosides and other phenolic compounds. Therefore, we hypothesize this class of compounds might contribute significantly to the observed activity.


Assuntos
Fabaceae , Extratos Vegetais/uso terapêutico , Urolitíase/tratamento farmacológico , Animais , Oxalato de Cálcio , Masculino , Folhas de Planta , Ratos , Ratos Wistar
14.
Eukaryot Cell ; 10(3): 398-411, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21193549

RESUMO

Propolis, a natural product of plant resins, is used by the bees to seal holes in their honeycombs and protect the hive entrance. However, propolis has also been used in folk medicine for centuries. Here, we apply the power of Saccharomyces cerevisiae as a model organism for studies of genetics, cell biology, and genomics to determine how propolis affects fungi at the cellular level. Propolis is able to induce an apoptosis cell death response. However, increased exposure to propolis provides a corresponding increase in the necrosis response. We showed that cytochrome c but not endonuclease G (Nuc1p) is involved in propolis-mediated cell death in S. cerevisiae. We also observed that the metacaspase YCA1 gene is important for propolis-mediated cell death. To elucidate the gene functions that may be required for propolis sensitivity in eukaryotes, the full collection of about 4,800 haploid S. cerevisiae deletion strains was screened for propolis sensitivity. We were able to identify 138 deletion strains that have different degrees of propolis sensitivity compared to the corresponding wild-type strains. Systems biology revealed enrichment for genes involved in the mitochondrial electron transport chain, vacuolar acidification, negative regulation of transcription from RNA polymerase II promoter, regulation of macroautophagy associated with protein targeting to vacuoles, and cellular response to starvation. Validation studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Própole/farmacologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
BMC Complement Altern Med ; 12: 194, 2012 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-23092287

RESUMO

BACKGROUND: Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. METHODS: We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. RESULTS: We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. CONCLUSIONS: In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most prominent pathways are related to oxidative stress, mitochondrial electron transport chain, vacuolar acidification, regulation of macroautophagy associated with protein target to vacuole, cellular response to starvation, and negative regulation of transcription from RNA polymerase II promoter. Our work emphasizes again the importance of S. cerevisiae as a model system to understand at molecular level the mechanism whereby propolis causes cell death in this organism at the concentration herein tested. Our study is the first one that investigates systematically by using functional genomics how propolis influences and modulates the mRNA abundance of an organism and may stimulate further work on the propolis-mediated cell death mechanisms in fungi.


Assuntos
Anti-Infecciosos/farmacologia , Morte Celular , Genes Fúngicos , Própole/farmacologia , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Análise em Microsséries , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Biologia de Sistemas
16.
Front Cell Infect Microbiol ; 12: 1045732, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704104

RESUMO

Introduction: Yangambin and epi-yangambin are the main lignans found in Louro-de-Cheiro [Ocotea fasciculata (Nees) Mez], a tree native to the Atlantic forests of northeastern Brazil whose leaves and bark are widely used in folk medicine. The present study investigated the leishmanicidal and immunomodulatory effects of both lignans in in vitro models of infection by Leishmania amazonensis or Leishmania braziliensis, both etiological agents of Cutaneous Leishmaniasis in Brazil. Methods: Bone marrow-derived mouse macrophages were infected with L. amazonensis or L. braziliensis and then treated for 48 h at varying concentrations of yangambin or epi-yangambin. Results: Yangambin and epi-yangambin were found to reduce the intracellular viability of either Leishmania species in a concentration-dependent manner, with respective IC50 values of: 43.9 ± 5 and 22.6 ± 4.9 µM for L. amazonensis, compared to IC50 values of 76 ± 17 and 74.4 ± 9.8 µM for L. braziliensis. In this context, epi-yangambin proved more selective and effective against in vitro infection by L. amazonensis. However, both lignans were found to distinctly modulate the production of inflammatory mediators and other cytokines by macrophages infected by either of the Leishmania species evaluated. While yangambin increased the production of IL-10 by L. braziliensis-infected macrophages, both compounds were observed to lower the production of NO, PGE2, IL-6 and TNF-α in both Leishmania species. Discussion: The present results serve to encourage the development of novel studies aimed at screening natural bioactive compounds with the hope of discovering new therapeutic options for the treatment of Cutaneous Leishmaniasis.


Assuntos
Leishmania , Leishmaniose Cutânea , Lignanas , Ocotea , Animais , Camundongos , Extratos Vegetais/farmacologia , Lignanas/farmacologia , Leishmaniose Cutânea/tratamento farmacológico , Camundongos Endogâmicos BALB C
17.
Artigo em Inglês | MEDLINE | ID: mdl-18955353

RESUMO

Propolis possesses various biological activities such as antibacterial, antifungal, anti-inflammatory, anesthetic and antioxidant properties. A topically applied product based on Brazilian green propolis was developed for the treatment of burns. For such substance to be used more safely in future clinical applications, the present study evaluated the mutagenic potential of topical formulations supplemented with green propolis extract (1.2, 2.4 and 3.6%) based on the analysis of chromosomal aberrations and of micronuclei. In the in vitro studies, 3-h pulse (G(1) phase of the cell cycle) and continuous (20 h) treatments were performed. In the in vivo assessment, the animals were injured on the back and then submitted to acute (24 h), subacute (7 days) and subchronic (30 days) treatments consisting of daily dermal applications of gels containing different concentrations of propolis. Similar frequencies of chromosomal aberrations were observed for cultures submitted to 3-h pulse and continuous treatment with gels containing different propolis concentrations and cultures not submitted to any treatment. However, in the continuous treatment cultures treated with the 3.6% propolis gel presented significantly lower mitotic indices than the negative control. No statistically significant differences in the frequencies of micronuclei were observed between animals treated with gels containing different concentrations of propolis and the negative control for the three treatment times. Under the present conditions, topical formulations containing different concentrations of green propolis used for the treatment of burns showed no mutagenic effect in either test system, but 3.6% propolis gel was found to be cytotoxic in the in vitro test.

18.
Int J Nanomedicine ; 15: 8659-8672, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33177824

RESUMO

BACKGROUND: Leishmaniasis is a neglected disease, and the current therapeutic arsenal for its treatment is seriously limited by high cost and toxicity. Nanostructured lipid carriers (NLCs) represent a promising approach due to high drug loading capacity, controlled drug release profiles and superior stability. Here, we explore the efficacy of a unique pH-sensitive amphotericin B-loaded NLC (AmB-NLC) in Leishmania braziliensis infection in vitro and in vivo. METHODS AND RESULTS: AmB-NLC was assessed by dynamic light scattering and atomic force microscopy assays. The carrier showed a spherical shape with a nanometric size of 242.0 ± 18.3 nm. Zeta potential was suggestive of high carrier stability (-42.5 ± 1.5 mV), and the NLC showed ~99% drug encapsulation efficiency (EE%). In biological assays, AmB-NLC presented a similar IC50 as free AmB and conventional AmB deoxycholate (AmB-D) (11.7 ± 1.73; 5.3 ± 0.55 and 13 ± 0.57 ng/mL, respectively), while also presenting higher selectivity index and lower toxicity to host cells, with no observed production of nitric oxide or TNF-α by in vitro assay. Confocal microscopy revealed the rapid uptake of AmB-NLC by infected macrophages after 1h, which, in association with more rapid disruption of AmB-NLC at acidic pH levels, may directly affect intracellular parasites. Leishmanicidal effects were evaluated in vivo in BALB/c mice infected in the ear dermis with L. braziliensis and treated with a pentavalent antimonial (Sb5+), liposomal AmB (AmB-L) or AmB-NLC. After 6 weeks of infection, AmB-NLC treatment resulted in smaller ear lesion size in all treated mice, indicating the efficacy of the novel formulation. CONCLUSION: Here, we preliminarily demonstrate the effectiveness of an innovative and cost-effective AmB-NLC formulation in promoting the killing of intracellular L. braziliensis. This novel carrier system could be a promising alternative for the future treatment of cutaneous leishmaniasis.


Assuntos
Anfotericina B/administração & dosagem , Leishmaniose Cutânea/tratamento farmacológico , Nanoestruturas/administração & dosagem , Anfotericina B/farmacocinética , Anfotericina B/farmacologia , Animais , Preparações de Ação Retardada/farmacocinética , Preparações de Ação Retardada/uso terapêutico , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Feminino , Concentração de Íons de Hidrogênio , Leishmania braziliensis/efeitos dos fármacos , Leishmania braziliensis/patogenicidade , Lipídeos/química , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Masculino , Camundongos Endogâmicos BALB C , Nanoestruturas/química
19.
J Ethnopharmacol ; 252: 112496, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-31870795

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Propolis is a natural product produced by honeybees used as a medicine at least to 300 BC. In the last decades, several studies showed biological and pharmacological properties of propolis, witch scientifically explains the empirical use for centuries. The anti-inflammatory activity of propolis with the purpose to reduce Th2 inflammation has been evaluated in allergic asthma. However, it remains to be determined how propolis negatively regulates the immune response after allergen re-exposure. AIM OF THE STUDY: We hypothesized that the anti-inflammatory activity of propolis is dependent on the induction of myeloid derived suppressor cells (MDSC) and regulatory T cells. MATERIALS AND METHODS: To assess this hypothesis, we used an ovalbumin-induced asthma model to evaluate the effect of EPP-AF® dry extract from Brazilian green propolis. RESULTS: Propolis treatment decreased pulmonary inflammation and mucus production as well as eosinophils and IL-5 in the broncoalveolar lavage. Propolis enhanced also in vitro differentiation and in vivo frequency of lung MDSC and CD4+Foxp3+ regulatory T cells. CONCLUSIONS: Together these results confirm the immunomodulatory potential of propolis during sensitization and challenge with allergen. In addition, the collecting findings show, for the first time, that propolis increases the frequency of MDSC and CD4+Foxp3+ regulatory T cells in the lungs, and suggest that it could be use as target for development of new immunotherapy or adjuvant immunotherapy for asthma.


Assuntos
Anti-Inflamatórios/uso terapêutico , Asma/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Células Supressoras Mieloides/efeitos dos fármacos , Própole/uso terapêutico , Linfócitos T Reguladores/efeitos dos fármacos , Alérgenos , Animais , Anti-Inflamatórios/farmacologia , Asma/induzido quimicamente , Asma/imunologia , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Diferenciação Celular/efeitos dos fármacos , Feminino , Fatores Imunológicos/farmacologia , Imunoterapia , Interleucina-13/genética , Interleucina-13/imunologia , Interleucina-5/imunologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Camundongos Endogâmicos C57BL , Células Supressoras Mieloides/imunologia , Ovalbumina , Própole/farmacologia , Linfócitos T Reguladores/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia
20.
J Ethnopharmacol ; 245: 112174, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31442620

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Propolis has been employed extensively in many cultures since ancient times as antiseptic, wound healing, anti-pyretic and others due to its biological and pharmacological properties, such as immunomodulatory, antitumor, anti-inflammatory, antioxidant, antibacterial, antiviral, antifungal, antiparasite activities. But despite its broad and traditional use, there is little knowledge about its potential interaction with prescription drugs. AIM OF THE STUDY: The main objective of this work was to study the potential herbal-drug interactions (HDIs) of EPP-AF® using an in vivo assay with a cocktail approach. MATERIALS AND METHODS: Subtherapeutic doses of caffeine, losartan, omeprazole, metoprolol, midazolam and fexofenadine were used. Sixteen healthy adult volunteers were investigated before and after exposure to orally administered 125 mg/8 h (375 mg/day) EPP-AF® for 15 days. Pharmacokinetic parameters were calculated based on plasma concentration versus time (AUC) curves. RESULTS: After exposure to EPP-AF®, it was observed decrease in the AUC0-∞ of fexofenadine, caffeine and losartan of approximately 18% (62.20 × 51.00 h.ng/mL), 8% (1085 × 999 h.ng/mL) and 13% (9.01 × 7.86 h.ng/mL), respectively, with all 90% CIs within the equivalence range of 0.80-1.25. On the other hand, omeprazole and midazolam exhibited an increase in AUC0-∞ of, respectively, approximately 18% (18.90 × 22.30 h.ng/mL) and 14% (1.25 × 1.43 h.ng/mL), with the upper bounds of 90% CIs slightly above 1.25. Changes in pharmacokinetics of metoprolol or its metabolite α-hydroxymetoprolol were not statistically significant and their 90% CIs were within the equivalence range of 0.80-1.25. CONCLUSIONS: In conclusion, our study shows that EPP-AF® does not clinically change CYP1A2, CYP2C9, CYP2C19, CYP2D6 and CYP3A activities, once, despite statistical significant, the magnitude of the changes in AUC values after EPP-AF® were all below 20% and therefore may be considered safe regarding potential interactions involving these enzymes. Besides, to the best of our knowledge this is the first study to assess potential HDIs with propolis.


Assuntos
Cafeína/farmacocinética , Losartan/farmacocinética , Metoprolol/farmacocinética , Midazolam/farmacocinética , Omeprazol/farmacocinética , Própole , Terfenadina/análogos & derivados , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Adulto , Cafeína/sangue , Estudos Cross-Over , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Interações Medicamentosas , Feminino , Humanos , Losartan/sangue , Masculino , Metoprolol/sangue , Midazolam/sangue , Omeprazol/sangue , Terfenadina/sangue , Terfenadina/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA