RESUMO
Knowledge of the genetic make-up and demographic history of invasive populations is critical to understand invasion mechanisms. Commensal rodents are ideal models to study whether complex invasion histories are typical of introductions involving human activities. The house mouse Mus musculus domesticus is a major invasive synanthropic rodent originating from South-West Asia. It has been largely studied in Europe and on several remote islands, but the genetic structure and invasion history of this taxon have been little investigated in several continental areas, including West Africa. In this study, we focussed on invasive populations of M. m. domesticus in Senegal. In this focal area for European settlers, the distribution area and invasion spread of the house mouse is documented by decades of data on commensal rodent communities. Genetic variation at one mitochondrial locus and 16 nuclear microsatellite markers was analysed from individuals sampled in 36 sites distributed across the country. A combination of phylogeographic and population genetics methods showed that there was a single introduction event on the northern coast of Senegal, from an exogenous (probably West European) source, followed by a secondary introduction from northern Senegal into a coastal site further south. The geographic locations of these introduction sites were consistent with the colonial history of Senegal. Overall, the marked microsatellite genetic structure observed in Senegal, even between sites located close together, revealed a complex interplay of different demographic processes occurring during house mouse spatial expansion, including sequential founder effects and stratified dispersal due to human transport along major roads.
Assuntos
Variação Genética , Genética Populacional , Camundongos/genética , Distribuição Animal , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Repetições de Microssatélites , Modelos Genéticos , Filogeografia , SenegalRESUMO
As air masses move within the troposphere, they transport a multitude of components including gases and particles such as pollen and microorganisms. These movements generate atmospheric highways that connect geographic areas at distant, local, and global scales that particles can ride depending on their aerodynamic properties and their reaction to environmental conditions. In this article we present an approach and an accompanying web application called tropolink for measuring the extent to which distant locations are potentially connected by air-mass movement. This approach is based on the computation of trajectories of air masses with the HYSPLIT atmospheric transport and dispersion model, and on the computation of connection frequencies, called connectivities, in the purpose of building trajectory-based geographical networks. It is illustrated for different spatial and temporal scales with three case studies related to plant epidemiology. The web application that we designed allows the user to easily perform intensive computation and mobilize massive archived gridded meteorological data to build weighted directed networks. The analysis of such networks allowed us for example, to describe the potential of invasion of a migratory pest beyond its actual distribution. Our approach could also be used to compute geographical networks generated by air-mass movement for diverse application domains, for example, to assess long-term risk of spread from persistent or recurrent sources of pollutants, including wildfire smoke.
RESUMO
Where and when alien organisms are successfully introduced are central questions to elucidate biotic and abiotic conditions favorable to the introduction, establishment and spread of invasive species. We propose a modelling framework to analyze multiple introductions by several invasive genotypes or genetic variants, in competition with a resident population, when observations provide knowledge on the relative proportions of each variant at some dates and places. This framework is based on a mechanistic-statistical model coupling a reaction-diffusion model with a probabilistic observation model. We apply it to a spatio-temporal dataset reporting the relative proportions of five genetic variants of watermelon mosaic virus (WMV, genus Potyvirus, family Potyviridae) in infections of commercial cucurbit fields. Despite the parsimonious nature of the model, it succeeds in fitting the data well and provides an estimation of the dates and places of successful introduction of each emerging variant as well as a reconstruction of the dynamics of each variant since its introduction.
Assuntos
Modelos Biológicos , Doenças das Plantas/virologia , Potyvirus/classificação , França , Potyvirus/isolamento & purificação , ProbabilidadeRESUMO
Pathogen sequence data have been exploited to infer who infected whom, by using empirical and model-based approaches. Most of these approaches exploit one pathogen sequence per infected host (e.g. individual, household, field). However, modern sequencing techniques can reveal the polymorphic nature of within-host populations of pathogens. Thus, these techniques provide a subsample of the pathogen variants that were present in the host at the sampling time. Such data are expected to give more insight on epidemiological links than a single sequence per host. In general, a mechanistic viewpoint to transmission and micro-evolution has been followed to infer epidemiological links from these data. Here, we investigate an alternative approach grounded on statistical learning. The idea consists of learning the structure of epidemiological links with a pseudo-evolutionary model applied to training data obtained from contact tracing, for example, and using this initial stage to infer links for the whole dataset. Such an approach has the potential to be particularly valuable in the case of a risk of erroneous mechanistic assumptions, it is sufficiently parsimonious to allow the handling of big datasets in the future, and it is versatile enough to be applied to very different contexts from animal, human and plant epidemiology. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.
Assuntos
Doenças dos Animais/epidemiologia , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis/veterinária , Doenças das Plantas/estatística & dados numéricos , Vírus/genética , Doenças dos Animais/virologia , Animais , Doenças Transmissíveis/virologia , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Estatísticos , Anotação de Sequência Molecular , Vírus/classificação , Vírus/isolamento & purificaçãoRESUMO
We investigated the factors mediating selection acting on two MHC class II genes (DQA and DRB) in water vole (Arvicola scherman) natural populations in the French Jura Mountains. Population genetics showed significant homogeneity in allelic frequencies at the DQA1 locus as opposed to neutral markers (nine microsatellites), indicating balancing selection acting on this gene. Moreover, almost exhaustive screening for parasites, including gastrointestinal helminths, brain coccidia and antibodies against viruses responsible for zoonoses, was carried out. We applied a co-inertia approach to the genetic and parasitological data sets to avoid statistical problems related to multiple testing. Two alleles, Arte-DRB-11 and Arte-DRB-15, displayed antagonistic associations with the nematode Trichuris arvicolae, revealing the potential parasite-mediated selection acting on DRB locus. Selection mechanisms acting on the two MHC class II genes thus appeared different. Moreover, overdominance as balancing selection mechanism was showed highly unlikely in this system.
Assuntos
Arvicolinae/genética , Arvicolinae/parasitologia , Genes MHC da Classe II , Interações Hospedeiro-Parasita , Seleção Genética , Animais , Evolução Molecular , Feminino , Frequência do Gene , Genética Populacional , Genótipo , Heterozigoto , Repetições de Microssatélites , Análise Multivariada , Trichuris/fisiologiaRESUMO
Feline panleucopenia virus (FPLV) was introduced in 1977 on Marion Island (in the southern Indian Ocean) with the aim of eradicating the cat population and provoked a huge decrease in the host population within six years. The virus can be transmitted either directly through contacts between infected and healthy cats or indirectly between a healthy cat and the contaminated environment: a specific feature of the virus is its high rate of survival outside the host. In this paper, a model was designed in order to take these two modes of transmission into account. The results showed that a mass-action incidence assumption was more appropriate than a proportionate mixing one in describing the dynamics of direct transmission. Under certain conditions the virus was able to control the host population at a low density. The indirect transmission acted as a reservoir supplying the host population with a low but sufficient density of infected individuals which allowed the virus to persist. The dynamics of the infection were more affected by the demographic parameters of the healthy hosts than by the epidemiological ones. Thus, demographic parameters should be precisely measured in field studies in order to obtain accurate predictions. The predicted results of our model were in good agreement with observations.
Assuntos
Vírus da Panleucopenia Felina/patogenicidade , Panleucopenia Felina/transmissão , Animais , Animais Selvagens/virologia , Gatos , Simulação por Computador , Reservatórios de Doenças , Panleucopenia Felina/virologia , Índia , Modelos Biológicos , Modelos Estatísticos , Dinâmica PopulacionalRESUMO
We isolated and characterized 11 microsatellite loci in the grasshopper Oedaleus decorus (Orthoptera: Acrididae), an endangered species in Central Europe. Polymorphism was studied from two populations, one out of two populations known from Switzerland (n = 20 individuals) and one site from south of France (n = 20). The number of alleles and the expected heterozygosity ranged from five to 12 and from 0.559 to 0.898, respectively, in the Swiss population, and from 14 to 23 and from 0.895 to 0.974, respectively, in the French population. These microsatellite markers are suitable for further conservation genetic studies of O. decorus.
RESUMO
Host-pathogen interactions are of particular interest in studies of the interplay between population dynamics and natural selection. The major histocompatibility complex (MHC) genes of demographically fluctuating species are highly suitable markers for such studies, because they are involved in initiating the immune response against pathogens and display a high level of adaptive genetic variation. We investigated whether two MHC class II genes (DQA1, DRB) were subjected to contemporary selection during increases in the density of fossorial water vole (Arvicola terrestris) populations, by comparing the neutral genetic structure of seven populations with that estimated from MHC genes. Tests for heterozygosity excess indicated that DQA1 was subject to intense balancing selection. No such selection operated on neutral markers. This pattern of selection became more marked with increasing abundance. In the low-abundance phase, when populations were geographically isolated, both overall differentiation and isolation-by-distance were more marked for MHC genes than for neutral markers. Model-based simulations identified DQA1 as an outlier (i.e. under selection) in a single population, suggesting the action of local selection in fragmented populations. The differences between MHC and neutral markers gradually disappeared with increasing effective migration between sites. In the high-abundance year, DQA1 displayed significantly lower levels of overall differentiation than the neutral markers. This gene therefore displayed stronger homogenization than observed under drift and migration alone. The observed signs of selection were much weaker for DRB. Spatial and temporal fluctuations in parasite pressure and locus-specific selection are probably the most plausible mechanisms underlying the observed changes in selection pattern during the demographic cycle.
Assuntos
Arvicolinae/genética , Genes MHC da Classe II/genética , Seleção Genética , Animais , Frequência do Gene , Variação Genética , Genética Populacional , Genótipo , Antígenos HLA-DQ/genética , Cadeias alfa de HLA-DQ , Antígenos HLA-DR/genética , Repetições de Microssatélites/genética , Dados de Sequência Molecular , Densidade Demográfica , Análise de Sequência de DNARESUMO
In cyclic populations, high genetic diversity is currently reported despite the periodic low numbers experienced by the populations during the low phases. Here, we report spatio-temporal monitoring at a very fine scale of cyclic populations of the fossorial water vole (Arvicola terrestris) during the increasing density phase. This phase marks the transition from a patchy structure (demes) during low density to a continuous population in high density. We found that the genetic diversity was effectively high but also that it displayed a local increase within demes over the increasing phase. The genetic diversity remained relatively constant when considering all demes together. The increase in vole abundance was also correlated with a decrease of genetic differentiation among demes. Such results suggest that at the end of the low phase, demes are affected by genetic drift as the result of being small and geographically isolated. This leads to a loss of local genetic diversity and a spatial differentiation among demes. This situation is counterbalanced during the increasing phase by the spatial expansion of demes and the increase of the effective migration among differentiated demes. We provide evidences that in cyclic populations of the fossorial water voles, the relative influence of drift operating during low density populations and migration occurring principally while population size increases interacts closely to maintain high genetic diversity.
Assuntos
Migração Animal , Arvicolinae/genética , Arvicolinae/fisiologia , Variação Genética/genética , Animais , França , Dinâmica Populacional , Fatores de TempoRESUMO
Infection by the cestode Taenia taeniaeformis was investigated within numerous cyclic populations of the fossorial water vole Arvicola terrestris sampled during 4 years in Franche-Comté (France). The relative influence of different rodent demographic parameters on the presence of this cestode was assessed by considering (1) the demographic phase of the cycle; (2) density at the local geographical scale (<0.1 km2); (3) mean density at a larger scale (>10 km2). The local scale corresponded to the rodent population (intermediate host), while the large scale corresponded to the definitive host population (wild and feral cats). General linear models based on analyses of 1804 voles revealed the importance of local density but also of year, rodent age, season and interactions between year and season and between age and season. Prevalence was significantly higher in low vole densities than during local outbreaks. By contrast, the large geographical scale density and the demographic phase had less influence on infection by the cestode. The potential impacts of the cestode on the fitness of the host were assessed and infection had no effect on the host body mass, litter size or sexual activity of voles.
Assuntos
Arvicolinae/parasitologia , Doenças dos Roedores/epidemiologia , Taenia/fisiologia , Teníase/veterinária , Análise de Variância , Animais , Peso Corporal/fisiologia , Demografia , Feminino , França/epidemiologia , Interações Hospedeiro-Parasita , Modelos Lineares , Tamanho da Ninhada de Vivíparos , Densidade Demográfica , Gravidez , Prevalência , Doenças dos Roedores/parasitologia , Estações do Ano , Comportamento Sexual Animal , Teníase/epidemiologia , Teníase/parasitologiaRESUMO
Genetic structure can be strongly affected by landscape features and variation through time and space of demographic parameters such as population size and migration rate. The fossorial water vole (Arvicola terrestris) is a cyclic species characterized by large demographic fluctuations over short periods of time. The outbreaks do not occur everywhere at the same time but spread as a wave at a regional scale. This leads to a pattern of large areas (i.e. some hundreds of km2), each with different vole abundances, at any given time. Here, we describe the abundance and genetic structures in populations of the fossorial water vole. We use the data to try to understand how landscape and demographic features act to shape the genetic structure. The spatial variability of vole abundance was assessed from surface indices, collected in spring 2002 (April) in eastern central France. Genetic variability was analysed using eight microsatellite loci at 23 localities sampled between October 2001 and April 2002. We found some congruence between abundance and genetic structures. At a regional scale, the genetic disruptions were associated with both sharp relief and transition between an area of low abundance and another of high abundance. At a local scale, we observed a variation of the isolation-by-distance pattern according to the abundance level of vole populations. From these results we suggest that the dispersal pattern in cyclic rodent populations varies throughout the demographic cycle.